Modular Laser Launch Architecture: Analysis and Beam Module Design

NIAC Phase I Fellows Meeting

24 March 2004

Jordin T. Kare

Kare Technical Consulting 908 15th Ave. East Seattle, WA 98112 206-323-0795 jtkare@attglobal.net

Revised 3/23/04

The Laser Launch Concept

Launch many small payloads on demand -- up to 10 per hour

Vehicle

- Small
- Simple
- Cheap
- Inert

30,000 launches per year x 100 kg = 3000 Metric tons per year!!

Leave The Hard Parts On The Ground!

Laser and Beam Projector

- Big
- Heavy
- Expensive
- STATIONARY

Rule of Thumb: 1 kg of payload per MWof laser -

Why Laser Launch?

- Massive launch capacity
 - A 100-kg launcher can put 3000 tons per year in LEO
- Very low marginal cost to orbit
 - Electricity, vehicle, and propellant easily <\$100/lb
- Potentially low total cost to orbit
 - <u>If</u> the system is cheap enough to buy and run, and...
 - If there are enough payloads to launch
- Maximum safety no stored energy on vehicles
 - Enables all-azimuth launch from any site
- High reliability, easy to maintain
 - The hard parts stay on the ground
 - Vehicles are simple, mass-produced, and testable
- Ultimate launch-on-demand -- FedEx to space

Pulsed Laser Propulsion Works...

... But Has The Same Problems As Everything Else

Development cost

Even at \$10/watt, \$1 Billion for 100 MW

Technical risk

- You don't know if it will work at all without spending \$\$\$
 - In this case, for a multi-megawatt test laser

• Programmatic risk

- You don't know what it will actually cost until you've built it
 - Big lasers have had cost/schedule/performance problems for 40 years!
- Reality is always different from theory; operational systems are always different from prototypes

The Heat Exchanger Thruster

Heat Exchanger Thruster Advantages

- Works with any laser wavelength and pulse format
- Nearly 100% efficient
 - high absorption, negligible reradiation
- Simple to design
 - Steady flow
 - Simple propellant properties (especially for H₂)
- Simple to build
 - Electroplating technique demonstrated at LLNL
 - Modular design scales easily to any area
- Simple to test
 - Works with any radiant source; doesn't even need a laser

Current 100 MW Vehicle Concept

What Do We Do About The #%&@ Laser?

Lasers cost too much

- Absolute cheapest high power laser is \$20-50/watt
 - CO2 electric discharge, with very poor beam quality
 - Should scale to 100 MW, but not easily or cheaply
- Stay-on-all-day lasers above ~10 kW don't exist
 - AVLIS copper vapor lasers were 10 kW total, at a cost of >>\$1000/watt

No one will pay to develop a large laser

- Too many bad memories: CO2, HF/DF, Excimer, FEL...
- "There are liars, damn liars, and laser builders"

Laser Diode Arrays

- >50% efficient DC to Light at ~800 nm
- 10,000 hour lifetime (60,000 launches!) CW operation
- Run on DC current; water cooled
- Commercially available from multiple vendors

- \$4 \$10/watt NOW
- \$2/watt in a few years in 100 MW quantities
- BUT -- not coherent; not high enough radiance to beam 500 km

A 1200 Watt CW "stack" from Nuvonyx, Inc. -- a catalog item!

The Beam Module Concept

- DON'T build one big laser and beam director
- Build MANY small "Beam Modules"
 - Completely independent laser and beam director
 - Minimal common services, ideally only power and water

"This division of the laser source among many apertures was initially regarded only as a necessary evil, required by the low radiance of noncoherent [laser diode] arrays. However, we have recently realized that the fact that the laser and optical aperture can be subdivided into small independent "beam modules" is a fundamental advantage of laser propulsion over other advanced propulsion systems, and may well be the key to making laser launch the best option for a future launch architecture" -- J. Kare 7/03

