| Website image | URL of site archived | Date archived |
Archive type |
| https://graphtoy.com/?f1(x,t)=1/4&v1=false&f2(x,t)=clamp(f1(x)*(1-((clamp(x,(1-f1(x)),1)-1)/f1(x))**2)**(1/2)+(1-f1(x)))&v2=false&f3(x,t)=(1-f1(x))*(1-(1-(clamp(x,0,(1-f1(x)))/(1-f1(x)))**2)**(1/2))&v3=false&f4(x,t)=f2(x)+f3(x)-(1-f1(x))&v4=false&f5(x,t)=(-1)%5Efloor(x)*(f4(mod(x/1,1))-.5)+.5&v5=true&f6(x,t)=f4(mod(x,1))*abs(floor(x+1)%252)+f4(1-mod(x,1))*abs(floor(-x+1)%252)&v6=true&grid=2&coords=0,0,1.3327067669172932 | Fri, 09 Aug 2024 23:55:39 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=abs((-2%2A(-1)%5Efloor(.5+.5%2Ax)%2Aasin(1-2%2Amod(.5+.5%2Ax,1)))%2F(4%2Aatan(1)))&v1=true&f2(x,t)=1-abs(sin((4%2Aatan(1))%2A(x-1)%2F2))&v2=true&f3(x,t)=1-abs((-2%2A(-1)%5Efloor(x%2F2)%2Aasin(1-2%2Amod(.5%2Ax,1)))%2F(4%2Aatan(1)))&v3=true&f4(x,t)=abs(sin((4%2Aatan(1))%2Ax%2F2))&v4=true&f5(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1.-2%2Amod(x,1)))%2F(4%2Aatan(1))&v5=true&f6(x,t)=.5-.5%2Acos((4%2Aatan(1)%2Ax))&v6=true&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240719112828/https://graphtoy.com/?f1(x,t)=abs((-2%2A(-1)%5Efloor(.5+.5%2Ax)%2Aasin(1-2%2Amod(.5+.5%2Ax,1)))%2F(4%2Aatan(1)))&v1=true&f2(x,t)=1-abs(sin((4%2Aatan(1))%2A(x-1)%2F2))&v2=true&f3(x,t)=1-abs((-2%2A(-1)%5Efloor(x%2F2)%2Aasin(1-2%2Amod(.5%2Ax,1)))%2F(4%2Aatan(1)))&v3=true&f4(x,t)=abs(sin((4%2Aatan(1))%2Ax%2F2))&v4=true&f5(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1.-2%2Amod(x,1)))%2F(4%2Aatan(1))&v5=true&f6(x,t)=.5-.5%2Acos((4%2Aatan(1)%2Ax))&v6=true&grid=2&coords=0,0,1.332394366197183)
| Fri, 19 Jul 2024 11:29:26 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=abs((-2*(-1)%5Efloor(.5+.5*x)*asin(1-2*mod(.5+.5*x,1)))/(4*atan(1)))&v1=true&f2(x,t)=1-abs(sin((4*atan(1))*(x-1)/2))&v2=true&f3(x,t)=1-abs((-2*(-1)%5Efloor(x/2)*asin(1-2*mod(.5*x,1)))/(4*atan(1)))&v3=true&f4(x,t)=abs(sin((4*atan(1))*x/2))&v4=true&f5(x,t)=.5-.5*(-1)%5Efloor(x)+((-1)%5Efloor(x)*acos(1.