DATANET-30
Programming
~ Reference Manual

.

DATANET-30
PROGRAMMING

REFERENCE MANUAL

JANUARY 1964
Rev. July 1965

GENERAL @3 ELECTRIC

COMPUTER DEPARTMENT

PREFACE

This manual covers the aspects of programming the General Electric DATANET-30 Communi-
cations Processor., The assumptions are that the individual doing the programming is already
familiar with programming techniques, and has a comprehensive understanding of the communi-
cations system in which the DATANET-30 is operating.

References to be used in addition to this manual are the DATANET-30 system manual and the
glossary of terms of the X3.3,2 committee of the American Standards Association, Familiarity
with these documents is important before proceeding into the actual programming of the
DATANET-30,

This manual supersedes CPB-1019, dated January 1964,

Comments on this publication may be addressed to Technical Publications, Computer Department,
General Electric Company, P, O, Box 2961, Phoenix, Arizona, 85002,

@ 1964, 1965 by General Electric Company

DATANET =380

CONTENTS
O

Page
I GENERAL DESCRIPTION -
The Memory Unit | e, I-1
The Buffer Selector ., ieesene., I-2
The Bit Buffer Unit Module (BBU) _~~~ I-2
GeNETAL | L ittt I-2
Bit Buffer Channel (BBC), , .,'vuurounn.. I1-2
The Character/Word Buffer Unit (CWU930) ..~ . .~~~ °° I-3
The Character Buffer Channel (CBC930). I-3
N The Word Buffer Channel (WBC930) I-
The Character/Word Buffer Unit (CWU931) I-
General ,..,...... e e e e e e I-
) The Character Buffer Channel (CBC931) 1-
The CIU-930 Computer Interface Unit , I-
The CIU-931 Computer Interface Unit , I-
The Controller Selector Unit (CSU931) I-
Data Communications Processor oo oo oon... I-
Data Flow I-

Detailed Block Diagram,
Description of Registers
Instruction Cycles .,iivuiinrnnnn.
Perforated Tape Reader
Hardware Load0iivinennnnnnenn.
The Elapsed Time Clock (Q-counter)

The Q-counter and Hardware Load
(Instruction Formats , ., ..
3 Nongeneral Instructions
General Instructions .,,c0vtvun..
Representation of Information in Memory
Alphanumeric Data

Numeric Data

..........................

HHHHI—IH&I—(HHHHHHH
DN DO DO DD DD DO DD DN DN = =t =

O -TJO B WWNNJOOT~TITI0 Ul b i

I. INSTRUCTION REPERTOIRE

Internal InsStructions 'evvis e imeneeennnnnns -1

Pseudo-Operations ., . o . v v vttt e et e st -2

Load InStructions v osees ve e e nennnnnn -3

¥ Store InStructions eesievnererunnenenn 1I-5
Arithmetic Instructions,c.0c0vuu..... -6

Logical Instructions ittt ittt i et II-8

¢ Register Transfer Instructionsc.c.u... II-12
Branch Instructionsttt teeenenenan I-16

Macro-Instructionsttt i vt iinennnn. II-18

Special INStructions . . v v v v v vt ittt et II-22

Buffer Selector Instructionsottt eeeenenss II-25

The Option Module Instructionsc00.o.. I-26

DATANET =380

II1, ADDRESSING MEMORY

General Description
Detailed Description

Program Bank Addressing0 iieenean
Common Data Bank Addressingccove e PPN
Channel Table Addressingcco0ceoon e
Indirect Addressingo ivv i et

Indexing

Subroutine Linkage.o e v e e v e e
Memory Addressing Using the Assembly Program

v, CONTROL CONSOLE

The Mode Select Pushbutton Switches ¢ vt v o v v v
The SET A, B, C, and PButtonccc0cv.
The INSERT MEMORY Button 00
The DISPLAY MEMORY Button e e e e

The ERROR Light and Buzzerccovv vervoroson

Power-On Sequence

V. PROGRAMMING CONSIDERATIONS

Programmingthe Buffers

Service Rate .

Basic Program Cyclec.ci e venioaonsnees
Functional Sequencevoovoeennsoesssnens
Programming Conventions, v v v v v i ettt v oo e s a e a

Buffer Operations

Bit Buffer Channel v it vttt oenenes
Character Buffer Channel (CBC)ctvvvvuen.n
Word Buffer Channel (BC)o .o v vv i i
Programming the Perforated Tape Reader
Reading Perforated Tape Under Program Control
Hardware Load and the Perforated Tape Reader ,
Hardware Load Format, v v i e v v e en oo

Assembly Programs
Utility Routines ..
Programming Aids

Page

225593

<A<
Ototooommmmn-dl'lé:.L'—lHo—n

<<<<<d<<d<<
mwww&wwMM|

DATANET =30

“) CPB
R Number

1250

1251
1252
1253
hd 1254
12556
1256
1257
1258
1259

1260

Appendix

A

B*

m Q = = U

—

o

2 = ®

Title

DATANET-30 General Assembly Program (Run on the GE-225 computer)
Characteristics Summary

Instruction Summary

Computer Interface Unit (CIU931)
Computer Interface Unit (CIU930)

Dialing Adapter Unit (DAU930)

Common Peripheral Channel (CPC930)
Processor Interrupt Unit (PIU930)

Dual Access Controller for DSU (DAC)
Punch/Reader Unit (PRU930)

Card Reader Unit (CRF930)I

Controller Selector Unit (CSU930) (CSU931)

Character Word Unit (CWU931)

*This manual includes only Appendix B (Characteristics Summary) and Appendix C (Instruction
Summary).

Appendices A, D, E, F,...,M are bound separately and may be ordered as they apply to individual
customer equipment configurations,

The above listed manuals may be obtained from:

DATANET =80

Publications - Distribution
Computer Department
General Electric Company
P.C. Box 2961

Phoenix, Arizona 85002

18, WBC Transmit Timing Diagram

“_)

) ILLUSTRATIONS
Figure
1. Computer Interface BloCk Diagram. . v v v v v v v v v v s oo omeee e enns
2. BasicC BIOCK DIfTAIM « v v v v v v e v vt ot vt e et eme e et e e
3. Basic BlOCK DIa@Iaml « v v v v vt v v et it et et ettt e e oo
4, Detailed Block Diagram i e
5. Detailed Block Diagram DATANET-30 Instruction Cyele
6, Detailed Block Diagram DATANET-30 Load A (LDA).
7. Detailed Block Diagram DATANET-30Store B(STB).
8. Detailed Block Diagram DATANET-30 Add Memory to A (AMA).
- 9. Detailed Block Diagram DATANET-30 Shift Right 1
10. Receive Lines to B-register (SR1 BR, B) . v v v e v v v v v v v v v v v
Perforated Tape Reader ., .,t rennnrnn.
'S
11, Control Console Switches it i ittt ittt ittt in e
12, General Timing DIagram . . . v vie v v i v ot et oo et e o e a e e enn e
13, Relative Timing for Scanning Buffers v ...
14, Data Flow Functional Block Diagram v v v v v v v v v eeenenns
15, Hardware Scan Block Diagram.o v v v v v v v v v . e
16, CBC Receive Timing Diagram« . . v vttt vt ittt vt e e e e enennn
17. CBC Transmit Timing Diagram v vt it i ettt et e e eeenn
18. WBC Receive Timing Diagram v v v v v vt i e vt oo et it e e v nen e

)
[
[1j°]
(0]

O W~ O 00Ul

DATANET =380

=
e
&3
frel
.
i

o
e e e
- L
-

e

DATANET - 30

DATANET =30

. GENERAL DESCRIPTION

The DATANET-30 is a single address, stored program, special purpose, digital computer
which operates primarily in a straight binary mode but processes both alphanumeric and binary
information. It performs computation (arithmetic) operations and acts as central control for
the DATANET-30 system. Programs to be executed and data to be operated upon are stored
in a magnetic core memory where each core represents a binary digit (bit) of an instruction
or data word. A word is the basic unit of addressable information in the memory.

The overall function is to simultaneously receive, store, process and transmit data in a com-
munications oriented system.

The system can accommodate any standard transmission speed ranging from 45 to 3,000 bits

per second. The basic DATANET-30 controls the transmission of digital data information
over normal common carrier facilities to either another DATANET-30, a DATANET-15, a
DATANET-600, or any of the standard Teletype terminal units in use, such as the Automatic
Send Receive (ASR), Keyboard Send Receive (KSR), or Receive Only (RO) units.

The instruction repertoire contains 78 basic instructions. The hardware is capable of executing
up to 144, 000 instructions per second.

Figure 3 shows the major functional sections of the DATANET-30 Communication System,
consisting of:

1. The buffer selector and associated buffer units
2. The controller selector and associated high-speed controllers
3. The DATANET-30 Data Communications Processor.

THE MEMORY UNIT

The DATANET-30 uses a magnetic core memory to store program instructions, alphanumeric
information, and binary data. Standard memory units are available in 4096, 8192 and 16,384
word sizes. Each word consists of 18 bits. An 18-bit word can contain three 6-bit characters,
two 8-bit characters, or one machine instruction.

DATANET =380

The memory cycle time is 6.94 microseconds for a read-restore cycle, a clear-write cycle,
or a read-compute-write cycle.

During a read-restore cycle, 18 bits of information are read from the memory and transferred
to the data communications processor.

During a clear-write cycle, 18 bits of information are transferred from the data communications
processor and written into memory.

During a read-compute-write cycle, 18 bits of information are read from memory, changed
by the data communications processor, and then the new information is written back into memory.

THE BUFFER® SELECTOR

All units connected directly to the buffer selector are referred to as “buffers.” Information
flows via the buffers and the buffer selector to and from the data communications processor.

The buffer selector contains 128 channels numbered 0 to 127. Each buffer occupies one channel
address of the buffer selector, whether the channel is simplex, half-duplex, or full-duplex.
The buffer selector channel address for each buffer is established by the wiring of an address
plug. The address can be changed or new addresses (buffers) added by changing the existing
plug wiring or inserting a new address plug. The channel addresses in any given buffer module
need not be sequential. However the addresses for bit buffers must be sequential. Channel 0
is always reserved for the paper tape reader.

THE BIT BUFFER UNIT MODULE (BBU)
General

The bit buffer units contain a control section and up to ten bit buffer channels.

The bit buffer unit control section contains hardware that is common to all the bit buffer channels
in the module. A bit buffer module may terminate from 1 to 10 full-duplex or half-duplex trans-
mission lines which are all operating at the same bit rate.

Bit Buffer Channel (BBC)

The function of a bit buffer channel is to transmit data to and receive data from a remote
terminal on a bit basis.

Each bit buffer channel in a module is assigned a buffer selector address by the address plug
for that module. The address applies to both the receive and the transmit section. The addresses
for the Dbit buffers in a module can be whatever is desired for the system and they need not

DATANET =30

",

be sequential. Thus, a bit buffer may be added to a module and given an address without disturb-
ing the existing address arrangement. However, the addresses of all bit buffers must be
sequential.

The bit buffer provides the interface between the DATANET-30 and one full-duplex, half-duplex,
or simplex transmission line on a bit basis. Usually system considerations will limit the bit
buffer lines to an operating speed of less than 300 bits per second. Standard teletype rates of
45, 50, 56.26, 75, 110, and 150 bits per second are selected with the timing connector plug.
The selected bit rate will apply to all the bit buffer channels physically located in that module.
If more than one bit rate isinuse in an existing system, the different bit rates must be terminated
in separate bit buffer modules. Since the bit buffer channel communicates with the remote
terminals on a bit basis, the code level can be different in the separate bit buffers. The code
level of individual bit buffers is recognized by the program.

THE CHARACTER/WORD BUFFER UNIT (CWU930)

The character/word buffer unit module can contain either two character buffer channels (CBC),
two word buffer channels (WBC), or one of each. Each character/word buffer has a control
section.

The Character Buffer Channel (CBC930)

The function of a character buffer is to transmit data to and receive data from a remote terminal
on a character basis. Transmission to and from a remote terminal is on a bit serial, asynchro-
nous basis.

The character buffer control unit contains hardware to control the bit rate and character length.
The character buffers in a module may be operating at different bit rates and different character
lengths. The standard bit rates are 300, 600, 1200, 1800, 2000, 2400, or 3000 bits per second.
The code level may be any one of 5-, 6-, 7-, or 8-level codes with start-stop bit synchronization.
Both the bit rate and code level (character length) may be selected or changed by means of a
connector for each buffer. The timing connector plug is available in any one of the standard
bit rates. The code level plug is available for 5-, 6-, 7-, or 8-level codes. Thus, by changing
plug connectors, both bit rate and code level may be changed to suit changing remote terminal
operations.

One character buffer channel provides the interface between the DATANET-30 and a half-
duplex transmission line.

Usually, a character buffer channel operates with a character oriented device at speeds higher
than 300 bits per second. At this higher rate it is necessary to have some kind of digital subset
(DSS) on each end of the transmission line.

DATANET =80

The Word Buffer Channel (WBC930)

The function of a word buffer channel is to transmit data to and receive data from another
DATANET-30 or a DATANET-600,

The word buffer can operate at the same standard bit rates as the character buffer, The bit
rate is established by a timing connector plug, The word length is not variable, It is established
at 18 bits for a DATANET-30 word, plus one parity bit and one control bit, giving a total of 20
bits per word, This word length is established by a 20-bit code level connector, The DATANET-
600 word is similarly established at 14 bits, .

THE CHARACTER/WORD BUFFER UNIT (CWU931)

General

The character/word buffer unit module can contain two character buffer channels (CBC), Each
CWU occupies one module space,

The Character Buffer Channel (CBC931)

The function of a character buffer is to transmit data to and receive data from a UNIVAC 1004
remote terminal or similar equipment on a character basis. Transmission to and from the
remote terminal is on a bit serial synchronous basis. One character buffer provides the inter-
face between the DATANET-30 and a half-duplex transmission line, The character buffer
channel is synchronized by the digital subset connected to the transmission line,

The character buffer control unit contains hardware adaptable to the character length. The
character buffers in a module may be operating at different character lengths and speeds, Speed
is determined by the subset and remote terminal. It is necessary to have a synchronous digital
subset on each end of the transmission line, The standard bit rates are 2000, 2400 bits per

second,

The code level may be from 5 to 16 bit codes with character synchronization (no start/stop bits),
The code level (character length) is selected or changed by a code level connector for each CBC.
By changing code level connectors, the code level may be changed to meet changing remote
terminal operations or programming techniques,

The code level connector defines the bit configuration of the synchronizing character, the number
of bits per character and where the receive lines will enter the data bits into the working register
(A- or B-register), that is, the high- or low-order position of the A- or B-register. The code
level connector can be arranged to accept two characters (8 level) before setting the receive
flag, Also, the code level connector can be arranged to mask off a bit,

DATANET =380

),

THE CIU930 COMPUTER INTERFACE UNIT

For those systems requiring a combination data communication-information processing system,
a CIU930 Computer Interface Unit is provided. This unit permits attaching a DATANET-30 data
communication processor to a General Electric Compatibles/200 Information Processing System.
With this combination, the DATANET-30 is responsible for the communications half of the system,
while the GE-200 Series system is responsible for the data processing.