Advantages of Beam Modules

Scalability

System grows smoothly by adding beam modules

Reliability and maintainability

- Failed modules have no effect on launch (even in progress)
- Beam modules can be replaced as units

Cost

- Everything in the system is mass-produced
- Plausible cost goal: comparable to a modern automobile (excluding laser)

Development

- All the technical risk is in the first few units: \$M, not \$B
- No failure costs very much -- you can't "crash the prototype"

Conceptual Beam Module (as of last year)

Optics module

- 6 kW* diode array
- Stacking optics
- Tip-tilt mirror
- Tracking sensor

Telescope

- 3-m replica primary
- Secondary
- 2-axis alt-az mount (possibly alt-alt to avoid zenith singularity)

Support module

- Diode power supply (16 kW* DC)
- Diode temperature controller
- Cooling water pump/regulator
- Tracking sensor controller
- Mount controller and drivers
- Tip/tilt controller and drivers

A 100 MW launch system might have ~20,000 of these* --But you can build ONE to start with

*Based on 2x10¹³ radiance and 500 km range; better radiance or shorter range would increase unit power and decrease number required

At Least Three Solutions

- Fiber Lasers
- Spectral Beam Combining
- Diode Pumped Alkali Laser (DPAL)

All made breakthroughs within the last year!

Fiber Lasers

Ytterbium-doped fiber laser

- Converts non-coherent diode array light to single-mode laser output with up to 90% efficiency; 75% is routine
- Demonstrated at 1 kW; 10 kW projected within 1-2 years
- Simple and mass-produceable; already in commercial production

Spectral Beam Combining (SBC)

- Diodes operate independently in external cavity
 - Antireflection coating on laser diode output facets
 - Each diode automatically operates at the "correct" wavelength
- Demonstrated* with ~700 diodes in 7 bars (26 watt output)
 - − >1000-fold stacking should be feasible
- SBC efficiency ~50% (power out compared to raw diode bars)

Diode Pumped Alkali Laser (DPAL)

- New concept (2003) developed by W. Krupke et al. (ex-LLNL)
- Rb (785 nm) or Cs (895 nm) vapor in He buffer gas
 - Absorption line pressure-broadened to match diode linewidth
 - High efficiency requires tight control of diode wavelength, spectrum
- Demonstrated at ~30 W level
 - Performance predicted accurately with no free parameters

Laser Subsystem: Alternatives

	Baseline Fiber Laser	SBC Diodes	DPAL
Lasing medium	Yb-doped double-core fiber	8 x 125 W diode bars	Rubidium vapor cell
Wavelength	1.08 []m	805 - 810 nm	795 nm
Module output power	50 kW	10 kW	50 kW
Unit laser power	10 kW	600 W	10 kW
# of lasers/module	6	20	6
Beam quality (M ²)	1.5	2	1.2
Radiance $(P / \square^2 (M^2)^2)$	$3.8 \times 10^{15} \mathrm{W/m^2-sr}$	2.3 x 10 ¹⁴	1.1 x 10 ¹⁶
Laser Efficiency (P _{out} / P _{diode})	80%	60% SBC eff.	54%
Pump Power per laser	12.5 kW	1000 W	18.5 kW
Diode Efficiency	50%	50%	50%
DC efficiency (P _{out} / P _{DC})	40%	30%	27%
DC Power (module)	150 kW	40 kW	222 kW
Cooling Requirement	90 kW	28 kW	162 kW
Water flow	~100 liter/min	~50 liter/min*	~300 liter/min*