-2*mod(x,1)))/(4*atan(1))&v5=true&f6(x,t)=.5-.5*cos((4*atan(1)*x))&v6=true&grid=2&coords=0,0,1.332394366197183 | Fri, 19 Jul 2024 11:29:14 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=abs(((-1)%5E(1+floor(.5+.5%2Ax))%2A(-2+sqrt(4+log(-1+mod(.5+.5%2Ax,1)%5E(-1))%5E2)))%2Flog(-1+mod(.5+.5%2Ax,1)%5E(-1)))&v1=true&f2(x,t)=1-abs((-1)%5Efloor(x%2F2)%2A(-.5+(1+exp((-1+mod(x%2F2,1))%5E(-1)+mod(x%2F2,1)%5E(-1)))%5E(-1))%2A2)&v2=true&f3(x,t)=1-abs((log(-1+mod(.5%2Ax,1)%5E(-1))+(-1)%5Efloor(x%2F2)%2A(-2+sqrt(4+log(-1+mod(.5%2Ax,1)%5E(-1))%5E2)))%2Flog(-1+mod(.5%2Ax,1)%5E(-1))-1)&v3=true&f4(x,t)=abs((-1)%5Efloor(.5+.5%2Ax)%2A(-1+2%2F(1+exp(1%2F(-1+mod(.5+.5%2Ax,1))+1%2Fmod(.5+.5%2Ax,1)))))&v4=true&f5(x,t)=.5+((-1)%5Efloor(x)%2A(1.-.5%2Asqrt(4+log(-1+1%2Fmod(x,1))%5E2)))%2Flog(-1+1%2Fmod(x,1))&v5=true&f6(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x))%2F(1+exp((1)%2F(-1+mod(x,1))+(1)%2F(mod(x,1))))&v6=true&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240719112629/https://graphtoy.com/?f1(x,t)=abs(((-1)%5E(1+floor(.5+.5%2Ax))%2A(-2+sqrt(4+log(-1+mod(.5+.5%2Ax,1)%5E(-1))%5E2)))%2Flog(-1+mod(.5+.5%2Ax,1)%5E(-1)))&v1=true&f2(x,t)=1-abs((-1)%5Efloor(x%2F2)%2A(-.5+(1+exp((-1+mod(x%2F2,1))%5E(-1)+mod(x%2F2,1)%5E(-1)))%5E(-1))%2A2)&v2=true&f3(x,t)=1-abs((log(-1+mod(.5%2Ax,1)%5E(-1))+(-1)%5Efloor(x%2F2)%2A(-2+sqrt(4+log(-1+mod(.5%2Ax,1)%5E(-1))%5E2)))%2Flog(-1+mod(.5%2Ax,1)%5E(-1))-1)&v3=true&f4(x,t)=abs((-1)%5Efloor(.5+.5%2Ax)%2A(-1+2%2F(1+exp(1%2F(-1+mod(.5+.5%2Ax,1))+1%2Fmod(.5+.5%2Ax,1)))))&v4=true&f5(x,t)=.5+((-1)%5Efloor(x)%2A(1.-.5%2Asqrt(4+log(-1+1%2Fmod(x,1))%5E2)))%2Flog(-1+1%2Fmod(x,1))&v5=true&f6(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x))%2F(1+exp((1)%2F(-1+mod(x,1))+(1)%2F(mod(x,1))))&v6=true&grid=2&coords=0,0,1.332394366197183)
| Fri, 19 Jul 2024 11:27:45 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=abs(((-1)%5E(1+floor(.5+.5*x))*(-2+sqrt(4+log(-1+mod(.5+.5*x,1)%5E(-1))%5E2)))/log(-1+mod(.5+.5*x,1)%5E(-1)))&v1=true&f2(x,t)=1-abs((-1)%5Efloor(x/2)*(-.5+(1+exp((-1+mod(x/2,1))%5E(-1)+mod(x/2,1)%5E(-1)))%5E(-1))*2)&v2=true&f3(x,t)=1-abs((log(-1+mod(.5*x,1)%5E(-1))+(-1)%5Efloor(x/2)*(-2+sqrt(4+log(-1+mod(.5*x,1)%5E(-1))%5E2)))/log(-1+mod(.5*x,1)%5E(-1))-1)&v3=true&f4(x,t)=abs((-1)%5Efloor(.5+.5*x)*(-1+2/(1+exp(1/(-1+mod(.5+.5*x,1))+1/mod(.5+.5*x,1)))))&v4=true&f5(x,t)=.5+((-1)%5Efloor(x)*(1.