Twenty-one-bit words are transferred in parallel to and from the information processing system
via the Computer Interface Unit. The memory address is also transferred in parallel from the
address register in the CIU930 to the processing system prior to the data transfer.

The CIU allows addressing any location in the central processor memory. The CIU930 connects
into any channel of the DATANET-30 buffer selector in the same manner as any other buffer.
The buffer selector address of the CIU930 is specified by the wiring of the buffer selector
address plug for the module. There is no DATANET-30 hardware restriction on the number
of CIU’s which may be used, other than the physical space occupied. On processing system side
the CIU930 can connect into any GE-200 Series priority control channel. See Figure 1.

Datanet=-30
Address Data Register
CIU-930 Register 21 Bits
21
Busy
Not
Busy Information
Processing
- System
Figure 1. Computer Interface Block Diagram

DATANET =80

The CIU can be tested for a busy/not-busy condition by the DATANET-30, This busy/not-busy
test tells the DATANET-30 whether or not it can put data into the data and address registers
of the CIU930, and whether or not it can take data from the data register,

The DATANET-30 communicates with the GE-200 Series central processor only on a memory
interrupt basis. The DATANET-30, under program control, puts data and address information
into the CIU to interrupt the central processor. The central processor cannot control the DAT A~
NET-30, as is possible with other peripheral equipment, Since both the DATANET-30 and the
central processor have stored programs and since the DATANET-30 operates in real time,
the DATANET-30 must have control and priority between the two programs. For additional
information, refer to Appendix E of this manual,

When the information processing system has data for the DATANET-30, it will set a flag in a
memory location of the central processor, which is periodically interrogated by the DATANET-
30, When the DATANET-30 is ready to accept the traffic, a control instruction is sent to the
central processor, the processing system program is interrupted, and the traffic is transmitted
to the DATANET-30, The DATANET-30then processes the traffic and sends it on to the designated
remote station, Thus the information processing system and the DATANET-30 exchange control
words, instructions, and traffic under control of the DATANET-30,

THE CIU931 COMPUTER INTERFACE UNIT

The CIU931 Computer Interface Unit is an 18-bit buffer within the DATANET-30 that provides
the connecting link between the DATANET-30 and a General Electric Compatibles/400 or 600
system, The CIU connects into the buffer selector of the DATANET-30 and one standard input/
output channel of a GE-400 or -600 Series system, The channel may be either a word channel
or a character channel, Direction of data flow is under program control,

The transfer rate is up to 39,000 characters per second or 13,000 DATANET-30 words per
second. The actual transfer rate will be determined by the DATANET-30 program,

The CIU permits both the DATANET-30 and the GE-400 or -600 Series computer to execute
programs concurrently with the transfer of data in either direction, When the CIU accepts data
from a GE-400 or -600 Series computer, a signal is generated to indicate to the DATANET-30
program that service is required, The data will be stored in the CIU until the DATANET-30
program is able to service the request, Conversely, the CIU will request service from the
GE-400 or ~600 Series computer and store the request until the latter can respond,

All data transferred through the CIU931 is parity checked for accuracy. In the event of a parity
error, an appropriate signal is generated by the CIU, For additional information, refer to
Appendix D of this manual,

DATANET =80

)

THE CONTROLLER SELECTOR UNIT (CSU9S31)
The Controller Selector Unit permits connecting GE-200 Series peripherals to the DATANET=-30,

Eight peripheral equipment controllers may be connected to the controller selector enabling the
transfer of data to andfrom the DATANET-300n a memory interrupt basis, The eight controllers,
numbered 0-7, operate on a priority basis, with each controller assigned a channel plug number,
The controller on channel 0 has the highest priority and channel 7 the lowest, Any controller
except the printer controller may be assigned to any channel plug,

The following controller selector channel priority assignment is made, assuming that all types
of controllers need to be connected,

Channels 0-1 Single-access disc storage unit controller, Dual-access disc
storage unit controller, Each controller may have 4 disc storage
units,

Channels 2,3,4,5 Magnetic tape controller, Each controller may have 8 tape units,

Channels 6,7 High-speed printer controller, Each controller may have 1
printer,

DATA COMMUNICATIONS PROCESSOR
Data Flow

The DATANET-30 is organized on an 18-bit parallel, bus logic arrangement, Figure 2 is a
basic diagram of the principal internal working units of the communications processor. The
data is transferred from memory to the arithmetic unit or from a working register through
the lower data bus and the Y-register to the arithmetic unit, The Y-register holds the data
while it is being processed by the arithmetic unit, After the data has been processed by the
arithmetic unit, it is sent to the Z-drivers, which are a common distribution center for all
data coming from the arithmetic unit and going to a working register, memory, control unit,
or an input/output channel. The plus, zero, and even flip-flops also connected to the Z-drivers
will reflect the branch conditions of any data sent through the Z-drivers. For example, if a
word coming from memory and going to a working register is plus, nonzero and odd, the branch
conditions would be plus, nonzero, and odd, If the data word was all zeros the branch conditions
would be plus, zero, and even, From the Z-drivers the data flows along the upper data bus to
a working register, an input/output channel, or to the memory, according to the instruction
currently being executed.

In Figure 3, the buffer selector and controller selector have been added to Figure 2, Data
coming from a working register, going to a transmit data line, flows under program control
from a specified register to the lower data bus into the Y-register., From the Y-register the

DATANET =80

Plus | Zero |Even

A

Upper Data Bus

Z Drivers
Working | Memory
Registers Arithmetic
Unit

} A

| > Y-Register
Lower Data Bus

Figure 2. Basic Block Diagram

data flows through the arithmetic unit and the Z-drivers onto the upper data bus, where it is
then distributed to the buffer selector. The buffer selector then passes the data along to the
proper output channel.

Data being received from a specified remote terminal is temporarily stored in a bit buffer,
word buffer, or character buffer. The buffer selector then passes the data from the receive
buffer channel through the receive data lines to the lower data bus, where it is then sent to
the Y-register. From the Y-register the data is sent through the arithmetic unit to the
Z-drivers, where it is then distributed to the proper working register under program control.

The flow of data to and from the controller selector follows the same paths as for the buffer
selector, with the exception that data going to a high-speed peripheral comes from memory
and data coming from a high-speed peripheral is put into memory without first going through
a working register.

Data flows 'to and from the controller selector under automatic control of the DATANET-30
circuitry.

DATANET =30

Upper Data Bus 1 ’ f T

Plus | Zero|Even

Z-drivers
Working Memor Arithmetic
Registers ¥ Unit

| 1

Lower Data Bus

-

Y }

Y~ register

!

:

Receive
and Xmit.
Data Lines

t

0 e o o127

Channels

Buffer Selector

Data
Register
0 e o o o 7
Channels
Controller Selector Unit
CSU930/931

DATANET =80

Remote
Terminal

@ Printer
Tape ’

High Speed Peripherals

Figure 3, Basic Block Diagram

Detailed Block Diagram

The detailed block diagram (Figure 4) shows many more data paths of the communications
processor, including those for the memory unit, the buffer selector, and the controller selector;
but the overall pattern of data flow still applies. In general, data flows from one or more registers
to the lower data bus, through the Y-register to the arithmetic unit, to the Z-drivers, and then
to one or more of the registers connected to the upper data bus. Data may also go from the
memory to the arithmetic unit at the same time that data is coming from the Y-register.

The register transfer instructions, a major class of instructions, permit any combination of
up to six (specific) registers to be combinedin the Y-register, to be manipulated in some selected
manner, and then have the result putinany combination of up to four (specific) registers. Further
details of the register transfer instructions are given in the discussion of the instruction reper-
torie.

Description of Registers

This section contains information about each of the blocks on the detailed block diagram. Certain
conventions are followed:

First Item: The size of the register.

Second Item: The abbreviation for the name of the register (no abb. means no abbreviation
is used). '

Third Item: A or N, to indicate that the register is accessible or is not directly acces-

sible to the program.

A-Register (18 bits, A, A)

B-Register (18 bits, B, A)

The A- and B-registers are the principal working registers of the DATANET-30. They are
identical and have identical functions and instructions except for the parity network, which is
connected to the B-register only,

C-Register (7 bits, C, A)

The C-register is used to specify a particulai' input/output channel of the buffer selector, In
addition the C-register can be used as a normal index register when indirect addressing is used,

L-Register (14 bits, L, N)

The L-register contains the address of the next memory location to be accessed. In the single-
cycle mode, the register will contain the operand address of the instruction last executed,

DATANET =80

uAAVDL
L2 # ¥AZING 1 ¢ ugadog AV, ARIVL
0 # wadang

0t L3INVivd

WYY9YIAd %2078 @31Iviaa 4015373 Fr———f————————— = - R N
d344ng | I
1 B! ! i 1
szt 1 1z]
L " gan ol "o e |
9aiang TVYNSALXE AATEDTE TIVNEALXE LIHSKVAL
& SERJLINS _ —
LEESNT _ —
- - | = |
o1 _
HALSIONE X
A |_ ot samt
| SnIVIS
— ¢ "TVNYZINI
_ o1
[1
_ R
3 _
9 1 o] o _ RGO 1IN .
N N I o ! AY¥OW3IN
v t|s}oa | [remane oo |
H 1 H 0 a i Jo—— |
2 S I v |
_ [}3
_ st mmmwnﬂ« i ft WATSTONY N ¥AINNGD " WAINNOD ¢ ALSTOTE o ¥AISIOR st WAISTORE zwwﬁ
ZUGHEH 1 a b 2 € v
] TIVRYAINE
| LB,
SWEATEA 2
H e e A -
! |
siag o%FZ soa _ _
Sd013~JTTd HONVEX €T 1z
| sToz wsLem |
[aTy
| I
_ _
i !
)) PO _

/\/ 40193138

Ly e i e e . o4 Y3TT041INOD

Figure 4. Detailed Block Diagram DATANET-30

DATANET =30

O

N-Register (7 bits, N, N)

The N-register is used to facilitate the instruction decoding process, The register contains
the high-order 7 bits of the instruction to be executed. In the single-cycle mode, the register
will contain the operation code of the last instruction executed,

P-Counter (14 bits, P, A)

The P-counter contains the address of the next instruction to be executed. Some bits of the
P-counter are used for generating addresses. The P-counter will count up through program
banks.

Q-Counter (14 bits, Q, A)

The Q-counter serves as the elapsed time clock.

Y-Register (18 bits, ¥, N)

The Y-register is used to form and hold the intermediate operand for an instruction.

Z-Drivers (18 bits, Z, N)

The Z-drivers are a common data distribution center for all data coming from the arithmetic
unit and going to a working register, memory, control unﬁ'or an input/output channel, Data
passes through the Z-drivers without delay enroute to the destination determined by the instruc-
tion being executed at the time that the data exists in the drivers,

Arithmetic Unit (18 bits, no abb., N)

The arithmetic unit performs the following functions on the contents of the Y- and/or M-registers
and puts the result into the Z-drivers:

Binary addition

Logical AND

Logical OR

Logical EXCLUSIVE OR
Shift left, right, circulate -
Bit change

Address modification,

Hoohwhe

Branch Flip-Flops (BFF’s, A)

The plus, zero, and even flip-flops are connected to the Z-drivers. These three flip-flops are
set at the completion of every nonbranch instruction and will reflect the branch conditions of
any data passing through the Z-drivers. The plus FF (PFF) stores the status of the high-

DATANET =80

q
|

order bit of the result Z(18). The zero FF (ZFF) stores the status of the entire result Z(1-18).
The even FF (EFF) stores the status of the low order bit Z(1) of the result. The result of an
operation is available for test on the next instruction. When the branch is based on contents
of the C-register, only Z(1-7) are reflected in ZFF and EFF, When the branch is based on
the internal status lines, only Z(1-10) are reflected in ZFF and EFF.

Plus Flip-Flop (1 bit, PFF, A)

The PFF records (for testing) the condition of Z(18) at the end of an instruction. If Z(18) was
zero, the PFF would be plus; but if Z(18) was one, the PFF would be minus. The notation Z(18)
refers to bit position 18 of Z -- that is, the high order position of Z.

Zero Flip-Flop (1 bit, ZFF, A)

The ZFF records (for testing) the condition of Z at the end of an instruction. If all of the Z-
drivers were zero, the ZFF would be zero; but if any one of the Z-drivers were nonzero, the
ZFF would be nonzero.

Even Flip-Flop (1 bit, EFF, A)

The EFF records (for testing) the condition of Z(1) at the end of an instruction. If Z(1) was
zero, the EFF would be even; but if Z(1) was one, the EFF would be odd.

On double length instructions (AMD, LDD, STD) the branch flip-flops indicate the following:

18 | Mor A 1 18 M+l or B 1
— ~ _J
Plus Even
FF Zero FF
FF

Thus, the last word through the Z-drivers can be tested for being:

1. Plus or minus (sign bit)
2. 0Odd or even (numerical sense)
3. All zeros or not all zeros.

Insert Switches (18 switches, S, A)

The switches are located on the control console and are described in the discussion of the
control console, Chapter 4. They can be grated in under program control.

DATANET =80

Internal Function Drivers (10 drivers, IFD, A)

These drivers can activate special control functions. These functions are listed under “Special
Instructions” as the Drive Internal Function (DIF) instructions.

Internal Status Lines (10 lines, ISL, A)

These lines are used to test the status of various special conditions. These conditions are
listed under “Special Instructions” as the AND Internal Status (NIS) instructions.

THE MEMORY UNIT

M-Register (18 bits, no abb., N)

The M-register is the memory output register, References to M in many places in this manual
refer to the contents of a memory location, which is actually made available in the M-register,
In the single-cycle mode, the register will contain the contents of the last memory location
accessed as specified by L.

Memory Drivers (18 drivers, no abb., N)

The memory drivers are used to write a new word into the memory and to regenerate a word
when it is read out of the memory.

Memory Address Lines (14 lines, no abb., N)

These contain the address of the memory location being accessed.

THE BUFFER SELECTOR

Receive Data Lines (21 lines, R, A)

These lines are used to receive data from all buffer units on the buffer selector.

Transmit Data Drivers (21 drivers, T, A)

These drivers are used to send data to all buffer units on the buffer selector.

External Function Drivers (10 drivers, EFD, A)

These drivers are used to send control signals to a buffer unit. The function of each driver
depends on the particular type of buffer unit. The functions are listed under “Buffer Selector
Instructions” as the DEF instructions.

DATANET =380

1

External Status Lines (10 lines, ESL, A)

These lines are used to test various conditions in a buffer unit. The condition tested by each
line depends on the particular buffer unit. The conditions are listed under “Buffer Selector
Instructions” as the NES instructions.