How Much Will They Cost? Diode Arrays

Laser Diode Cost Trends

- Substantial reductions in bar cost
 - \$100/bar, 100 W bars in 1-2 years (F. Way, Diamond Optical)
 - \$10/bar (50 W bars?) "to stay competitive" (a major manufacturer)
- Substantial reductions in packaging cost
 - LLNL, Oriel, others developing low-cost packaging
 - Oriel "TO-220" package aimed at 50% of late-'03 price; available in mid 2004
 - Diamond Optical willing to quote ~50 cents/watt
- Unpredictable gains in performance
 - Bars have been stuck at 60 W for several years (100 W Real Soon Now)
 - Major improvement may require radical approach (e.g., VCSEL arrays)
- But...Current market does not support large investments in improved processing/packaging
 - ~\$100M/year for all high power arrays, vs. \$4B/year for discrete diodes at peak of telecomm market
 - ~\$1B market for launch system would drive industry

How Much Will They Cost? Complete Lasers

- Current commercial fiber lasers are \$500/watt* -- Too Much. **BUT**
 - Relatively low unit power: 100 W
 - Based on discrete packaged diodes @ \$100 150/watt, not bars
 - Semi-custom production: typically ~10 units
- Best prediction for high-volume, multi-kW lasers: \$7 10/W

- 3 4X diode cost
- Best estimate of component cost in quantity
- Consistent with projected cost of fiber (\$2K / 1 kW)
- Consistent with ~85% learning curve for complex assemblies
- Other laser options in same range

Telescope Requirements

Total Area

- Set by laser radiance (W/m²-sr) and vehicle flux requirement
 - e.g., fiber laser @ $3.8 \times 10^{15} \text{ W/m}^2 \text{ sr requires} \sim 330 \text{ m}^2 \text{ of optics}$
- Secondary limits from mirror heating, thermal blooming
 - Still need to double check blooming

Mirror size and quality

- Diffraction: $D_{mirror} > f \square R / d$
 - R / d ~ 10^5 (500 km / 5 m) f ~ 2 (2.44 for classical limit)
 - $\sim 16 \text{ cm} @ 0.8 \text{ } \text{ } \text{m}, 22 \text{ cm} @ 1.08 \text{ } \text{ } \text{ } \text{m}$
- Wavefront error: Slope $< 0.5 \times 10^{-6}$
 - ~5 waves per meter (vs. 1/10 wave for astronomical telescope)

Pointing and tracking

- Pointing range (nominal) +/- 80° along track, +/- 45° crosstrack
- Closed loop tracking to <<10 □rad; open loop pointing to ~1 mrad

Optics Options

Cassegrain

- Simple optics
- Compact mount
- Obscuration losses (few %)

Off-axis Cassegrain

- Low loss
- Asymmetric optics
- Bulky

Diffractive primary

- Potentially low cost primary
- Potentially light weight
- No obscuration
- No current technology
- Chromatic aberration

Stationary telescope with tracking flat

- All hardware is stationary
- Minimum moving mass
- Cheap primary
- Additional large optic (flat)
- Field rotation

Multiple small telescopes on common mount

- Lower optics cost/mass
- Compact
- More tracking hardware
- Alignment problems

Optimum Primary Diameter

- Minimum size set by tracking hardware cost or diffraction
- Maximum set by rapid increase in mirror cost with size
- Small jumps at limits of various "standard" supplier capabilities

TANSTAACT(TAG)

- There Ain't No Such Thing As A Cheap Telescope (That's Any Good)
 - Many advanced technologies not necessary (or cheap)
 - Non-glass substrates (SiC, Graphite Epoxy)
 - Advanced polishing techniques (magnetorheological polishing)
 - Active/Adaptive primary (PAMELA)
 - Several possibilities still to look at
 - Replica optics
 - Electrodeposited metal optics
 - Lightweight mount (up to half the cost of a telescope)
- Shifts optimum toward fewer, smaller telescopes than original concept
 - "Only" 1000 2000 x 1 m, vs. 10,000 x 2 3 m
 - Allowed by improved (higher radiance) laser options

Telescope Baseline

• ~1 meter f/2.5 Cassegrain

- Afocal (technically a Mersenne)
- Borosilicate (Pyrex) primary
 - "Few-wave" accuracy
- Multilayer coated for low absorption
- Small (10 cm) secondary
 - Minimize obscuration
 - Limited field of view is OK
- Alt-Alt mount
 - Tracks smoothly through zenith