-.5*sqrt(4+log(-1+1/mod(x,1))%5E2)))/log(-1+1/mod(x,1))&v5=true&f6(x,t)=.5-.5*(-1)%5Efloor(x)+((-1)%5Efloor(x))/(1+exp((1)/(-1+mod(x,1))+(1)/(mod(x,1))))&v6=true&grid=2&coords=0,0,1.332394366197183 | Fri, 19 Jul 2024 11:27:31 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=abs(((-1)%5E(1+floor(.5+.5*x))*(-2+sqrt(4+log(-1+mod(.5+.5*x,1)%5E(-1))%5E2)))/log(-1+mod(.5+.5*x,1)%5E(-1)))&v1=true&f2(x,t)=1-abs((-1)%5Efloor(x/2)*(-.5+(1+exp((-1+mod(x/2,1))%5E(-1)+mod(x/2,1)%5E(-1)))%5E(-1))*2)&v2=true&f3(x,t)=1-abs((log(-1+mod(.5*x,1)%5E(-1))+(-1)%5Efloor(x/2)*(-2+sqrt(4+log(-1+mod(.5*x,1)%5E(-1))%5E2)))/log(-1+mod(.5*x,1)%5E(-1))-1)&v3=true&f4(x,t)=abs((-1)%5Efloor(.5+.5*x)*(-1+2/(1+exp(1/(-1+mod(.5+.5*x,1))+1/mod(.5+.5*x,1)))))&v4=true&f5(x,t)=0.5+((-1)%5Efloor(x)*(1.-0.5*sqrt(4+log(-1+1/mod(x,1))%5E2)))/log(-1+1/mod(x,1))&v5=true&f6(x,t)=0.5-0.5*(-1)%5Efloor(x)+((-1)%5Efloor(x))/(1+exp((1)/(-1+mod(x,1))+(1)/(mod(x,1))))&v6=true&grid=2&coords=0,0,1.332394366197183 | Fri, 19 Jul 2024 11:17:42 GMT
| Archived webpage |
| https://web.archive.org/save/https://graphtoy.com/?f1(x,t)=abs(((-1)%5E(1+floor(.5+.5*x))*(-2+sqrt(4+log(-1+mod(.5+.5*x,1)%5E(-1))%5E2)))/log(-1+mod(.5+.5*x,1)%5E(-1)))&v1=true&f2(x,t)=1-abs((-1)%5Efloor(x/2)*(-.5+(1+exp((-1+mod(x/2,1))%5E(-1)+mod(x/2,1)%5E(-1)))%5E(-1))*2)&v2=true&f3(x,t)=1-abs((log(-1+mod(.5*x,1)%5E(-1))+(-1)%5Efloor(x/2)*(-2+sqrt(4+log(-1+mod(.5*x,1)%5E(-1))%5E2)))/log(-1+mod(.5*x,1)%5E(-1))-1)&v3=true&f4(x,t)=abs((-1)%5Efloor(.5+.5*x)*(-1+2/(1+exp(1/(-1+mod(.5+.5*x,1))+1/mod(.5+.5*x,1)))))&v4=true&f5(x,t)=0.5+((-1)%5Efloor(x)*(1.-0.5*sqrt(4+log(-1+1/mod(x,1))%5E2)))/log(-1+1/mod(x,1))&v5=true&f6(x,t)=0.5-0.5*(-1)%5Efloor(x)+((-1)%5Efloor(x))/(1+exp((1)/(-1+mod(x,1))+(1)/(mod(x,1))))&v6=true&grid=2&coords=0,0,1.332394366197183 | Fri, 19 Jul 2024 11:17:27 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=(asin((x-.5)%2A2)%2F(4%2Aatan(1))%2A2)%2F2+.5&v1=false&f2(x,t)=1-abs((-1)%5Efloor(x%2F2)%2A(f1(mod(x%2F2,1))-.5)%2A2)&v2=false&f3(x,t)=1-abs((-2%2A(-1)%5Efloor(x%2F2)%2Aasin(1-2%2Amod(.5%2Ax,1)))%2F(4%2Aatan(1)))&v3=true&f4(x,t)=(asin((x-.5)%2A2)%2F(4%2Aatan(1))%2A2)%2F2+.5&v4=false&f5(x,t)=abs((-1)%5Efloor(x%2F2+.5)%2A(f4(mod(x%2F2+.5,1))-.5)%2A2)&v5=false&f6(x,t)=abs((-2%2A(-