Buffer Address Decode (128, N)

This unit decodes the C-register into a 1 out of 128 signal to select the desired buffer address.

THE CONTROLLER SELECTOR

Data Register (21 bits, no abb., N)

The controller selector data register contains the data being transferred between the controller
selector and the DATANET-30.

Address Register (14 bits, no abb., N)

The controller selector address register contains the address of the next memory location
to be accessed by the controller selector.

PARITY NETWORKS (21 bits, no abb., A)

Although not shown on the block diagram, the parity networks are attached to the B-register
and consist of a word parity network and a character parity network.

There are two outputs from the parity network, one for character parity and one for word parity.
Either output may be tested to check incoming data. The appropriate output is automatically
sent to a buffer unit when information is transmitted.

The input to the word parity network consists of the 18 bits of the B-register and the control
bit 1 and control bit 2 flip-flops. The output of the word parity network is bit 21 and is used
with the word buffer channel and CIU. The inputs to the character parity network are bits
1-6 of the B-register and the control bit 1 and 3 flip~flops. The character parity is used almost
exclusively for generating correct parity on 8-level teletype characters. Each time a word
is brought into the B-register, the word parity network will generate correct parity on it. At
the same time, proper character parity will be generated on bits 1-6 of the B-register.

CONTROL BITS 1, 2 and 3

The control bits are special-purpose flip-flops and are used as needed. Since there are 21
receive data lines and the registers are 18-bit registers, the receive data lines 19, 20, and
21 go to control bits 1, 2, and 3, respectively. Control bit 3 is also referred to as the “parity
bit.” The following chart shows the instructions and conditions affecting the control bits.

DATANET =80

CB1 CB2 CB3 (Parity)

Buffer Selector
Receive Data Lines 19 20 21
Instructions

BCO Y09 Resets only Y06 |

NIS NIS NIS 9 NIS 0

DIF DIF DIF 9 DIF O

LDF Z08 Z09 Z10

STF Z08 Z09 ZlOl

DIF1 Resets all 3 control bits

The paper tape reader also uses the control bits in a special way when reading paper tape

under program control.

The transmit data lines use the control bits as follows:

|21| zo|19 |1s

\

~ "

Parity Network

When transferring data to a word buffer or a CIU, where a parity bit is needed, put a word in the
B-register, . set bits 19, 20, and 21 as required (DIF instructions) and when a Register Transfer

instruction is executed, the proper parity will go to line 21,

Set CB3 for even parity in transmitted word. Reset CB3 for odd parity in transmitted word. K

only 18 bits are used, reset CB1, 2, and 3 before transmitting,

{J Transmit Data Lines

B-register

DATANET =30

—

)

Instruction Cycles

The following examples illustrate typical situations and the flow of information by large lines
with arrowheads indicating the direction of flow. The steps are numbered to tie in with the
corresponding explanation. These examples are for one 6.94 microsecond word time each.

The function the instruction cycle (Figure 5) performs is the initial decoding of the instruction
and the generation of the desired memory address and its transfer to the L-register. This
prepares the DATANET-30 for the execution cycles to follow:

1.

At the very start of the instruction cycle (actually slightly before) the address of the
next instruction is transferred from P to L. After this takes place, P is incremented
by plus 1.

The L-register is transferred to the memory address lines.

When the instruction is read out, it is transferred from M to N where, in this example,
a non general instruction is decoded.

After the instruction is decoded the address modification mode is decoded and the
correct section of the arithmetic unit enabled (see “Addressing Memory”).

The desired memory address is transferred from the arithmetic unit to Z.
The address is then sent to L to prepare for addressing memory on the next cycle.

Simultaneously with steps 3, 4, and 5, the contents of M are being regenerated by the
memory drivers. |

ATDRESS

DATANET =80

REGISTER
15 Duixca FLL-rLos
PLUG EVEN
z oarvens
18
|
B [Q P L - I 5
REGISTER REGISTER COUNTER REGISTER ADDREBS
18 7 14 13 »]
1 2 MAGNRTIC |
HEMORY
| conx - DRIVERS | AnrTIOOTIC
MEMORY | MEMORY 18 | o
UNIT |
: |
N REGISTER
REGISTER " I .
7
3 | 7 |
‘ _ — 4
Y REGISTER
i 18

Figure 5. Detailed Block Diagram DATANET-30
Instruction Cycle

LOAD A-REGISTER (LDA) EXECUTION CYCLE. This instruction performs the function of
transferring information from M to A (Figure 6):

1.

The operand address in L is transferred to the memory address lines for accessing
the memory.

The contents of M are transferred to the arithmetic unit.
The contents of M are transferred through the arithmetic unit to Z.
The contents of M are transferred from Z to A, thus loading A with the contents of M.

Simultaneously with steps 2, 3, and 4, the contents of M are being regenerated by the
memory drivers.

The branch flip-flops store the plus, zero, and even conditions of the contents of
memory.

BRANCE YLIP-FLOPS

I
|
|
|
| nus zm VN
|
4

DATANET =80

1

L 4 [

13 |

J

/4‘ cone DRIVERS I ARYTEMETIC
MEMORY | —— al e

|

|

|

|

i el

INSZRY
SWITCHES
18

Figure 6. Detailed Block Diagram DATANET-30
Load A (LDA)

STORE B-REGISTER (STB) EXECUTION CYCLE. Information is again transferred from B
to the memory (Figure 7):

1, The operand address in L is transferred to the memory address lines for accessing
the memory.

2. The contents of B is transferred to Y while the memory is being read out and cleared.
3. Bis transferred from Y to the arithmetic unit.
» 4, B is then transferred to Z.

5. The contents of B is then transferred from Z to the memory drivers for the generation
- in memory of the new information.

6. The branch flip-flops store the plus, zero, and even conditions of the contents of B.

BRANCH FLIP-FLOFS
PLUS ZXR0 EVEN

6

18

UNIT

]
REGISTER

Y REGISTER

INSERT
SWITCHES
18

Figure 7. Detailed Block Diagram DATANET-30
Store B (STB)

)

DATANET =80

ADD MEMORY TO A-REGISTER (AMA) EXECUTION CYCLE, This instruction replaces A

with the sum of A and M, and regenerates M (Figure 8):

1.

The operand address in L is transferred to the memory address lines for accessing
memory.

The contents of A is transferred to Y while the memory is being read out.
The contents of M is read from memory and transferred to the arithmetic unit.
The contents of A is transferred through Y to the arithmetic unit.

The binary arithmetic sum of M and A is generated by the arithmetic unit and transferred
to Z.

The sum in Z is transferred o A.

Simultaneously with steps 3, 4, 5, and 6, the contents of M are being regenerated by
the memory drivers. .

The branch flip-flops store the plus, zero, and even conditions of the binary arithmetic
sum of A and M.

BRANCH FLIP-FLOPS
FLOB X0 EVEN

DATANET =30

z orrvees
*
s 5
‘ /1 ' CoxR ARLTEMETIC
MEMORY | HmORY oz
UNIT |
v |
AXGISTER
7 } 3 4

Y RRGISTER
18

Figure 8. Detailed Block Diagram DATANET-30
Add Memory to A (AMA)

SHIFT RIGHT ONE (SR1) BR.B CYCLE. This instruction performs the Shift Right One (SR1)

function in one word time (Figure 9):

1.

At the very start of the instruction cycle (actually slightly before) the address of the
next instruction is transferred from P to L. After this takes place, P is incremented
by plus 1.

The L-register is transferred to the memory address lines.

When the instruction is read out, it is transferred from M to N where, in this example,
a general instruction (SR1 BR,B) is decoded.

After the instruction is decoded, the contents of B are transferred to Y.
Simultaneously with step 3, the contents of R are transferred to Y.

The logical OR of B and R is done in Y and transferred to the arithmetic unit.
The arithmetic unit performs a SR1 function on Y and transfers the result to Z.
The result in Z is transferred to B,

Simultaneously with steps 3, 4, 5, 6, and 7, the contents of M are being regenerated
by the memory drivers.

The branch flip-flops store the plus, zero, and even conditions of the new contents
of B.

ERANCH FLIP-FLOPS

»‘ \ 0
____________________ ' 110
=il z DeIvERS

e

MEMORY
UNIT

N
REGIBTER

Y BEGISTER
1

e
10 128

—_—— e o — —

i a

~

J

DATANET =80

Figure 9. Detailed Block Diagram DATANET-30 Shift Right 1 Receive Lines
to B-register (SR1 BR, B)

Perforated Tape Reader

The perforated tape reader will read 5-, 6-, 7-, or 8-level tape under program control, or
8-level tape under hardware control, When reading is done under hardware control, this is
referred to as “Hardware Load,” Normally, 8-level tape is used in both cases. See Figure 10,

The reader is permanently tied to buffer selector address 0. It operates like any other remote
terminal connected to the buffer selector when under program control, in the sense that it uses
the external function drivers for control and the external status lines for testing, As information
is read, it is transferred into input buffer O and the receive flag is set to indicate that data is
present, This flag may be tested by an NES command,

The primary function of the perforated tape reader is to contain either a bootstrap program to
be used at the start of a day, or a special restart and error recovery program to be used in the
event that an error condition develops in the execution of the normal program,

The secondary function of Hardware Load and the perforated tape reader is to initially load
the programs into memory, Once the programs are loaded, they may be stored in the disc
storage unit or on magnetic tape and recalled as necessary,

The third possible function is to enter data via the perforated tape reader under program control,
This is not a normal usage, however, and is more of an exception than a rule to the intended use
of the reader,

Hardware Load

Hardware Load is a process whereby data is trans-
ferred from the perforated tape reader to memory
under hardware control, This is used for initial
loading of programs, for the loading of maintenance
diagnostics when necessary, and for the automatic
restart of an operating program upon discovery of a
fault condition,

Hardware Load may be initiated in five ways:
1, Manually from the control console,
2, By execution of a DIF 4 instruction,
3, When Q counts down to -32,
4, When the second LDQ instruction is executed

after a program interrupt occurs while in
the operate mode, :

5. When in the operate mode and a halt occurs. Figure 10. Perforated Tape Reader

DATANET =30

Hardware Load has a special format. The generation of paper tape in the hardware load format
is described in the section on programming the paper tape reader.

The Elapsed Time Clock (Q-Counter)

The DATANET-30 is a real time data communications processor. Real time programs have
a periodic nature of operation. The elapsed time clock (the Q-counter) provides an efficient
technique for achieving this.

The Q-counter is loaded by the program, and is counted down one each word time. This serves
as a word/time counter. Q can be loaded with any number between -32 and +16,351. If loaded
with 16,351, this is equal to approximately 112 milliseconds.

When Q counts down to zero, a program interrupt is initiated, thus permitting the periodic
execution of programs at any period up to 112 milliseconds. The Q-counter may be used as
a relatively accurate real time clock by counting the number of program interrupts when they
occur. For example, if a delay of 900 milliseconds is desired and the communication lines
are scanned every 12.5 milliseconds, then a count of 72 interrupts equals 900 milliseconds.

The Q-counter is a 14-position straight binary counter, If the Q-counter is loaded with a number
between 16,383 and 16,351, a Hardware Load will occur before a program interrupt,

The Q-Counter and Hardware Load

"The Q-counter also serves as a reliability check on the system. When Q counts down to -32,
the DATANET~30 assumes a circuit failure and automatically initiates loading a restart pro-
gram by initiating hardware load. Successful operation of the programs depends on preventing
Q from counting to -32 and reading in a restart program. This is achieved in the Program
Interrupt Routine by loading the Q-counter before it counts down to -32. Also, in the operate
mode, protection against a “dead loop” which includes an instruction to load the Q-counter,
has been achieved by .counting the number of times the counter has been loaded since the last
program interrupt. Hardware load will be initiated upon execution of the second Load Q instruction.
This assures that the Program Interrupt Routine is executed periodically. The Program Inter-
rupt Routine may be written to check the program and initiate a hardware load if a fault is found.
This hardware-software feature provides a very adequate check on the proper operation of the
program. In the event that certain programs do not require a periodic interrupt, this feature
may be inhibited by the Q~-counter switch on the operating panel.

Upon the completion of loading the restart program, control is returned to the program and
the necessary details involved in the restart process are completed.

DATANET =380

INSTRUCTION FORMATS
There are two main groups of instructions:

1. Nongeneral instructions - Those for which the low-order bits specify a memory
address -~ for example, memory reference instructions which may be subject to
address modification.

2. General instructions - Those for which the low-order bits contain information to be
used by the instruction.

The notation I () refers to the contents of an instruction word. General instructions may
be recognized by the fact that the three high-order bits, I (16-18), are all zeros. (When expressed
in octal notation, the general instructions start with a 0 in the high-order position).

There is one format for nongeneral instructions and three for general instructions (register
transfer, status line and function driver, and C-register instructions).

Nongeneral Instructions

The nongeneral or memory reference, instructions have four fields:

— Operation Code
Indirect Addressing Bit
Addressing Mode

Partial
Memory Address

18 13 12 11 10 9 1 Position in the
Instruction Word, I

DATANET =80

General Instructions

The fields for the three types of general instructions are as follows:

1. The register transfer instructions have three fields:

Operation Code

FROM Registers A,B,C,Q,R,S,0

r——————- TO Registers A,B,C,T,Z

0 0 o0

18 17 16 15

12

11 10 9 8 7 6 5 4 3

2. The status line and function driver instructions have two fields:

Operation Code

Which Lines or Drivers

0 0 o0

18 17 16 15

11 10

3. The C-register instructions have two pertinent fields:

Operation Code

rsThe Value I

Not Used

(7 bits)

18

DATANET =30

15

10 9 8 7

(0-127) 1

REPRESENTATION OF INFORMATION IN MEMORY

Alphanumeric Data

Each DATANET-30 word can contain three six-bit alphanumeric characters. The 64 possible bit
combinations can be assigned to 64 symbols in any manner desired, because the DATANET-30
does not use alphanumeric data as a unique code. Therefore, other system conditions will

determine the actual bit-pattern-to-symbol assignment. An alphanumeric data word could be
arranged to look like this in memory:

1st Character

2nd Character

3rd Character

r

18 13 12 7 6

Each DATANET-30 word can contain two eight-bit alphanumeric characters. The particular

code set used is dependent primarily on the remote terminals. This word might appear as
follows: .

Spare lst Character

[__ 2nd Character

18 17 16 g 8

Eight-level teletype characters can be stored conveniently in memory as six-bit characters.
The DATANET-30 has two special instructions to facilitate stripping off and checking the parity
and control bits when a character is received, and generation and insertion of parity and control
bits when a character is to be transmitted. If desired for some applications, two eight-level
characters could be stored in a word as eight-bit characters including the parity and control bits.

lst Character

2nd Character

3rd Character

Three 8-level characters
stripped of control and
parity bits.