~\$100K each @ 1000 units (\$22K for primary) \$2 - 5M investment to be able to make 1/day

Photonic Crystal Fibers

Left:

"Air-clad" double core fiber

Right:

Visible-wavelength high power single-mode guiding

J. Limpert, et al. "Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation," Opt. Express 11, 2982-2990 (2003)

www.blazephotonics.com

Transport kW power with low loss (<<1 dB/meter)

- -"Holey" fiber region guides single mode; forbids higher modes
- Most power is transported in void space; avoids nonlinear effects

• Enabling for low cost beam projectors

- Eliminates multiple mirrors in beam path
 - Lossy, difficult to align, difficult to clean
- Isolates laser from telescope motion, dust, etc....

Tracking Subsystem

• Requirement: point beam to ~5 □radians

"Slow" CCD camera

controller

- Track vehicle (control mount) 500 ☐r @ <10 Hz
- Compensate atmosphere <100 □r @ ~100 Hz

controls mount;
1 mr FOV, 60 Hz readout

"Fast" CMOS camera
drives tip-tilt mirror;
100 [r FOV, 500 Hz]

"Tast" CMOS camera
drives tip-tilt mirror;
100 [r FOV, 500 Hz]

From laser

Beacon Options

Reflected laser light

Too much local scattered light

Thermal radiation from hot heat exchanger

- Start/restart problem
- No pointahead for atmospheric correction

Ground-based laser with retroreflector

- Possible, but requires high power (kW), good tracking

Beacon on vehicle

- Narrow-angle with pointing mechanism
- Wide-angle -- simplest possible system
 - A laser diode and a pingpong ball

Baseline Beam Module

- Diode power supply (250 kW DC)
- Cooling water pump/regulator
- Tracking sensor controller
- Mount controller and drivers
- Tip/tilt controller and drivers

Optics module

- Fiber output optics
- Tip-tilt mirror
- Tracking sensor

• Allows for 20% losses in optics, 10% loss in transmission, and 10% of modules offline for maintenance/repair

100 MW System Capital Cost

•	Laser	1020
	 120 MW Fiber lasers @ \$8/watt 	960
	 300 MW DC supply @ \$.20/watt 	60
•	Optics	144
	 2000 Primary mirrors @ \$22 K 	44
	 Other optics, pointing, tracking @ \$25 K 	50
	 Mount and pad @ \$25 K 	50
•	Facilities	161 - 350
	 H2 plant (1000 - 30,000 launches/year) 	2 - 60
	Power buffer	15
	Power line	11-48
	 Launch stand 	30
	Physical plant	100 - 195
•	TOTAL	1325 - 1514

My long-standing Rule Of Thumb estimate: ~\$2 Billion

What Happens To Space? Architectural Implications 1

- Cheap small payloads (common to all laser launch)
 - 1. Microsats/Nanosats: any mission that can be done in 100 kg pieces will be cheapest that way
 - But that will only account for a few % of launch capacity
 - 2. Modular satellites/Constellations: Divide up functionality into 100 kg co-orbiting blocks (cf. NIAC work on constellations)
 - 3. On-orbit fueling/refueling/resupply
 - Stimulates development of autonomous microspacecraft rendezvous and docking, "tug" spacecraft
 - Opens up high-mass-ratio mission space: Moon/Mars with storable propellants
 - 4. On-orbit assembly: large structures constructed on orbit
 - 5. True space industry?