1)%5Efloor(.5+.5%2Ax)%2Aasin(1-2%2Amod(.5+.5%2Ax,1)))%2F(4%2Aatan(1)))&v6=true&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240719085114/https://graphtoy.com/?f1(x,t)=(asin((x-.5)%2A2)%2F(4%2Aatan(1))%2A2)%2F2+.5&v1=false&f2(x,t)=1-abs((-1)%5Efloor(x%2F2)%2A(f1(mod(x%2F2,1))-.5)%2A2)&v2=false&f3(x,t)=1-abs((-2%2A(-1)%5Efloor(x%2F2)%2Aasin(1-2%2Amod(.5%2Ax,1)))%2F(4%2Aatan(1)))&v3=true&f4(x,t)=(asin((x-.5)%2A2)%2F(4%2Aatan(1))%2A2)%2F2+.5&v4=false&f5(x,t)=abs((-1)%5Efloor(x%2F2+.5)%2A(f4(mod(x%2F2+.5,1))-.5)%2A2)&v5=false&f6(x,t)=abs((-2%2A(-1)%5Efloor(.5+.5%2Ax)%2Aasin(1-2%2Amod(.5+.5%2Ax,1)))%2F(4%2Aatan(1)))&v6=true&grid=2&coords=0,0,1.332394366197183)
| Fri, 19 Jul 2024 08:52:38 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=(asin((x-.5)*2)/(4*atan(1))*2)/2+.5&v1=false&f2(x,t)=1-abs((-1)%5Efloor(x/2)*(f1(mod(x/2,1))-.5)*2)&v2=false&f3(x,t)=1-abs((-2*(-1)%5Efloor(x/2)*asin(1-2*mod(.5*x,1)))/(4*atan(1)))&v3=true&f4(x,t)=(asin((x-.5)*2)/(4*atan(1))*2)/2+.5&v4=false&f5(x,t)=abs((-1)%5Efloor(x/2+.5)*(f4(mod(x/2+.5,1))-.5)*2)&v5=false&f6(x,t)=abs((-2*(-1)%5Efloor(.5+.5*x)*asin(1-2*mod(.5+.5*x,1)))/(4*atan(1)))&v6=true&grid=2&coords=0,0,1.332394366197183 | Fri, 19 Jul 2024 08:52:15 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=1%2F(E%5E(1%2Fx+1%2F(x-1))+1)&v1=false&f2(x,t)=abs((-1)%5Efloor(x%2F2+.5)%2A(f1(mod(x%2F2+.5,1))-.5)%2A2)&v2=false&f3(x,t)=abs((-1)%5Efloor(.5+.5%2Ax)%2A(-1+2%2F(1+exp((-1+mod(.5+.5%2Ax,1))%5E(-1)+mod(.5+.5%2Ax,1)%5E(-1)))))&v3=true&f4(x,t)=(2+log(-1+x%5E(-1)))%2F(2%2Alog(-1+x%5E(-1)))-sqrt(4+log(-1+x%5E(-1))%5E2)%2F(2%2Alog(-1+x%5E(-1)))&v4=false&f5(x,t)=abs((-1)%5Efloor(x%2F2+.5)%2A(f4(mod(x%2F2+.5,1))-.5)%2A2)&v5=false&f6(x,t)=abs(((-1)%5E(1+floor(.5+.5%2Ax))%2A(-2+sqrt(4+log(-1+mod(.5+.5%2Ax,1)%5E(-1))%5E2)))%2Flog(-1+mod(.5+.5%2Ax,1)%5E(-1)))&v6=true&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240718135348/https://graphtoy.com/?f1(x,t)=1%2F(E%5E(1%2Fx+1%2F(x-1))+1)&v1=false&f2(x,t)=abs((-1)%5Efloor(x%2F2+.5)%2A(f1(mod(x%2F2+.5,1))-.5)%2A2)&v2=false&f3(x,t)=abs((-1)%5Efloor(.5+.5%2Ax)%2A(-1+2%2F(1+exp((-1+mod(.5+.5%2Ax,1))%5E(-1)+mod(.5+.5%2Ax,1)%5E(-1)))))&v3=true&f4(x,t)=(2+log(-1+x%5E(-1)))%2F(2%2Alog(-1+x%5E(-1)))-sqrt(4+log(-1+x%5E(-1))%5E2)%2F(2%2Alog(-1+x%5E(-1)))&v4=false&f5(x,t)=abs((-1)%5Efloor(x%2F2+.5)%2A(f4(mod(x%2F2+.5,1))-.5)%2A2)&v5=false&f6(x,t)=abs(((-1)%5E(1+floor(.5+.5%2Ax))%2A(-2+sqrt(4+log(-1+mod(.5+.5%2Ax,1)%5E(-1))%5E2)))%2Flog(-1+mod(.5+.5%2Ax,1)%5E(-1)))&v6=true&grid=2&coords=0,0,1.332394366197183)
| Thu, 18 Jul 2024 13:55:25 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=1/(E%5E(1/x+1/(x-1))+1)&v1=false&f2(x,t)=abs((-1)%5Efloor(x/2+.5)*(f1(mod(x/2+.5,1))-.5)*2)&v2=false&f3(x,t)=abs((-1)%5Efloor(.5+.5*x)*(-1+2/(1+exp((-1+mod(.5+.5*x,1))%5E(-1)+mod(.5+.5*x,1)%5E(-1)))))&v3=true&f4(x,t)=(2+log(-1+x%5E(-1)))/(2*log(-1+x%5E(-1)))-sqrt(4+log(-1+x%5E(-1))%5E2)/(2*log(-1+x%5E(-1)))&v4=false&f5(x,t)=abs((-1)%5Efloor(x/2+.5)*(f4(mod(x/2+.5,1))-.5)*2)&v5=false&f6(x,t)=abs(((-1)%5E(1+floor(.5+.5*x))*(-2+sqrt(4+log(-1+mod(.5+.5*x,1)%5E(-1))%5E2)))/log(-1+mod(.5+.5*x,1)%5E(-1)))&v6=true&grid=2&coords=0,0,1.332394366197183 | Thu, 18 Jul 2024 13:55:12 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=1%2F(E%5E(1%2Fx%20+%201%2F(x%20-%201))%20+%201)&v1=false&f2(x,t)=(-1)%5Efloor(x)%2A(f1(mod(x,1))-.5)+.5&v2=false&f3(x,t)=0.5-0.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x))%2F(1+exp((1)%2F(-1+mod(x,1))+(1)%2F(mod(x,1))))&v3=true&f4(x,t)=(2+log(-1+x%5E(-1)))%2F(2%2Alog(-1+x%5E(-1)))-sqrt(4+log(-1+x%5E(-1))%5E2)%2F(2%2Alog(-1+x%5E(-1)))&v4=false&f5(x,t)=(-1)%5Efloor(x)%2A(f4(mod(x,1))-.5)+.5&v5=false&f6(x,t)=0.5+((-1)%5Efloor(x)%2A(1.-0.5%2Asqrt(4+log(-1+1%2Fmod(x,1))%5E2)))%2Flog(-1+1%2Fmod(x,1))&v6=true&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240718090617/https://graphtoy.com/?f1(x,t)=1%2F(E%5E(1%2Fx%20+%201%2F(x%20-%201))%20+%201)&v1=false&f2(x,t)=(-1)%5Efloor(x)%2A(f1(mod(x,1))-.5)+.5&v2=false&f3(x,t)=0.5-0.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x))%2F(1+exp((1)%2F(-1+mod(x,1))+(1)%2F(mod(x,1))))&v3=true&f4(x,t)=(2+log(-1+x%5E(-1)))%2F(2%2Alog(-1+x%5E(-1)))-sqrt(4+log(-1+x%5E(-1))%5E2)%2F(2%2Alog(-1+x%5E(-1)))&v4=false&f5(x,t)=(-1)%5Efloor(x)%2A(f4(mod(x,1))-.5)+.5&v5=false&f6(x,t)=0.5+((-1)%5Efloor(x)%2A(1.-0.5%2Asqrt(4+log(-1+1%2Fmod(x,1))%5E2)))%2Flog(-1+1%2Fmod(x,1))&v6=true&grid=2&coords=0,0,1.332394366197183)