18 13 12 7 6 1

DATANET = 80

Spare

lst Character

2nd Character

0 0 ¢c D D P Db D D DJC D D P D D D D

18 17 16 9 8 1

Two 8-level characters still containing parity and control bits, where:

Control Bit

C =
D = Data Bit
P = Parity Bit

Numeric Data

Positive numbers are represented by integers. Negative numbers are represented in the 2's
complement form. The DATANET-30 utilizes 2’s complement arithmetic. Therefore, the
high-order bit is properly thought of as the sign bit, when it is understood that the sign is a
2’s complement sign, not an algebraic sign. The bits are shown in groups merely to simplify
the presentation. There is no hardware sign bit in either the A-or B-registers. The sign is
always programmed.

The Sign (in the two's
complement sense)

The Number

18 |17 . 1

The number is considered a 17-bit number with bit 18 as the sign bit. In case of overflow
of a positive number into bit 18 position, the sign changes and goes negative. Conversely, with
a negative number, bit 18 will change in the event of overflow. This condition is tested with
a Branch On Plus or Branch On Minus instruction.

DATANET =30

Examples of binary representation of numeric data are shown below:

SIGN
H16 515,14 13)12 511 510 59 58 57 56 55 b 53 ,2 ,1 L0

o | o0 000 000 000 000 000

18 17

o | oo 000 000 000 000 101

18 17

1| n 111 111 111 111 011

18 17

1 [11 111 111 111 111 111

18 17

1 | oo 000 000 000 000 001

18 17

o | 11 111 111 111 111 111

18 17

o | oo 000 000 000 000 000

18 17 1

DATANET = 80

0 (negative zero is
not permissible)

+5

-5

-131,071 (the largest
negative number)

+131,071 (the largest
positive number)

-131,072 is not a
valid number

Double Length Binary Data

There are instructions which perform operation on double length words (36 bits), The numerical
range is increased from (-131,071 to +131,071) to (-34,359, 738, 367 to +34,359, 738, 367),

These double length words are stored in memory and the registers as below, where M(18),
A(18) is a “two” complement sign. M must be even for all double length instructions.

SIGN M M+1
- HIGH ‘ LOW
ORDER 18

1| ORDER

The branch flip~flops are treated in a special manner by the three double length instructions
(LDD, STD, AMD).

The plus flip-flop is set on A(18). The zero flip-flop is set on the entire
36 bits of the double length result. The even flip-flop is set on B(1). The sign is programmed.

DATANET =80

,_/:%
,
t

II. INSTRUCTION REPERTOIRE

There are over 78 basic instructions with many variations of some of them. These are classified
into three groups:

1. Internal instructions

2. Buffer selector instructions
3. Option module instruction

INTERNAL INSTRUCTIONS

The internal instructions are further classified into eight subgroups:

1. Load

2, Store

3. Arithmetic

4, Logical

5. Register Transfer
6. Branch

7. Macro

8. Special

In the following discussion, an M in the Operand column means that the instruction refers
to a memory location. All such instructions use one of the addressing modes; therefore, no
specific mention is made of these modes here.

I or FROM, TO in the Operand column means that the information to be used in executing the
instruction is made up of the bits in the low-order part of the instruction itself.

For brevity, the notation I (1-7) will be used for the 7 low-order bits of the instruction word.
B (18) stands for the high~order bit of B. M stands for all 18 bits of the memory location;
B stands for all 18 bits of the B-register; C stands for all 7 bits of the C-register, ete.

DATANET =80

At times the discussion will refer to M as a memory location. It should be understood that what

is really meant is the effective address -- that is, the memory location specified by M and
the addressing mode. M is used for brevity.

The following word times assume that direct addressing is used. Add one additional word

time when using indirect addressing. All instructions that address memory are also indirectly
addressable.

Pseudo-Operations

In addition to the machine instructions in the DATANET-30 instruction repertoire, there are a
number of pseudo-operations which facilitate programming, A pseudo-operation is not a computer
instruction. It is a control instruction to the assembly program in assembling a program, and
it is listed the same as a normal instruction in the preparation of a program, Normally, pseudo-
operations are never executed by the computer as actual instructions, Pseudo-operations are
used to generate constants, to control the assembly process, or to annotate the program listing,

DATANET =30

)

Load Instructions

Mnemonic
LDA

LOAD A,
LDB

LOAD B.
LDC

LOAD C.
LDD

LOAD DOUBLE.

LDQ

LOAD Q.
LDZ

LOAD Z,
CMA

COMPLEMENT MEMORY TO A,

Operand

M

Word Times

2

The contents of M replace the contents of
A. The contents of M are unchanged.

2

The contents of M replace the contents of B.
The contents of M are unchanged.

2

The contents of M (1-7) replace the contents
of C. The high-order bits of M are ignored

-and M is unchanged.

3

The contents of M (1-18) replace the contents
of A. The contents of M+1 replace the contents
of B. M must be even. M and M+1 are un~
changed.

2
The contents of M replace the contents of Q.
The contents of M are unchanged.

2
The contents of M is placed only in Z and the
branch flip-flops. M remains unchanged. Z
sets up the branch flip-flops.

2
The 1’s complement of the contents of M replaces

the contents of A. The contents of M are un-
changed.

DATANET =380

Mnemonic Operand Word Times
CMB M 2
COMPLEMENT MEMORY TO B, The 1’s complement of the contents of M

replaces the contents of B. The contents of
M remain unchanged.

PIC I 1

PLACE I 1IN C. I (1-7) is placed in C. I is bits 1-7 of the
instruction.

DATANET =80

Store Instructions

Mnemonic
STA

STORE A.
STB

STORE B.
STC

STORE C.,
STD

STORE DOUBLE.

STZ
STORE ZERO.

CAM

COMPLEMENT A TO MEMORY,

CBM

COMPLEMENT B TO MEMORY.

CMM

COMPLEMENT MEMORY TO
MEMORY.

Operand

M

Word Times

2

The contents of A replace the contents of M.
The contents of A remain unchanged.

2

The contents of B replace the contents of M.
The contents of B remain unchanged.

2

The contents of C are stored in M (1-7). The
contents of M (8-18) are reset to zero and C
remains unchanged.

3
The contents of A are stored in M and the

contents of B are stored in M+1. M must be
even, The contents of A and B are unchanged.

A zero is stored in M.

2

The 1’s complement of the contents of A is
stored in M. The contents of A remain un-
changed.,

2
The 1’s complement of the contents of B is

stored in M., The contents of B remain un-
changed.

2

The 1’s complement of the contents of M is
stored in M, the same memory location.

DATANET =30

Arithmetic Instructions
Mnemonic

AMA

ADD MEMORY TO A.

AMB

ADD MEMORY TO B.

AIC -

ADD I TO C.

AMD

ADD MEMORY DOUBLE.

AAM

ADD A TO MEMORY.

ABM

ADD B TO MEMORY.

ADO

ADD ONE.

Operand

Word Times

2

The contents of M are added to the contents

of A and the result is placed in A.

2

The contents of M are added to the contents of
B and the result is placed in B. ‘

1

I (1-7) are added to the contents of C and the
result is placed in C.

3

The contents of M+1 are added to the contents
of B and the result is placed in B, and the
contents of M and a carry from the first are
added to the contents of A and the result is
placed in A, M must be even. M and M+1 are
unchanged.

2

The contents of A are added to the contents of
M and the result is stored in M. A remains
unchanged.

2

The contents of B are added to the contents
of M and the result is stored in M. B remains
unchanged.

2

One is added to the contents of M and the result
is stored in M.

DATANET =380

Mnemonie¢ erand
SBO M

SUBTRACT ONE.

AAZ M

. ADD A TO Z.

ABZ M

ADD B TO Z.

O

Word Times
2

One is subtracted from the contents of M and
the result is stored in M.

2

The contents of A are added to the contents
of M. The result in the Z-drivers is placed
only in the branch flip-flops. A and M are
unchanged.

2

The contents of B are added to the contents
of M. The result in the Z-drivers is placed
only in the branch flip-flops. B and M remain
unchanged.

DATANET =380

Logical Instructions

The truth table for the logical AND function is:

Mnemonic

NMA

NMB

NAM

NBM

NAZ

DATANET =80

AND MEMORY TO A.

AND MEMORY TO B.

AND A TO MEMORY.

AND B TO MEMORY.

AND A TO Z.

M
ML)

= OO

Operand

PO OO

Word Times_
2

A logical AND is performed with the contents
of M and the contents of A. The result is placed
in A.

2

A logical AND is performed with the contents
of M and the contents of B. The result is placed
in B.

2

A logical AND is performed with the contents
of A and the contents of M. The result is stored
in M.

2

A logical AND is performed with the contents
of B and the contents of M. The result is stored
in M.

2

A logical AND is performed on the contents
of A and the contents of M. The result in the
Z=drivers is placed only in the branch flip-
flops. A and M remain unchanged.

Mnemonic

NBZ M
AND B TO Z.

NCZ I
AND C TO Z.

The truth table for the logical OR function is:
Y
(A,B)

0
0
1
1

RMA M

OR MEMORY TO A,

RMB M

OR MEMORY TO B.

RAM M

OR A TO MEMORY.

DATANET =80

Operand

— O O

Word Times
2

A logical AND is performed on the contents
of B and the contents of M. The result in the
Z -drivers is placed only in the branch flip-
flops. B and M remain unchanged.

1

A logical AND is performed onI (1-7) and the
contents of C, The result in the Z-drivers is
placed only in the branch flip-flops. C remains
unchanged.

A logical OR is performed with the contents
of M and the contents of A. The result is placed
in A,

2
A logical OR is performed with the contents of
M and the contents of B, The result is placed
in B.

2
A logical OR is performed with the contents

of A and the contents of M. The result is stored
in M.

Mnemonic Operand Word Times

RBM M 2
OR B TO MEMORY. A logical OR is performed with the contents of
B and the contents of M. The result is stored
in M.

The truth table for the logical EXCLUSIVE OR function is:

Y M Z
(A,B,C) (M,1) (4,B,M)
0 0 0
0 1 1
1 0 1
1 1 0
XMA M 2
EXCLUSIVE OR MEMORY TO A, A logical EXCLUSIVE OR is performed with
the contents of M and the contents of A. The
result is placed in A,
XMB M . 2
EXCLUSIVE OR MEMORY TO B, A logical EXCLUSIVE OR is performed with
the contents of M and the contents of B. The
result is placed in B.
XAM M 2
EXCLUSIVE OR A TO MEMORY, A logical EXCLUSIVE OR is performed with
the contents of A and the contents of M. The
result is stored in M,
XBM M 2
EXCLUSIVE OR B TO MEMORY. A logical EXCLUSIVE OR is performed with

the contents of B and the contents of M. The
result is stored in M.

DATANET =80

Mnemonic

XAZ

EXCLUSIVE OR A TO Z.

XBZ

EXCLUSIVE OR B TO Z.

XCZ

EXCLUSIVE OR C TO Z.

Operand

Word Times
2

A logical EXCLUSIVE OR is performed on the
contents of A and M. The result in the Z
drivers is placed only in the branch flip-flops.
A and M remain unchanged.

2

A logical EXCLUSIVE OR is performed on the
contents of A and M. The result in the Z-
drivers is placed only in the branch flip-flops.
A and M remain unchanged.

1

A logical EXCLUSIVE OR is performed on I
(1-7) and the contents of C. The resultin Z
is placed only in the branch flip-flops. C re-
mains unchanged.

TRUTH TABLES
X; | %, | anp | or | xOR
o {o o |o 0
o |1 o |1 1
1 |o 0o {1 1
1 |1 11 0

DATANET =30~

Register Transfer Instructions

All of the register transfer instructions use the low order bits of the instruction to specify
which locations are to be included in the FROM group and which in the TO group. The possi-
bilities are:

Bit Position in I

FROM: The A-register - 1
The B-register -
The C-counter -
The Q-counter -
The receive data lines -
(From X, the address of a
particular buffer)
The insert switches - 5
Zero is transferred to the "
specified TO location

HOQW»
DT ®O

QW

TO: The A-register -
The B-register -
The C-counter -
The transmit data lines -
(To X, the address of a
particular buffer)
Z The Z-drivers; FROM remains
unchanged.

HQW >
DN W

3

K R, S, or T is specified, the control bit 1, control bit 2, and parity flip-flops (internal functions)
are used for the “extra” positions, since R and T are all more than 18 bits.

Any register specified in the FROM group will remain unchanged after the register transfer
operation if it does not appear in the TO group. If R is specified in the FROM group, after the
data is transferred, the receive flag and receive data buffer are reset by an automatically
generated signal activating external function driver 1 (DEF1).

With the exception of T in the TO group, the TO register will contain the result after a register
transfer instruction. If T is specified in the TO group, before the data is transferred, the
transmit flag and transmit buffer are reset by an automatically generated signal activating
external function driver 2 (DEF2), The Q-counter is not counted down when a TRA Q instruction
is executed,

When a register transfer instruction is executed, the contents of those registers which are
specified to be used as the FROM group for this instruction are logically OR-ed together into
the Y-register. Then the data goes from Y.to Z with the operation specified by the instruction
being performed on the data as it goes from Y to Z. Finally the result goes from the Z drivers
to all of those registers which are specified inthe TO group. The plus, zero, and even flip-flops

DATANET =380

will take on their new states in the normal manner. If no registers are specified in the FROM
group, the output from the Y-register will be zero. If no registers are specified in the TO
group, the only outputs are the new statesof the plus, zero, and even flip-flops. Register transfer
instructions with more than one register in the FROM and TO groups can be specified. For
example: TRA O,ABC; TRA ABC,Z;

Mnemonic

TRA

TRANSFER.

TRC

TRANSFER COMPLEMENT.

SL1

SHIFT LEFT ONE.
SR1

SHIFT RIGHT ONE.
SL6

SHIFT LEFT SIX.
SR6

SHIFT RIGHT SIX.

Operand

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

SL6 BC,AB.

Word Times

1

In going from Y to Z, no change is made in
the data. :

1

In going from Y to Z, the data is changed into
its 1’s complement.

1

In going from Y to Z, the data is shifted left
one position. The high-order bit is lost and
a zero goes into the low-order position,

1

In going from Y to Z, the data is shifted right
one position. The low-order bit is lost and a
zero goes into the high-order position.

1

In going from Y to Z, the data is shifted left
six positions. The six high-order bits are lost
and zeros go into the six low-order positions.

1

In going from Y to Z, the data is shifted right
six positions. The six low-order bits are lost
and zeros go into the six high-order positions.

DATANET =380

Mnemonic , Operand Word Times
CcL1 FROM, TO 1

CIRCULATE LEFT ONE. In going from Y to Z, the data is circulated
left one position. The high-order bit goes
into the low-order position; no bits are lost.

CRI1 FROM, TO . 1

CIRCULATE RIGHT ONE. In going from Y to Z, the data is circulated
right one position. The low-order bit goes
into the high~order position; no bits are lost.