What Happens To Space Industry? Architectural Implications 2

Routine, on-demand launch; very high reliability

Shift in spacecraft reliability criteria; "ground spares" OK

A change in space industry

- Large aerospace company resources are not required
 - To build vehicles
 - To build beam modules
 - To build payloads
- "Learning curve" for participation is much less costly

A change in space politics

 More countries can have their own launchers, or "rent time" on larger launchers and provide vehicles or payloads

What Happens To Human Space? Architectural Implications 3

- Immediate shift in logistics for human LEO missions
 - Missing/broken widgets replaceable by Next Day Space
- Scaling and reliability enable growing human presence
 - Laser launch is <u>uniquely</u> testable to $\sim 10^{-8}$ failure probability
 - e.g., 10⁴ launches AND 10⁴ abort/recoveries before flying a person
 - Initial human launch capability at TBD payload/laser power
 - Mercury capsule was ~1500 kg; surely we could do better?
 - Potential driver for launch system growth to ~1 GW
 - Growth to 2 or more person vehicle opens up passenger launch -- to thousands or 10's of thousands per year

In-Space Power and Propulsion Architectural Implications 4

- Providing electric power shifts module design goals, but "power" modules can also be used for launch
 - PV-compatible wavelength preferred (nominally 700 900 nm)*
 - Higher beam quality (adaptive optics) may be desired
 - However, dedicated pulsed lasers may be preferred for high-Isp pulsed propulsion
- Low cost modules open design space for space power
 - For GEO power, each satellite can have a dedicated source
 - For LEO/MEO power, modules can be distributed to many sites worldwide
- Launcher site can provide 100-MW power levels anywhere out to GEO
 - Relay architectures to be explored

Beam Module Satellite Solar Power System

- Small (10 cm) optics in GEO generate practical (<1 km) spot size on Earth
 - Ideal application for diffractive optics?
- Optics-sized solar panel produces a convenient amount of power: ~3 W for 100 cm²
- SO... build self-contained ~10x10x10 cm beam modules and simply stack them up to make a powersat
 - No high power cables
 - No phase locking;
 - No minimum satellite size to deliver power
 - Power can be shared among any number of receivers
 - Modules simply clip to a frame

Beam Module SSPS

Solar Power Satellite Beam Module

Conclusions 1: Technology Is Ready

Lasers crossed the threshold within the last year

- Performance is sufficient, and nearly certain to improve
- Costs are still high, but not inherently so
 - Costs will drop with volume and time

Current optics technology is dull, but adequate

- Modern glass optics are cheap enough with high-radiance lasers
 - Optimum primary size is ~1 meter or less
- Innovative but unproven technologies are waiting in the wings

No show-stoppers elsewhere in the system

- Mounts, pointing and tracking, etc. are straightforward
 - On-vehicle "omni" beacon looks best for pointing/tracking and makes adding adaptive optics straightforward if required
- Power storage is ripe for innovative tech (advanced batteries, flywheels) but not a system driver

Conclusions 2:

Architecture Implications Are Profound

- Laser launch in general shifts paradigms
 - Small unit payloads, routine prompt access => on orbit industry
- Modular launcher technology changes industry
 - Small companies can play -- modules can come from many sources
 - Small countries can play -- buy their space launch "by the yard"
- Crewed flight is a new game
 - Continuous scaling from support (100 kg payloads) to solo launches (~1000 kg) to taxi (tour bus?) service
 - Inherently high reliability, inherently testable -- tourist friendly!
- Significant effects on in-space power and propulsion
 - Requirements are different, but overlapping
 - Low-enough unit costs open new options, e.g., laser-per-satellite power systems, distributed power belt for orbit raising
- Spinoffs: powersats, power beaming, industrial lasers...

Where to go?

Technology development -- only small niches

- Most technology is being driven by other uses
- Some leverage in low-cost optics, SBC lasers

Technology integration and demonstration

- Integrated subscale module
 - COTS fiber laser(s) or SBC laser array (~100 W)
 - Upgradeable to higher power as lasers become available
 - Optics TBD: at least half-scale; full-scale if possible
 - Full tracking system
- Full scale beam module is a bit much to bite off: ~\$10-20 M
 - Higher power-per-module than originally conceived

• System integration and architecture studies

Many, many issues barely touched: siting, markets, safety...