| Thu, 18 Jul 2024 09:06:36 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=1/(E%5E(1/x%20+%201/(x%20-%201))%20+%201)&v1=false&f2(x,t)=(-1)%5Efloor(x)*(f1(mod(x,1))-.5)+.5&v2=false&f3(x,t)=0.5-0.5*(-1)%5Efloor(x)+((-1)%5Efloor(x))/(1+exp((1)/(-1+mod(x,1))+(1)/(mod(x,1))))&v3=true&f4(x,t)=(2+log(-1+x%5E(-1)))/(2*log(-1+x%5E(-1)))-sqrt(4+log(-1+x%5E(-1))%5E2)/(2*log(-1+x%5E(-1)))&v4=false&f5(x,t)=(-1)%5Efloor(x)*(f4(mod(x,1))-.5)+.5&v5=false&f6(x,t)=0.5+((-1)%5Efloor(x)*(1.-0.5*sqrt(4+log(-1+1/mod(x,1))%5E2)))/log(-1+1/mod(x,1))&v6=true&grid=2&coords=0,0,1.332394366197183 | Thu, 18 Jul 2024 09:06:02 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=.5-.5%2Acos(x%2A(4%2Aatan(1)))&v1=true&f2(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1-2%2Amod(x,1)))%2F(4%2Aatan(1))&v2=true&f3(x,t)=.5+.5%2A((-1)%5Efloor((x-.5)%2A2%2F2)%2A(1-abs(mod((x-.5)%2A2,2)-1)%5E2)%5E(1%2F2))&v3=true&f4(x,t)=.5+.5%2A(-1)%5Efloor(-.5+x)-.5%2A(-1)%5Efloor(-.5+x)%2Asqrt((4.-4%2Amod(-1.+x,1))%2Amod(-1.+x,1))&v4=true&f5(x,t)=(1-abs(-1+mod(x,2))%5E2)%5E(1%2F2)&v5=true&f6(x,t)=1-1%2A(1-abs(-1+mod(1+x,2))%5E2)%5E(1%2F2)&v6=true&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240718060353/https://graphtoy.com/?f1(x,t)=.5-.5%2Acos(x%2A(4%2Aatan(1)))&v1=true&f2(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1-2%2Amod(x,1)))%2F(4%2Aatan(1))&v2=true&f3(x,t)=.5+.5%2A((-1)%5Efloor((x-.5)%2A2%2F2)%2A(1-abs(mod((x-.5)%2A2,2)-1)%5E2)%5E(1%2F2))&v3=true&f4(x,t)=.5+.5%2A(-1)%5Efloor(-.5+x)-.5%2A(-1)%5Efloor(-.5+x)%2Asqrt((4.-4%2Amod(-1.+x,1))%2Amod(-1.+x,1))&v4=true&f5(x,t)=(1-abs(-1+mod(x,2))%5E2)%5E(1%2F2)&v5=true&f6(x,t)=1-1%2A(1-abs(-1+mod(1+x,2))%5E2)%5E(1%2F2)&v6=true&grid=2&coords=0,0,1.332394366197183)
| Thu, 18 Jul 2024 06:04:31 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=.5-.5*cos(x*(4*atan(1)))&v1=true&f2(x,t)=.5-.5*(-1)%5Efloor(x)+((-1)%5Efloor(x)*acos(1-2*mod(x,1)))/(4*atan(1))&v2=true&f3(x,t)=.5+.5*((-1)%5Efloor((x-.5)*2/2)*(1-abs(mod((x-.5)*2,2)-1)%5E2)%5E(1/2))&v3=true&f4(x,t)=.5+.5*(-1)%5Efloor(-.5+x)-.5*(-1)%5Efloor(-.5+x)*sqrt((4.-4*mod(-1.+x,1))*mod(-1.+x,1))&v4=true&f5(x,t)=(1-abs(-1+mod(x,2))%5E2)%5E(1/2)&v5=true&f6(x,t)=1-1*(1-abs(-1+mod(1+x,2))%5E2)%5E(1/2)&v6=true&grid=2&coords=0,0,1.332394366197183 | Thu, 18 Jul 2024 06:04:06 GMT