CL6 FROM, TO 1

CIRCULATE LEFT SIX. In going from Y to Z, the data is circulated
left six positions. The six high-order bits
go into the six low-order positions; no bits
are lost.

CR6 FROM, TO 1

CIRCULATE RIGHT SIX. In going from Y to Z, the data is circulated
right six positions. The six low-order bits
go into the six high-order positions; no bits

are lost.
SLS FROM A, TO A 1
SHIFT LEFT SPECIAL. This instruction is a SL1 instruction with one
added function. Bit B (18) is shifted into
Bit A (1).
FROM A |18 17 1]
: FROM
LOST 4-/ / / B(18)
TO A I 18 2 1J
SRS FROM B, TO B 1
SHIFT RIGHT SPECIAL. This instruction is a SR1 instruction with one
added function, Bit A (1) is shifted into Bit
B (18).

DATANET =30

o

FROM B 18

2

FROM A(l)—\\

__,LOST
1

o8 |18 17
Mnemonic Operand Word Times
% —_— _—
BCO FROM, TO 1
- BIT CHANGE ZERO. This is a special instruction for use with
eight-level Friden data. In going from Y
to Z, the data is rearranged from the eight-
level format used on a transmission line to
the six-bit alphanumeric format used in com-
puters. The other two bits, the parity and
control bits, are put in the CB1 and CB3
flip-flops.
FROM X X X X X X C Dg Dg P Dy D3 Dy DX Y
TO 0 0 0 0 0 0 0 0 0 D6 D5 D4 D3 DZ D]_ Z
‘\' /) P goes to the parity flip-flop (CB3)
C goes to the control bit flip-flop 1 (CBL1)
BC1 FROM, TO 1
BIT CHANGE ONE. This is the reverse operation of BCO. In .
going from Y to Z, the data is rearranged
from the six-bit alphanumeric format into the
eight~level format used on a transmission line.
The control bit comes from BC1 and the parity
bit comes from the output of the character
a parity network,
FROM X X X X X X X X X X X X|pg Dg Dy D3 Dy Dy Y
TO 000 0o 0o o o 1|1 1]c Dz by P Dy D3 Dy Dyfo0 z

P is the output from the character parity network

C is the control bit 1 flip-flop

S

(CB1)

DATANET =30

Branch Instructions

The states of the plus,

Mnemonic

BRU

BRS

BRANCH UNCONDITIONALLY.

BRANCH TO SUBROUTINE.

zero, and even flip-flops are not changed by any branch instruction.

Word Times
1

Control is transferred to the instruction in
M within the same program bank. When
indirect addressing is specified, control is
transferred to the address in M.

3

The location of the instruction following the
BRS is stored in M; then, control is trans-
ferred to the location specified by the contents
of M+1. M must be even.

The remaining branch instructions are conditional branches. Control is transferred to M if
the appropriate conditional test is satisfied. Otherwise, control goes to the next instruction -
that is, the instruction following the branch instruction.

BZE

BNZ

BPL

BMI

DATANET =380

BRANCH ON ZERO.

BRANCH ON NON-ZERO.

BRANCH ON PLUS,

BRANCH ON MINUS.

1

If the ZFF is zero, control is transferred
to M.

1

If the ZFF is nonzero control is transferred
to M.

1

If the plus flip-flop is plus, control is trans-
ferred to M.

1

If the plus flip-flop is minus, control is trans-
ferred to M.

Mnemonic Operand Word Times
BEV , M 1
BRANCH ON EVEN, If the even flip-flop is even, control is trans-

ferred to M.

BOD M 1
* BRANCH ON ODD. If the even flip-flop is odd, control is trans-
: ferred to M.
BI:IJ']:;Jusls==Ol EVEN 1 = odd
FF 0 = even
SIGN I
BIT — |18 |17 _ 2 [1]
“ 2 DRIVERS ,

—— All 0
zZeros =
ZERO Any 1 = 1 (non-zero)

»

DATANET=50

Macro Instructions

The following instructions are macro-instructions. That is, they are not actual machine instruc-
tions; however, the General Assembly Program will recognize the mnemonics for the macro-
instructions and generate the appropriate series of instructions to do the specified operation.

Mnemonic

CL2

CL3

CL4

CL5

CL7

CL8

CL9

CR2

DATANET =80

CIRCULATE LEFT 2.

CIRCULATE LEFT 3.

CIRCULATE LEFT 4.

CIRCULATE LEFT 5.

CIRCULATE LEFT 7.

CIRCULATE LEFT 8.

CIRCULATE LEFT 9.

CIRCULATE RIGHT 2.

Operand
FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

Word Times
2

The contents of the specified FROM location
is shifted left 2 places. The bits leaving
position 18 are shifted into position 1 of the
TO location.

2

The contents of the specified FROM location
are shifted right 2 places. Bits leavingposition
1 are shifted into position 18 of the TO location,

Mnemonic

CR3

CR4

CRS

CR7

CRS8

" CR9

SAM

SBM

SL2

DATANET =30

CIRCULATE RIGHT 3.

CIRCULATE RIGHT 4.

CIRCULATE RIGHT 5.

CIRCULATE RIGHT 7.

CIRCULATE RIGHT 8.

CIRCULATE RIGHT 9.

Operand

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

SUBTRACT A FROM MEMORY.

SUBTRACT B FROM MEMORY.

SHIFT LEFT 2.

FROM, TO

Word Times

6
The contents of the A-register are subtracted

from the specified memory location M. The
result is placed in M. '

4

The contents of the B-register are subtracted
from the specified memory location M. The
result is placed in M.

2

The contents of the FROM location are shifted
left 2 binary places and put into the TO location.

Mnemonic

SL3
SHIFT LEFT 3.

SL4

SHIFT LEFT 4.
SLS

SHIFT LEFT 5.
SL7

SHIFT LEFT 1.
SL8

SHIFT LEFT 8.
SL9

SHIFT LEFT 9.
SLD

SHIFT LEFT DOUBLE.
SMA

Operand

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

FROM, TO

SUBTRACT MEMORY FROM A.

Word Times

3

2(1)

The contents of registers A and B are shifted
left double I number of times. Bits shifted

out of B (18) enter A (1). Bits shifted out of

A (18) are lost. The vacated positions of the
B-register are filled with zeros.

4

The contents of the specified memory location
M are subtracted from the contents of the A-
register. The result is placed in A.

DATANET =30

e N

SMB

SR2

SR3

SR4

SR5

SRT7

SR8

SR9

SRD

DATANET =50

Mnemonic

SUBTRACT MEMORY FROM B.

SHIFT RIGHT 2.

SHIFT RIGHT 3.

SHIFT RIGHT 4.

SHIFT RIGHT 5.

SHIFT RIGHT 7.

SHIFT RIGHT 8.

SHIFT RIGHT 9.

SHIFT RIGHT DOUBLE.

Operand Word Times
M 4

The contents of the specified memory location
M are subtracted from the contents of the
B-register. The result is placed in B.

FROM, TO 2

The contents of the FROM location are shifted
right 2 binary places and placed in the TO

location.

FROM, TO 3
FROM, TO
FROM, TO 5
FROM, TO 2
FROM, TO 4
FROM, TO 4

I 2(1)

The contents of registers A and B are shifted
right T places. The vacated positions of the
A-register are filled with zeros. Bits shifted
out of A (1) go into B (18). Bits shifted out of
B (1) are lost.

épecial Instructions

INTERNAL FUNCTION DRIVERS

Mnemonic Operand
DIF I

DRIVE INTERNAL FUNCTION.

DIF

[

DIF
DIF
DIF
DIF
DIF
DIF
DIF
DIF

o:ocom'lcln.hwm
(=]

INTERNAL STATUS LINES

NIS I

AND INTERNAL STATUS
LINES TO Z.

Word Times

1

A signal will be sent to those internal function
drivers which correspond to 1-bits in I. DIF 0
is bit position 10 in the instruction.

Function

Reset control bit flip-flops 1 and 2, and parity
bit flip-flop.

Reset the buzzer flip-flop.

Set the buzzer flip-flop.

Initiate the hardware load process.

Not assigned.

This is the SEL instruction.

Set control bit flip-flop 1.

Set control bit flip~flop 2.

Set the parity bit flip-flop.

1

The NIS instructions allow the program to
interrogate the status of the I internal status
lines, A logical AND is performed with I
(1-10) and the internal status lines, NIS 0
is bit position 10 in the instruction,

The result of the AND sets the branchflip-flops
in accordance with the results of the AND,

If the tested condition is true, the zero flip-
flop will have been set#+ 0. A 1is a true con-
dition. If the zero flip-flop is to be 0, then
Z (1-10) must all have been 0.

DATANET =30

Instruction Position

Mnemonic Operand
NIS 1 Will be true if
NIS 2 Will be true if
NIS 3 Will be true if
NIS 4 Will be true if
NIS. 5 Will be true if

NIS 6 Will be true if

NIS 7 Will be true if
NIS 8 Will be true if
NIS 9 Will be true if
NIS 0 Will be true if

10 9 8 7 6 5 4

Word Times

The character parity output of the parity net-
work is a 1. 1 = odd parity, O = even parity.

The word parity output of the parity network
is a 1. 1 = odd parity, 0 = even parity,

Control bit flip-flop 2 and the word parity
output of the parity network are identical,
This is intended for use when transmitting
data with error-correcting techniques.

The MANUAL/PROGRAM switch is in the
MANUAL position,

Not assigned,

Status is present in memory location 6. Used
only with the CSU931,

Controller selector is ready,

Control bit flip-flop 1 is a 1.

Control bit flip-flop 2 is a 1,

The parity bit flip-flop is a 1,

Bit- Positions of NIS, NES,

These positions in the
instruction correspond by
number to the NIS, DIF, NES,

and DEF instruction number.
Position 10 is represented by 0.

DEF, and DIF Instructions

DATANET =80

Mnemonic Operand Word Times
LDF M 2

LOAD SPECIAL FLIP-FLOPS, Selected bits from the contents of M are used
to restore the conditions (saved by an STF
instruction) of the plus, zero, even, control
bit 1, control bit 2, and parity flip-flops. Bit
position 1 goes to the even flip-flop. Bit
position 2 goes to the zero flip-flop and bit
position 18 goes to the plus flip-flop. Bits
8, 9, and 10 go to control bit flip-flops 1 and 2
and the parity flip-flop, respectively.

-Plus FF ~-Parity FF
Control Bit FF 2

Control Bit FF 1

Zero FF
I.Even FF
Contents X X X X X X X X X X X X
of
Memory 18 10 9 8 2 1
STF M 2
STORE SPECIAL FLIP-FLOPS. The conditions of the plus, zero, even, control

bit 1, control bit 2, and parity flip-flops are
stored in M in positions 18, 2, 1, 8, 9, and 10,
respectively (same as in LDF).

HLT 1 1

CONDITIONAL HALT. If the MANUAL/PROGRAM switch is in the
MANUAL position and the HALT DISABLE
light is off, the DATANET-30 will halt, I the

_key switch is in the PROGRAM position, Hard-
ware Load is initiated, If the key switch is in
MANUAL position and the HALT DISABLE light
is on, a Halt instruction is ignored,

DATANET =80 \

5

Buffer Selector Instructions

There are six buffer selector instructions,
transfer TO T have already been covered,

Mnemonic Operand
LDT M
LOAD T,

EXTERNAL FUNCTION DRIVERS

DEF I
(1-10)
DRIVE EXTERNAL FUNCTION,
(Bit positions 1-10 in the instruc-
tion correspond directly to the
DEF instruction number, (DEF 0
is used for line 10,)

EXTERNAL STATUS LINES

NES I
(1-10)
AND EXTERNAL STATUS
LINES TO Zz,
(Bit positions 1-10 in the instruc-
tion correspond directly to the
NES instruction number, (NES 0
is used for line 10,)

SCN I

SCAN,

The register transfer FROM R, and the register

Word Times
2

The contents of M are sent to the transmit
data drivers andfrom there to whichever channel
has been preselected by the contents of the C~
counter, The contents of M are unchanged,
Use of this instruction is restricted to certain
buffers on the buffer selector,

1

A signal will be sent.to those external function
drivers which correspond to 1’s in I, The
signal(s) will actually get to only the buffer
unit which has been preselected by the C-
counter, The meaning of each DEF instruction
varies with the particular input/output buffer
and associated equipment, Refer to the section
on a particular buffer for additional information.

1

A logical AND is performed with I (1-10) and
the external status lines, The only results
are the new states of the plus, zero, and even
flip-flops. The meaning of each NESinstruction
varies with the particular input/output buffer
and associated equipment, Refer to the section
on a particular buffer for additional information,

1+3N

The bit buffer channels are scanned starting
with channel I, N equals the number of channels
scanned, The instruction is terminated upon
detection of the end scan flag in scan word 2,
field 2,

DATANET =30

The Option Module Instructions

The option module instructions are covered in the appendix for the particular option module,

When computer type peripheral equipment is used, the instructions for the peripheral equipment
are included in the appendix for the option module interfacing with the peripheral equipment,

The table of contents shows the appendix applicable to an individual option module.

DATANET =80

I1. ADDRESSING MEMORY

GENERAL DESCRIPTION

The address field of the instruction is divided into a partial memory address and an addressing
mode.

12 10 9 1

PARTIAL
MODE | ADDRESS

The four modes for addressing memory are:

Program Bank addressing
Common Data Bank addressing
Channel Table addressing
Indirect

:POONH

Bit Positions

12] 11] 10

0 Jl0|oO First Half Program Bank-Direct

0 0 1 Second Half Program Bank-Direct

0 1 }]0 Common Data Bank addressing

0 1 1 Channel Table Address

1 0 0 First Half Program Bank-Indirect

110 1 Second Half Program Bank-Indirect

1 1 0 Common Data Bank-Indirect

1 1 1 Channel Table Address-Indirect

DATANET =380

DETAILED DESCRIPTION

The ifollowing descriptions of the hardware aspects of memory addressing are given for use
when debugging programs. The assembly program automatically assigns proper addressing for
each instruction,)

Program Bank Addressing

Program bank addressing can only address locations in the common data bank or another loca-
tion in the same program bank. The addresses within 1024 memory locations of the base loca-
tion of the program bank in which the instruction is located may be directly addressed by an
instruction within the program bank.

The sixteen 1024-word program banks for a 16,384-word memory are listed in the table below:

Memory Locations
Program Bank Start End
Decimal Octal Decimal Octal
1 0000 0000 to 1023 1777
2 1024 2000 to 2047 3777
3 2048 4000 to 3071 5777
4 3072 6000 to 4095 7777
5 4096 10000 to 5119 11777
6 5120 12000 to 6143 13777
7 6144 14000 to 7167 15777
8 7168 16000 to 8191 17777
9 8192 20000 to 9215 21777
10 9216 22000 to 10239 23777
11 10240 24000 to 11263 25777
12 11264 26000 to 12287 277717
13 12288 30000 to 13311 31777
14 13312 32000 to 14335 33777
15 14336 34000 to 15359 35777
16 15360 36000 to 16383 37777

Each program bank has upper and lower limits for direct addressing. When it is necessary
to go from one program bank to another, indirect addressing is used. When approaching the
upper limit of a program bank, some caution is necessary regarding the type of instruction
placed in the last location of the program bank. Upon the execution of the last instruction in
a program bank, the P-counter contains the address of the first instruction in the next program
bank. If a branch instruction is in the last location, the program will branch to the corresponding
address in the next program bank. .

There are two ways to change from one program bank to another:

1. The P~counter counts up past the program bank boundary.
2. A branch instruction is given in the indirect mode.

DATANET =80

Location Instruction Symbol OPR Operand
01750 ORG 1000
01750 000001 FIRST DEC 1
03720 ORG 2000
03720 000002 SECOND DEC 2
05670 ORG 3000
05670 000003 THIRD DEC 3
07640 ORG 4000
07640 000004 FOURTH DEC 4
START EXAMPLE PROGRAM
01604 ORG 900
01604 401750 LDA FIRST
01605 400000 LDA FOURTH
o 03554 ORG 1900
03554 401720 LDA SECOND
05524 ORG 2900
05524 401670 LDA THIRD
07474 ORG 3900
07474 401640 LDA FOURTH

DATANET =380

Remarks

ORIGIN IN 1ST PROGRAM BANK
ORIGIN IN 2ND PROGRAM BANK
ORIGIN IN 3RD PROGRAM BANK

ORIGIN IN 4TH PROGRAM BANK

ORIGIN LOCATION

PROGRAM BANK ADDRESSING APPEARS.
PROGRAM BANK ADDRESSING CAN BE NOTED
BY A BINARY 01 IN BIT POSITIONS 11
AND 10. THIS CAN BE SEEN AS AN
OCTAL 01 IN THE MACHINE INSTRUCTION.

THIS INSTRUCTION PRODUCES AN ERROR
TAG (A) BECAUSE THE SYMBOL "FOURTH"
IS NOT IN THE SAME PROGRAM BANK OR
THE COMMON DATA BANK# ik

ORIGIN LOCATION
NOTE PROGRAM BANK ADDRESSING

ORIGIN LOCATION
NOTE PROGRAM BANK ADDRESSING

ORIGIN LOCATION
NOTE PROGRAM BANK ADDRESSING

THE PROGRAM BANK ADDRESSING CAN BE
NOTED BY THE 3RD OCTAL DIGIT IN EACH
OF THE PRECEDING LDA INSTRUCTIONS.

Common Data Bank Addressing

The common data bank is the first 512 words of memory and may be addressed directly from
any location in memory., In the following example, common data bank addressing is denoted
by the 2 in the third digit of the octal instruction. All instructions that refer to an address in
the common data bank will always be assigned common data bank addressing by the assembly
program, unless the instruction itself is in the first program bank,

Location Instruction QPR Operand Remarks

11610 ORG 5000
11610 402024 LDA 20 LOAD A-register with contents cell 20jg
11611 702231 STB 153 STORE B-register in location 1531
11612 342764 ADO 500 ADD one to location 5001g

Channel Table Addressing

A channel table must be symbolic and start with the character $. The starting locations of the
channel table must be a multiple of 16 decimal and located in the first 8192 words of memory.
The channel table may be addressed directly from anywhere in memory. The maximum table
length is 128 locations, When referred to, the base address (starting location) is automatically
indexed by the C-register. The channel table addressing mode will be assigned to any instruction
which refers to a channel table ($ - -),

Example 1:
ORG 512
$SW1 DEC O Scan Word Table Channel 0
Scan Word Table Channel 1
Example 2:
ORG 608
$POINT DEC 0 Pointer for Channel 0
Pointer for Channel 1
Example 3:
ORG 2048
PIC 1

4000 403040 LDA $sw1 The A-register is loaded with the contents of location 513
(Location 512 + value of C-register)

DATANET=30

If the number of channels (table size) exceeds 16, the location of the table must be a multiple
of the next higher power of 2.

Example:
Number of Channels Starting location must be a multiple of
1-16 16
17-32 32
33-64 64
65-128 128

Indirect Addressing

Indirect addressing (2nd level addressing) is where the address part of an instruction is the
location in memory where the address of the operand may be found or is to be stored.

If the format of the assembly program run on a GE-225 system is used, indirect addressing is
specified in an instruction when an Xisplaced in the index column (column 20) of the coding sheet,
If the format of the assembly program run on the DATANET-30 is used, indirect addressing is
specified by a comma immediately following the operand,

Indirect addressing must be used to access an éddress in another Program Bank, with the ex-
ception of the Common Data Bank or Channel Table. It must also be used to branch across bank
boundries.

Indirect address (second level address) example:

Location Instruction Symbol OPR Operand X Remarks
% ORG 2048
4000 404030 LDA POINT X Load Register A with alpha
* . .
* .
4030 007760 POINT IND ALPHA
7760 000174 ALPHA OCT 000174

DATANET =80

Indexing

During indirect addressing, the first operand address can be indexed by any one of A-, B-, or C-
registers by specifying which register in the pointer. Bits 16-17 of the indirect address word
specify which register to be used for indexing as follows:

Pseudo-
Bits (18~17-16) Function Operation
000 No indexing IND
001 Index by A INA Base address indexed by contents of A
010 Index by B INB Base address indexed by contents of B
011 Index by C INC Base address indexed by contents of C

The pseudo-operations IND, INA, INB, and INC are used by the assembly program to automati-
cally add these bits as reqmred

10C_INSTRUCTION OPR OPERAND X REMARKS
ORG 2048

*

* Convert Octal digit to baudot
*

04000 601100 LDB DIGIT Pick up octal digit
04001 404400 LDA BAUDOT X Convert
*
¥ BAUDOT CONVERSION TABLE i
. %
04400 204401 BAUDOT INB *+1 Octal to Baudot Conv Table
04401 000054 OCT 54 Baudot Char 0
04402 000056 OCT 56 " 1
04403 000046 OCT 46 2
04404 000002 OCT 02 3
05100 000002 DIGIT OCT 000002

*

* Branch to switch table
* Depending on contents of C-register
%

ORG 2048
04000 201100 LDC DIGIT Pick up value in C-reg
04001 107400 BRU $POINT ' X

ORG 4096
10000 010200 $POINT IND ENTER 0 GO TO ENTER O IF C = 0
10001 010300 IND ENTER 1 U 1
10002 010400 IND ENTER 2 nogon 2
10003 010500 IND ENTER 3 no3om 3

DATANET=30

(%

)

DATANET =80

Subroutine Linkage

Indirect addressing and a special Branch Subroutine (BRS) instruction provide a means for
getting to and from subroutines and program banks. The BRS command is a 3-word-~time in-
struction which, during the first execution cycle, stores P+1 (the address of the word following
the BRS) in memory location M and during the second cycle loads the contents of (M+1) into
the P-counter, as follows:

ALPHA BRS SUBRN Transfer to Subroutine
LDA 0 Continue

SUBRN IND 0 Subroutine linkage
IND SUBRN1

SUBRN1 LDB SUBRN - Start of subroutine
B.RU SUBRN X Exit from subroutine

When the BRS at location ALPHA is executed:
1. The P-counter + 1 is stored in SUBRN.
2, The program branches to location contained in SUBRN+1.
3. The subroutine is executed. This subroutine may be located anywhere in memory.

4, The exit from the subroutine via the BRU SUBRN X causes the contents of SUBRN
(location ALPHA+1) to be loaded into P.

5. The LDA instruction following the BRS is executed after execution of the subroutine.

Thus, 1 instruction (BRS), -2 words in memory (SUBRN and SUBRN+1), and 5 word times (BRS
and BRU X) are needed for the general subroutine linkage, since the two linkage words are
normally in the common data bank and can be accessed from anywhere in memory.

This technique of subroutine linkage has these advantages:

1. Only one instruction is needed in the main program to call a subroutine.
2, The subroutine may be located anywhere in memory at no sacrifice in time or memory.

3. The subroutine may be called from anywhere in memory at no sacrifice in time or
memory.

4, The program can branch to the subroutine and return to the point of the branch, or else-
where, depending on the purpose of the subroutine,

5. All subroutine linkage bookkeeping is handled by hardware and not by the main program
or the subroutine,

6. All three registers, A, B, and C, may be used for input to the subroutine, since no
register is used for linkage,

The following rules must be observed when using the subroutine BRS command:

1, The first word of the subroutine linkage must be in an even location, (The assembly
program will error tag an odd location or force it to an even location,)

2. The subroutine linkage must be placed in a common location to both program points;
that is, common data bank, same program bank,

MEMORY ADDRESSING USING THE ASSEMBLY PROGRAM

The previous discussion has centered on describing the memory addressing features built into
the DATANET-30. This section will describe the memory addressing features built into the
assembly program,

The assembly program instruction mnemonics and pseudo-operations provide a technique for
program preparation, This is particularly true with respect to memory addressing, since the
assembly program does a great deal of the generation and validity checking of addresses,

The assembly program provides facility for the assignment of addresses relative to some start-
ing point (relative addressing), Assume, for example, that the symbol B is equal to memory
location 0500, Using the technique of relative addressing, memory location 0510 can now be
addressed by writing B+10 in the operand field of the coding sheet:

Symbol Operation Operand
B , EQU 500
LDA B
LDA B+10

The EQU pseudo-operation equates the symbol B to memory location 0500, The instruction
LDA (Load Register A) loads the A-register with the contents of memory location 0500, The
next LDA instruction, some program steps later, loads register A with the contents of B+10
(location 0500 + 10 = 0512),

DATANET =80

-/

=

The assembly program will interpret an asterisk (*) in the operand field on input data to mean
the address of that instruction, The * serves as a flag to the assembly program and causes the
performance of a special calculation to generate the desired address.

Location Instruction
05000 LDA *+ 10

In this example, * = 05000 and the relative address *+10 will be 05012.

The assembly program is also flagged by the character X in the “X” column, This indicates
that indirect addressing is desired on that instruction. The assembly program generates the
desired address according to the standard rules and then adds a 1-bitinI (12). One other
special requirement must be flagged to the assembly program by the programmer, When it
is desired to use channel table addressing, a symbolic operand must be used and the symbol
must start with the character $ (dollar sign), The assembly program, upon finding this condition,
will assign addressing mode 3 (channel table addressing) by making I (10-11) = 11, It then checks
the location of the symbol, verifies that it is less than 8192 and that it is a multiple of 16 (that
the low-order 4 bits are all zero), divides the location by 16 and inserts the remaining 9 sig-
nificant bits in the instruction, To use this mode properly, the symbol must start with a § sign,
and must be in a modulo 16 address in the first 8192 words of memory,

The two remaining techniques for specifying the desired address are pure symbolic and decimal.
Examples of these are:

LDA CONST3
LDA wWs1
LDA 5

LDA 511

LDA 8000

CONST 3 and WS1 are symbolic addresses; and 5, 511, and 8000 are decimal addresses. The
assembly program checks the desired address, to determine if it is in the same program bank
as the instruction being assembled, If it is, address modification mode 0 or 1 (program bank
addressing) is assigned along with the correct partial address. If it is not in the same program
bank, it is checked for being in the common data bank. If it is, address modification mode 2
(common data bank addressing) is assigned along with the correct partial address. I neither
case applies, it is not possible to generate the address directly. The assembly program flags
this condition with an A on the assembly program output listing, This indicates an invalid
address and must be corrected,

With program banks of 1024 words, most desired addresses will be either in the common data
bank or in the same program bank, The first assembly by the assembly program will indicate
the addresses which need to be changed to indirect addressing,

DATANET =80

IV. CONTROL CONSOLE

»
The control console (Figure 11) serves hoth operator and maintenance functions, The control
exercised by the console is not usually used during normal program execution, Control from
the console is concerned with initially loading the program into memory, starting the execution
thereof, monitoring the progress of the program, and program debugging,
The switches and lights and their more important functions are:
1. The contents of the A-, B-, C- and P-registers may be modified directly from the
control console,
e 2. The contents of memory may be displayed in the M-register. The P-counter is used
— to specify the memory location to be displayed.

3. The P-counter is automatically incremented so that sequential locations in memory
may be displayed by depressing the SINGLE CYCLE button,

4, The contents of memory may be modified by the 18 INSERT SWITCHES.

5, The automatic loading of a program may be initiated from the control console (Hard-
ware Load),

THE MODE SELECT PUSHBUTTON SWITCHES
The SET A, B, C, and P Button

The following steps are used to set the A, B or C registers and the P-counter to a desired
configuration,

1. Press the Set A, B, C, or P button.
2. Lift the INSERT SWITCHES under the register position to be inserted. '
3. The inserted configuration is immediately set up in the desired register (counter).

DATANET =80

The INSERT MEMORY Button

The following steps are used to insert data into memory:

1.
2.

Press SET P button.
Put desired memory address in the P-counter.
Press the INSERT MEMORY button.

Lift the INSERT SWITCHES to the desired input. The input is indicated in the Y-
register.

Press the SINGLE CYCLE button, The input from the Y-register is transferred to
the memory location specified by the P-counter. The P-counter will count up 1.

Repeat 4 and 5 for consecutive positions; repeat1 through 5 for nonconsecutive positions,
Do 1 and 2 to set the P-counter to starting location,

Press the PROGRAM RUN button, then the RUN button to start the program. The pro-
gram will start at the location specified by the P~counter,

Press the PROGRAM RUN button, then the RUN button to start the program. The pro-
gram will start at the location specified by the P-counter.

The DISPLAY MEMORY Button

The following steps allow the contents of memory to be displayed:

1.
2.

Press the SINGLE CYCLE button to halt.
Press DISPLAY MEMORY button.

Press SINGLE CYCLE. The contents of memory location as specified by the P-counter
are displayed in the M~register. The P counter counts up 1.

The contents of the other registers will be as previously defined under description
of registers.

THE ERROR LIGHT AND BUZZER

The ERROR light and buzzer are used to indicate that data read out of memory does not agree
with the INSERT SWITCHES.

If a DIF 3 instruction is executed, the error light will turn on. This does not indicate an alert
halt and the program will continue to run.

DATANET =50

\v)

The error light and buzzer only work in either the DISPLAY MEMORY or INSERT MEMORY
mode. The error light does not refer to an error in an operating program. The error light
and buzzer are both turned on and off with the DIF 3 and DIF 2 instructions.

If the INSERT MEMORY or DISPLAY MEMORY mode is set, the RUN button has been pressed,
and the HALT/DISABLE switch is in the HALT position, the error light turning on will indicate
an error, halt the DATANET-30, and the location of the error will be indicated in the L-register.
This is mainly a maintenance feature.