| Archived webpage |
| https://archive.ph/graphtoy.com (Orig site: https://web.archive.org/web/20240716135029/https://archive.ph/graphtoy.com)
| Tue, 16 Jul 2024 13:58:20 GMT
| Archived webpage |
| https://archive.ph/2024.07.16-124012/https://graphtoy.com/?f1(x,t)=acos(cos(x%2A(4%2Aatan(1))))%2F(4%2Aatan(1))&v1=true&f2(x,t)=.5-.5%2Acos(x%2A(4%2Aatan(1)))&v2=true&f3(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1-2%2Amod(x,1)))%2F(4%2Aatan(1))&v3=true&f4(x,t)=.5+.5%2A((-1)%5Efloor((x-.5)%2A2%2F2)%2A(1-abs(mod((x-.5)%2A2,2)-1)%5E2)%5E(1%2F2))&v4=true&f5(x,t)=.5+.5%2A(-1)%5Efloor(-.5+x)-.5%2A(-1)%5Efloor(-.5+x)%2Asqrt((4.-4%2Amod(-1.+x,1))%2Amod(-1.+x,1))&v5=true&f6(x,t)=&v6=false&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240716135038/https://archive.ph/2024.07.16-124012/https://graphtoy.com/?f1(x,t)=acos(cos(x%2A(4%2Aatan(1))))%2F(4%2Aatan(1))&v1=true&f2(x,t)=.5-.5%2Acos(x%2A(4%2Aatan(1)))&v2=true&f3(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1-2%2Amod(x,1)))%2F(4%2Aatan(1))&v3=true&f4(x,t)=.5+.5%2A((-1)%5Efloor((x-.5)%2A2%2F2)%2A(1-abs(mod((x-.5)%2A2,2)-1)%5E2)%5E(1%2F2))&v4=true&f5(x,t)=.5+.5%2A(-1)%5Efloor(-.5+x)-.5%2A(-1)%5Efloor(-.5+x)%2Asqrt((4.-4%2Amod(-1.+x,1))%2Amod(-1.+x,1))&v5=true&f6(x,t)=&v6=false&grid=2&coords=0,0,1.332394366197183)
| Tue, 16 Jul 2024 13:51:30 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=acos(cos(x%2A(4%2Aatan(1))))%2F(4%2Aatan(1))&v1=true&f2(x,t)=.5-.5%2Acos(x%2A(4%2Aatan(1)))&v2=true&f3(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1-2%2Amod(x,1)))%2F(4%2Aatan(1))&v3=true&f4(x,t)=.5+.5%2A((-1)%5Efloor((x-.5)%2A2%2F2)%2A(1-abs(mod((x-.5)%2A2,2)-1)%5E2)%5E(1%2F2))&v4=true&f5(x,t)=.5+.5%2A(-1)%5Efloor(-.5+x)-.5%2A(-1)%5Efloor(-.5+x)%2Asqrt((4.-4%2Amod(-1.+x,1))%2Amod(-1.+x,1))&v5=true&f6(x,t)=&v6=false&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240716123940/https://graphtoy.com/?f1(x,t)=acos(cos(x%2A(4%2Aatan(1))))%2F(4%2Aatan(1))&v1=true&f2(x,t)=.5-.5%2Acos(x%2A(4%2Aatan(1)))&v2=true&f3(x,t)=.5-.5%2A(-1)%5Efloor(x)+((-1)%5Efloor(x)%2Aacos(1-2%2Amod(x,1)))%2F(4%2Aatan(1))&v3=true&f4(x,t)=.5+.5%2A((-1)%5Efloor((x-.5)%2A2%2F2)%2A(1-abs(mod((x-.5)%2A2,2)-1)%5E2)%5E(1%2F2))&v4=true&f5(x,t)=.5+.5%2A(-1)%5Efloor(-.5+x)-.5%2A(-1)%5Efloor(-.5+x)%2Asqrt((4.-4%2Amod(-1.+x,1))%2Amod(-1.+x,1))&v5=true&f6(x,t)=&v6=false&grid=2&coords=0,0,1.332394366197183)