POWER-ON SEQUENCE
The power-on sequence is shown below:

Turn on main circuit breaker located behind the front panel of rack 3.
Press AC ON button

Wait 10 seconds, then press DC ON button.

Press MANUAL RESET.

).bODE\')I—l

DATANET =30

«1 syenbs uworjrsod yoiims IYL
+0 stenbs uoTiTsod yoaTms 2YL

-1 syenbs uotirsod yoIIms SYEL

-aatreiedo aie SaYOITMS TTV

*S9YDTMS WAMOd PU®R

INASNI ou3 3deoxe sarieiado
-uI 21 SAYO3IAS A3Yio 1TV
speiou8T 8i® SUOTITPUOD LIVH
pue SINAOD O SINAOD 4 I'YUl
yons passedfq 21B SOYIITAS

IIVH pue b INAOD ‘d INNOD
-uo pooo] s1 doTd-dTid uny

*X S39s59Y

“5 s3asay

‘W s3@say”

+g s39s9%

‘Y $319s9%

*d s19s9y

umoq
RN

dn

TenueR

weadoag

possaig

possaag

passaig

pessaig

passaig

passaid

S9YJJIMG SIOSUOY) [OIU0D) °TIT wnswwm

SETHOLIMS
LIASNL

WVEH0dd
/ TVINVR

A LASTY

O IEASTY

W 13sdd

g 1asTd

V LAsdd

d ILESHd

-392zNq dY] U0 UIN
{1TA puE UOTITPUOD 3ITEY B UT IINS
-31 17In KouedeadsTp V¥ -soYdIIMS

oy3 03 pexedwod pue 0o pedi °q
T1I# SJU9IUOD §,uorIeO0] Syl ‘o3
~103s 29313V 'd £q por3Toads uoly
-e00] Aiomam Y3l UY. PPI0IS °q uUBD

S9YO3TAS 3I9SUL OY3I UT BIBP OYL

“uoT3ITPUOD

31eY ® uT 3[0sax [ITa Kouedsid
-STp V *S9UDITAS 3a9SUl 3yl o3
poaedwod 3q JTFM SIUIIUED Y],
-pokeidstp °q ueo g £q perzroeds
uoTlEd0] 9YJ JO $IUIJU0D Y

+po3noexd 9q 03 wexfoxd

9Y3 103 PI3I0ITIS o9 Isnm
oSpow STYZ, ‘JouuBE TBUIOU Y3
U peJNOSXe 9IF SUOTIONIISUT

“d 39S ued

*0 388 ued

LxomaR ‘g 3es uEd
FECTN ‘Y 395 ued

S9Y91THS
SOYDITAS
SaYD]IAS

203 IMS

3I9SUT BT
jaesul ayg,
195Ul IYyg,

3195Uy JYyg,

Liowsl
feydsiq

uny
ueadoagd

d 38
2 388
g 398
V 398

LOATAS
HIOW

DATANET =80

(3,U0D) SaYDJIMG STOSUOD [OIUOY) T 9anSig

ropout Axowdl jiasul 10 ©KLrowop

*sjTun soegiajur [euorido fe1dstq@ ‘uny weildoxd °y3
pue ‘sdoyy-dijy “sisjunod JasTy uy 31 ‘A7snonuijuod SJuruunx
‘s193s1301 [Te SI9SIY pessaad TYANYR weiloxd g¢-IANVIVA 943 S3aeas pessaxd N

*possaid usaq sey uoljng
uny weiBoad a2yl JT “ssovoxd @Ol
PEOTT 21BMpiRH 943l S3JBIJTEL possaxd TVONVH

*pa39919s spow 8yl Jo UOTI
-1sod ay3 uo spuadsp uoijoE
Yyl r-possead sT yoyms
Y31 SWI] Yyoed pPIINIIXD
2q TII# UOTIOR 10 UOTIONIIS
-ur duo ‘psiiey Apesi(e usyMm
*0g-IANVIVA 9431 s3ifey ‘spom kcgt)
uny wex8oid ul SuTuUNI UIYM pessaag ATONIS

*uo Sutuiniy
woxjy 19ZZNQ SY] SIJUIASIZ

fzzng I1TH

*1322Zng 9yl S39S9Y

*poioulT 9IB SUOTITPUOD 1ITBH

‘uotlrsod TEnuEm U ST
yoims £3% 3yl JT 0€-IANVIVA
°y3 ITeY T[TA UOTITPUOD ITBY ¥

*junod jou s20p

sA77emIOU SIUNOD

*3unod j0u SI0P g

B !
. = - ‘£]TemIou sjunod g
‘.,%ﬁgﬂm&%“%;

an

usoq
133U8)

dan

330

330

ug
330

YAZZ0g

FTAVSIa
LIVH

b INN0D

d INNOD

DATANET =380

V. PROGRAMMING CONSIDERATIONS

PROGRAMMING THE BUFFERS

Service Rate

When servicing transmission lines on a bit basis there are certain timing factors which must

be taken into account. The following table shows the service rate for six standard teletype
transmission speeds:

Bits per Second Service Rate (milliseconds)
45 22,2
50 20.0
56.25 ' 17.7
75 13.3
110 ' 9.09
150 6.67

In each case, the service rate can be defined as the operation of the receive or transmit flag
of the bit buffer.

When scanning the bit buffers, the service rate is taken into account and the Program Interrupt
Executive initiates scanning at a rate slightly faster than the service rate. For a 45-bit/second
transmission line having a service time of 22.2 milliseconds, the line would be scanned approxi-
mately every 21.0 milliseconds to ensure that any speed variations in the remote terminal
would not result in data lost at the DATANET-30.

Basic Program Cycle

A real time program response time to certain events must be very small. The communications
programs must be divided into the following events:

1. Receive bits
2. Assemble bits into characters

DATANET =30

Assemble characters into words

Assemble words into blocks

Assemble blocks into messages

Assign message routing

Disassemble blocks into words for transmission
Disassemble words into characters

Put the character in the buffer for transmission.

ORI

The program to do this is divided into two basic cycles.

1. Line service cycle (hardware scan and program scan) -- when each buffer is sampled
within a bit or character time and the bit or character present is moved to or from
the buffer.

2. Processing cycle~- when all the rest of the processing to be done by the program
must be accomplished. The bit buffer assembly areas and the other buffers are serviced
on a character time bases.

Since a basic premise of the DATANET-30 is to receive (or transmit) each bit or character
within rigid time limitations, the line service cycle must be initiated within a certain amount
of time.

Line Service Line Service
Interrupt
I I Process I I Process |
ATl AT Al |
.
N
Hardware Full Cycle
Scan Program
Scan
Hardware Program
Scan Scan

The time will vary with the line service rate required by the remote terminals. One full cycle
must therefore be completed at a rate slightly faster than the fastest service rate. In order
to do this, processing must be interrupted to allow the hardware scan instruction to service
the lines (3 word times per line). The interruption must be timed so that, from the end of one
scan cycle to the end of the next scan cycle, the total elapsed time is less than one bit time,
Consideration must also be given to memory cycles used during the scan by the controller
selector peripherals,

DATANET =30

Although the above only discussed the bit time for the bit buffers, the scanning and processing
of character and word buffers follow the same rules. The scanning of character and word
buffers however is done by programming for each buffer. '

The control of data transfer going to or from a buffer is accomplished by the register transfer
instructions, the C-register and the transmit/receive data lines. The receive buffer address
in the C-register allows the character or word in the receive buffer to be set up on the receive
data lines. The register transfer instruction -- that is, TRA R, B -- then transfers the
configuration of the receive data lines to the designated working register.

The transmit sequence using the transmit data lines is basically the opposite of the sequence
using the receive data lines. The address of the transmit buffer is first set up in the C-register.
Then the transfer of the configuration in one of the FROM registers, again using a register
transfer instruction, is transferred ‘to the transmit data lines. The only transmit buffer that .
will be able to accept the configuration on the transmit data lines will be the one addressed
by the C-register.

Line
Interrupt Service
Line Service
o .
' A Y
Hardware Program Scan
Scan on on Character Process
Bit Basis Basis
Bit Buffer Channel Move character out Move character to
Scan of scan word 3 location & from memory location
Word to accumulation location for building words to
3 in memory for that line blocks etc.
BBC Scan Move character to scan
- Word 1 word 2 to be transmitted
Character Buffer Channel Move character out of Do DSU Operation
Char character buffer to
Buffer location in memory for "~ Do Tape Operation
the channel
Word Buffer Channel Move word out of word Do all other functions
Word buffer to memory
Buffer location
CBC Char Move character from memory
- Buffer to character buffer to be
transmitted
WBC Word Move word to word buffer
-t | Buffer to be transmitted
A\ J

Progréﬁ’éycle

Figure 12. General Timing Diagram

DATANET =80

Hardware scan

Bit Buffer Channel Scan
Word 1

Char
Buffer

Character Buffer Channel

Word Buffer Channel Word
[Buffer

Note: The timing will vary depending
upon the speed of transmission
for the individual buffer.

Figure 13. Relative Timing for Scanning Buffers

Functional Sequence

The normal flow of data occurs as shown below. The program periodically halts to allow the
SCN instruction to take bits from the bit buffers to form characters in memory. When a charac~
ter is formed, it is transferred over to another area of memory where the program accumulates
characters into words. The words are accumulated into blocks of variable lengths and then
transferred to the disc storage unit, where the queue, journal, intercept, and in-transit storage
areas are established under program control. The same basic process occurs for the character
and word buffers. However, all other buffers must be scanned by the program.

DATANET =80

——

Incoming

Character

Buffer _l

|

|

Word —l
Buffer ——1
I

MEmOTY mmmegm|

Queue
Word _Journal
I Intercept
Disc
X Storage
Variable Unit

Blocks __*_
I
I
|
I
!
I
|

Blocks I
Variable

Character Word
’ ‘ l
I |
I |
x Memory
Y
Bit Outgoing
Buffer

Figure 14. Data Flow Functional Block Diagram

DATANET =30

PROGRAMMING CONVENTIONS

In writing programs for the DATANET-30, there are a few conventions which should be con-
sidered. The suggestions made here are not hard and fast rules, but must be considered for
maximum programming efficiency:

1. Do not use locations 0 and 1 in memory; these locations are used by program interrupt.
When the Q-counter counts down to zero, P+l is stored in location 0 and control is
transferred to the location specified by location 1.

2. Do not use cells 3, 4, and 5. These locations are used by the controller selector unit
for storage of command words.

3. If possible, all subroutine linkages and constants should be locafed in the common
© data bank (cells 8 - 511 in memory).

4, Channel tables must be located in the first 8192 words of memory. -

5. Utility routines should be stored at the top of the memory, so that they will not be
destroyed when reading in later programs.

6. The following checks should be made:

a. Before issuing any SEL instruction, check the ready status of the controller with
the CSR instruction.

b. Before issuing any CSR instruction, .check for the completion of the previous
SEL sequence with an NIS 7 instruction. '

c. Before changing memory locations 3, 4, and 5, check for completion of the prev1ous
SEL sequence with an NIS 7 1nstruct10n

7. When closing a file on maénetic tape always write an end of file on the tape.

8. When branching to a subroutine, the symbolic name of the subroutine link will be followed

by 1:
BRS REPRT ' Go to report subroutine
REPRT IND 0 Subroutine linkage

IND REPRT1 REPRT 1 is the actual starting
. address of the subroutine.

9. The last character to be transmitted at the end of transmitting a message must be
an all marks character (all 1's),

10. At the end of each program bank, careful consideration should be given to the instructions
in the last 2 positions and to those instructions that fell into the succeeding program
bank.

DATANET = 80—

™

Do

.

—

11, The following memory allocation has been established as a standard programming

convention:

Decimal Location

0000
0008
0032

512
1024
7500
8000

000"
0031
0511
1023
7499
7999
8191

Contents

Program interrupt and controller selector command words
Parameters for utility routines and general use

Program constants, subroutine linkage

Scan words (channel tables) and constants

Object programs

Utility programs and programming tools

Loader programs

12. The C-register instructions (PIC, AIC, XCZ, NCZ) will have decimal or symbolic
operands which will be assembled as a numerical value rather than a memory address,

13. If a symbol has been referred to by a double-length instruction before the symbol is
defined, the symbol will be forced to an even location, Zeros are inserted in the vacated

odd location,

BUFFER OPERATIONS

Bit Buffer Channel

Data is sent to a buffer via the transmit data drivers, Data is received from a buffer via the
Control signals are sent to a buffer by the DEF instructions, Information
as to the status of a buffer is tested by the NES instructions,

receive data lines,

The bit buffers are available in two models: BBC930G1 and BBC931G4, Each model can interface
with a Voltage Current Adaptor (VCA), a 103A or 103F data set. The DEF and NES instructions
for a bit buffer are different, depending on the model used and the type of line interface.

DEF Instructions

1 - Reset receive flag and buffer
2 - Reset transmit flag and buffer
3 - Reset request to send (103F)
Reset data terminal ready (1034)
4 - Set request to send (103F)
Set data terminal ready (1034A)
- Reset receive clock
- Set Echoplex mode
Reset Echoplex mode

O IO
H

- Not used

DATANET =30

BBC930G1,G2 NES Instructions

1 - Receive data flag set

2 - Transmit data flag set
3-8 - Not used

9 - Test receive line

0 - Not used

BIT BUFFER INSTRUCTIONS

Mnemonic Operand

Register Transfer R,
TRA FROM, TO

Register Transfer , T
TRA FROM, TO

SCN I
SCAN

DEF Instructions BBC931G4,G5
- Reset receive flag and buffer
Reset transmit flag and buffer

- Reset request to send (103F)
Reset data terminal ready (103A)
Set request to send (103F)

Set data terminal ready (103A)

- Reset receive clock

Set restraint (103A)

Set originate mode (103F)

Reset restraint (103A)

Reset originate mode (103F)

Not used

(o214
[}

7 -

8-0 -

Word Times

The bit contained in the receive buffer is
transferred to position 18 of R to position 18
of Y and then according to the register transfer
instructions, The receive buffer and flag are
reset,

Bit 1 of the Z-drivers is transferred to the
transmit data buffer, The transmit flag is
reset,

1+3N

Scan the bit buffer units, The bit buffers are
interrogated for data received or to be trans-

mitted. Data is moved to and from the bit
buffers. I is the number of the starting
channel, N is the number of bit buffers
scanned,

NES Instructions

- Receive data flag set

- Transmit flag set

- Not used

- Data set ready (interlock on)
Carrier off (103F)

- Not used

- Supervisory receive data

- Test receive data

- Not used

w
t
O WE-JO U b N =
t

The DEF and NES instructions for other bit buffers not shown here are furnished on an individual

basis,

DATANET =80

RECEIVE OPERATION

Assume that a remote terminal device is sending out a continuous stream of marks, (the line
is in the idle condition). Then the operator at the remote terminal begins transmitting information.
When the start bit (a space) is received, a clock is started. The clock is used to time the future
sampling of the line. The start bit is transferred into the receive data buffer by the bit buffer
channel (BBC), and the receive flag is set. When the clock reaches the proper time, the line
is sampled again, the bit on the line is transferred to the receive data buffer, and the receive
flag is set. This process of sampling the line at regular intervals, transferring the data on
the line to the receive data buffer, and setting the receive flag continues until the clock of the
BBC is stopped by the program. Since the BBC will transfer the information from the line into
the receive data buffer every bit time, the program must test the receive flag and take away
the bit in the receive data buffer before the line-is sampled again by the BBC,

Whenever the bit is taken, the receive flag and the receive data buffer are automatically reset.
At some point, the program decides that the appropriate number of bits have been received and
sends a signal to the BBC which stops the clock. The receive flag will remain reset until another
start bit is received. As a protection against noise on the transmission line causing the clock
to start running, the BBC circuitry requires the space condition to exist on the line for at least
one-half of a bit-time to start the clock. Thus, noise of less duration than one-half of a bit-time
will have no effect. '

A BBC can be used with a half-duplex line by ignoring the receive section when sending and by
ignoring the transmit section when receiving. If a subset is used, control of the carrier is
accomplished by activating the appropriate external function driver (with a DEF instruction),

The following timing diagram shows how the character Y would be received by a bit buffer as
a b-level teletype character.

| I
Start |Stop |
Pulse 1 0 1 0 1 |Pulse]
|

I
Receive Line = :

1 Clock

[

3 Data Buffer

. NN

5 Reset Clock
DEF 5

DATANET =30

1. When a start pulse is received the clock in the receive unit is started and the line is
sampled in the center of each bit period of the character.