| Tue, 16 Jul 2024 12:40:35 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=acos(cos(x*(4*atan(1))))/(4*atan(1))&v1=true&f2(x,t)=.5-.5*cos(x*(4*atan(1)))&v2=true&f3(x,t)=.5-.5*(-1)%5Efloor(x)+((-1)%5Efloor(x)*acos(1-2*mod(x,1)))/(4*atan(1))&v3=true&f4(x,t)=.5+.5*((-1)%5Efloor((x-.5)*2/2)*(1-abs(mod((x-.5)*2,2)-1)%5E2)%5E(1/2))&v4=true&f5(x,t)=.5+.5*(-1)%5Efloor(-.5+x)-.5*(-1)%5Efloor(-.5+x)*sqrt((4.-4*mod(-1.+x,1))*mod(-1.+x,1))&v5=true&f6(x,t)=&v6=false&grid=2&coords=0,0,1.332394366197183 | Tue, 16 Jul 2024 12:40:20 GMT
| Archived webpage |
| https://graphtoy.com/?f1(x,t)=exp(-1%2Fx)%2F(exp(-1%2Fx)+exp(-1%2F(1-x)))&v1=true&f2(x,t)=(-1)%5Efloor(x)%2A(f1(mod(x,1))-.5)+.5&v2=true&f3(x,t)=.5+(-1)%5Efloor(x)%2A(-0.5+(exp(-(1)%2F(mod(x,1))))%2F(exp(-(1)%2F(1-mod(x,1)))+exp(-(1)%2F(mod(x,1)))))&v3=true&f4(x,t)=84.406022589954030768899117092091000289089388918088900852079%2F3%2A%2A4&v4=true&f5(x,t)=(0.5-0.5%2A(-1)%5Efloor(x%2F%20%20%20(f4(x))%20%20%20)+((-1)%5Efloor(x%2F%20%20%20(f4(x))%20%20%20))%2F(1+exp((1)%2F(-1+mod(x%2F%20%20%20(f4(x))%20%20%20,1))+(1)%2F(mod(x%2F%20%20%20(f4(x))%20%20%20,1)))))&v5=true&f6(x,t)=&v6=false&grid=2&coords=0,0,1.332394366197183 (Orig site: https://web.archive.org/web/20240702072948/https://graphtoy.com/?f1(x,t)=exp(-1%2Fx)%2F(exp(-1%2Fx)+exp(-1%2F(1-x)))&v1=true&f2(x,t)=(-1)%5Efloor(x)%2A(f1(mod(x,1))-.5)+.5&v2=true&f3(x,t)=.5+(-1)%5Efloor(x)%2A(-0.5+(exp(-(1)%2F(mod(x,1))))%2F(exp(-(1)%2F(1-mod(x,1)))+exp(-(1)%2F(mod(x,1)))))&v3=true&f4(x,t)=84.406022589954030768899117092091000289089388918088900852079%2F3%2A%2A4&v4=true&f5(x,t)=(0.5-0.5%2A(-1)%5Efloor(x%2F%20%20%20(f4(x))%20%20%20)+((-1)%5Efloor(x%2F%20%20%20(f4(x))%20%20%20))%2F(1+exp((1)%2F(-1+mod(x%2F%20%20%20(f4(x))%20%20%20,1))+(1)%2F(mod(x%2F%20%20%20(f4(x))%20%20%20,1)))))&v5=true&f6(x,t)=&v6=false&grid=2&coords=0,0,1.332394366197183)
| Tue, 02 Jul 2024 07:30:47 GMT
| Archived webpage |