2. The receive flag is set when the line is sampled and the bit is sent to the receive data
buffer.

3. The data buffer temporarily stores the bit which has just come in from the line.

4, The program tests to see if the flag is set. If it is, the program will transfer the bit
to a register. Transferring the bit will automatically reset the receive flag and data
buffer by issuing a DEF1 instruction.

5. After the complete character is received the program initiates a DEFS instruction
which resets the clock. The clockwillnot be set again until another start bit is received.

TRANSMIT OPERATION

Assume that the program is not transmitting and that the transmit flag is set. This means that
the BBC is ready to take a new bit from the program. The program sends a bit to the transmit
data buffer. This automatically resets the transmit flag. At regular intervals, the BBC transfers
the bit in the transmit data buffer to the transmission line. When this happens, the transmit
data buffer shifts a bit onto the line, whether or not a new bit has been supplied. The program
must test the transmit flag and provide a new bit before this transfer occurs. This process will
repeat for each bit in the bit stream. At the end of the bit stream, the last bit will remain in
the transmit data buffer and will be transferred to the line regularly. Therefore, the last bit
in a bit stream will be a 1, so that the line remains in the mark condition when no information
is being transmitted. Note that with a BBC the length of the bit stream is completely under
program control.

The next diagram illustrates how the character R would be transmitted to a communications
line. The character R would be represented in memory as 11101010, where the right-hand 0
is the start bit and the two left-hand 1’s are the stop bits. The 5 bits in between the start bit
and stop bits represent the 5-level teletype code for the letter R.

1. The transmit clock ocecurs every bit period as specified by the data timing unit.

2. The transmit flag is set each time the transmit clock occurs and is reset when the
data is transferred to the transmit buffer.

3. When the program finds the transmit flag set, it transfers the next data bit to the BBC,
which automatically resets the transmit flag.

4, This shows how the transmit buffer would look over a period of one character time.

5. This shows the signal as it appears on the line.

DATANET =80

N _e/'l

]

jEjEjEINS
UL
i

1]

2. Transmit Flag

3. Data Transfer ______I_]_] I_—I

4. Transmit Buffer

5. Transmit Line

0 0 1 0 1 0 _1ﬁ,_1, 1
Stop

. , _l
START 5 DATA STOP |

HARDWARE SCAN

The SCN instruction is for use with the bit channels only. It will not operate properly with any
other buffer unit. Therefore, only bit buffers should be among the channels from C to C £ This
means that all bit buffer channels should be addressed sequentially.

Bit buffer channel addresses can not be intermixed with character buffer channels or word buffer
channels.

The initial channel to be scanned is specified in the instruction. The final channel to be scanned
is specified by the scan words or channel 127, whichever occurs first. Channels are scanned
sequentially as follows:

C.,, C.

i i+l, C

i+2, 777, T2,
where

Ci is the initial channel,

C. is the final channel, and

N" = number of channels scanned
f-i+1.

The time required for SCN is one word time for setup plus three word times for each channel
scanned, or:

Word Times = 1+3N.

DATANET =80

This time is required whether data is transferred or not. Also, this time is required for a
simplex, half-duplex, or full-duplex channel.

The SCN instruction uses the A and B registers, and the previous contents will be destroyed.
Also. the C-register will contain C_ after it is completed, At the end of a Transmission, the
last word placed in scan word one continues to be transmitted, It is necessary to put a word
of all marks in scan word one for idle line condition,

pEFl, pEFZ, DEF5, NES1, NES2, and all data transfer is handled automatically by the SCN
instruction. The program must, however, give the DEF3 and DEF4 instructions appropriately.

Scan Word 1

Must be Can be
Zero Used

™\

—— SW1F1

transmitted.

0 0 O0fx X

18 15 14 13

It is possible to transmit 5-, 6-, 7-, and 8-level codes of 8, 9, 10, and 11 bits.

for 5-level, 8-unit codes is:

— Spare Bits must be Zero

— End-of-Character Bit

Stop Bits

18 15 14 13 12 11 10

Data Bits

l_Start Bit
D D 0
3 2 1

the next character to be

The format

DATANET =30

The format for 8-level, 11-unit codes is:

— Spare Bits must be Zero
— End-of-Character Bit
—— Stop Bits

Data Bits

Start Bit

0 6 ojx xXjol11y1 1|/D »p D D D D D

I

18 1514 13 12 11 10 9 8 7 6 5 4 3

The format for 6- and 7-level codes is similar.

It is sometimes necessary to transmit one or more fill characters. A delay time of one character
is a marking condition on the line for one character time. This can be achieved by making the
start bits, data bits, and stop bits all 1’s. This should also be the last character transmitted
at the end of transmitting a message. A one-character delay for 8-level, 11-unit codes is as

follows:

Spare bits must be Zero

End-of-Character bit

I—Data bits are all 1l's

1

18 15 14 13 12 11 10 9 8 7 6 5 4

The end-of-character bit is defined as the last 1-bitin the field. This must be present. If

not, the last 1-bit of data will be interpreted as the end-of-character bit.

To initialize scan word 1, the start, data, stop, and end-of-character bits must be set to all

ones and the rest must be zero filled.

DATANET =80

Scan Word 2

—~ SW2F4 Transmit Character Flag
SW2F3 Code level (5,6,7, or 8)
SW2F2 End-Hardware-Scan Flag

—— SW2F1 The character which is in the process

Do not use of being transmitted
X X
18 17 16 15 14 13 12 1

SW2F1 is controlled entirely by hardware and requires no detail program control. The bits
are shifted right to the bit buffer channel and then to the line until the end-of-character bit is
in position 1. This occurs when SW2F1 is (000000000001).

SW2F2 is set to indicate the final bit buffer channel number when the program is initially as-
sembled and thereafter need not be considered. It is necessary to change SW2F2 for the final
channel for any change in the number of bit buffer channels:

this is the last bit buffer to be scanned.
continue scanning.

1
0

If the final channel is not indicated, the SCN instruction will automatically end at channel 63 in
Model 1 and at channel 127 in Models 2 and 3,

SW2F3 defines for receive purposes the code level of the line (5, 6, 7 or 8). This is set when
the program is initially assembled (or changed octally) and thereafter need not be considered,

SW2F3 (Bits 17 and 16)

17|16
0i0 = 5-level code
01 = 6-level code
1[0 = T-level code
1]1 = 8-level code

SW2F4 is set by the hardware when the new transmit character is transferred from SW1F1 to
SW2F1. It is reset by the program after the new character is loaded into SW1F1,

SW1F1 is ready for a new character
SW1F1 is not ready for a new character.

1
0

i

DATANET =30

T

To initialize scan word 2, bit positions 1-12 are set the same as in scan word 1. Bit position 15
is set in the last line to be scanned. Bits 17 and 16 must be set in each scan word in accordance
with the code level for that line and bit 18 is always zero,

Scan Word 3

SW3F1 is set by the hardware when SW3F2 receives a full character as defined by SW2F3. The
data bits of SW3F1 will be in the following positions:

» .
5-level code in positions 2-6. Positions 7-9 are 0,
6-level code in positions 2-7. Positions 8-9 are 0.
. 7-level code in positions 2-8. Position 9 is 0.
8-level code in positions 2-9.
SW3F3 Receive Character Flag
—— SW31"2 The character which is in the process of
being received. The character is being
put together in this field.
SW3Fl The last character received
X
‘ ":5 18 17 10 9 2 1
\ <
Do not use
SW3F2 is controlled entirely by hardware and requires no program control.
SW3F3 is set by the hardware when the new received character is transferred from SW3F2 to
SW3Fl. 1t is reset by the program after the new character is removed from SW3F1. SW3F1
does not have to be changed by the program.
SW3F3
*°
1 = SW3F1 has a new character
0 = SW3F1 does not have a new character.

Initialize scan word 3 as all zeros.

Scan Word Locations in Memory

The three scan words per line are located in memory as follows.

DATANET =80

Location

Decimal Octal

(" Channel 0 512 1000
Channel 1 513 1001
Scan Word 1 4
L Channel 127 639 1177
r‘
Channel 0 640 1200
Channel 1 641 1201
Scan Word 2 ﬁ ’ ’
\. Channel 127 767 1377
('
Channel 0 768 1400
Channel 1 769 1401
Scan Word 3 <)
\ Channel 127 895 1577

Any of the 384 locations not used for scanning BBC’s, may be used for any other purpose. For
example, channel 0 is used for the paper tape reader and the scan instruction does not apply
to paper tape. Scan words 1, 2 and 3 for the paper tape reader are wired in hardware.

Receive and Transmit

The Scan instruction accomplishes the following at a rate necessary to check each bit buffer
once each bit time.

Receive

When a start bit appears in the bit buffer, the receive flag is set. The SCN instruction transfers
the bit to the character-being-received half of scan word 3, and resets the receive flag. When
the next bit of the character appears in the bit buffer, the receive flag is set, the SCN instruction
shifts the previous bit over 1 position and transfers in the new bit of the character. Prior to
each shift and transfer of a bit, the SCN instruction checks for whether or not the bit in the bit
buffer is the last bit for the character. When the last bit is in the bit buffer, the character
is shifted to the last-character-received side and the last bit is shifted in also. The character
must then be shifted out by the program before another character is fully received. New charac-
ters are shifted into the last-character-received side whether the preceding one was shifted
out or not.

DATANET =30

=

Must be wg—f—Not transferred

zero 13
N
SWl 0 0 0 0 0 0 0 o] O 1 1 1 0 1 0 0 0 0
- N] \
~
\ Transmit
"
18 17 16 15 14 13 12 N
Sw2
1 1 0 1 0 0] 0 0 J to‘line
—
Do not use
18 17 10 9 1
SW3 . . :
Character being Received Last Character Received Receive
Shifted out by
Scan Instruction Program
Transfers bit
Z
l~¢-Receive Data Buffer
Bit Buffer
Figure 15. Hardware Scan Block Diagram
Transmit

Assuming that the transmit mode has been set, once each scan cycle a bit will be transmitted
from the bit buffer. If nothing is to be transmitted, the line should be in a marking condition
(idle). Scan word 2 contains the character being transmitted. Upon the completion of trans-
mitting a character from scan word 2, the character in scan word 1 is transferred into scan
word 2, and automatically transmitted. The program loads scan word 1 with the next character
to be transmitted.

PROGRAM INTERRUPT

Program interrupt occurs under control of the Q-counter. When Q counts to zero, the following
sequence occurs:

1. The instruction being executed is completed. This can take from 1 to 10 (ten word times
is the *worst case execution time of the CSR instruction) word times, depending on
the instruction.

DATANET =30

2. If a memory interrupt is requested by the controller selector, 1 word time is taken
to service the request.

3. Effectively, a BRS 0 is executed. This operation requires 2 word times plus execution
of the program. Interrupt can take from 3 to 13 word times.

If Alpha is the location of the instruction being executed when the program interrupt occurred,
then the BRS 0 performs the following:

1. Alpha +1 is stored in location 0.

2. The contents of location 1 is transferred to the P-register and program execution
started there.

The Program Interrupt Routine must begin with:

*8STF WS1 Store special flip-flops
STD wS2 Store A and B
STC WS3 Store C
LDQ Count Load Q with new value

The Program Interrupt Routine must end with:

* LDC Ws3 Load C
LDD wSs2 Load A and B
LDF Wws1 Load special flip-flops
BRU 0 X Return to point of interrupt

The Program Interrupt Routine will normally include execution of the Scan instruction. Also,
the worst case execution of the Program Interrupt Routine will be less than the time period
between program interrupts. Thus, a program interrupt cannot occur while a Scan instruction
is being executed. A program interrupt during an SCN instruction cannot be successfully done.

PROGRAMMING EXAMPLES, BIT BUFFER CHANNEL

The following example shows one method that might be used to receive one character from a
bit buffer. This method does not use the SCN instruction, and therefore is rarely used.

Location Instruction Symbol OPR Operand Remarks
15530 ORG 7000 ORIGIN LOCATION 7000
15530 011006 PIC 6 ADDRESS OF BIT BUFFER
15531 600000 RECVE LbB BIT7 BIT NUMBER SEVEN
15532 022001 NES 1 RECEIVE FLAG SET
15533 121531 BZE *-1 NO, GO BACK
15534 042444 SR1 BR,B YES, SHIFT NEW BIT TO B-REGISTER
15535 160000 BEV RECVE+1 COMPLETE CHARACTER NOT IN, GO BACK
15536 026020 DEF 5 CHARACTER IN, RESET RECEIVE CLOCK

DATANET =80

ﬂb

e

Initially bit 7 is put into the B-register. This will be used to test whether a whole
character has been received.

The NES1 command tests to see if the receive flag is set. If the flag is not set, the
BZE command branches back to test the flag again.

If the flag is set, the bit contained in the data buffer is shifted into position 17 of the
B-register.

If the B-register is even, control is transferred back to get the next bit. If the B-
register is odd, meaning the initial bit set in B has reached position 1, the even test

fails and the program continues with the next instruction.

The DEF5 instruction resets the receive clock.

The next example is one method which might be used to transmit one character onto a trans-
mission line via a bit buffer without using the SCN instruction.

Location Instruction Symbol OPR Operand Remarks
03720 ORG 2000
02400 $NCHAR EQU 1280
03720 603120 LDB $NCHAR LOAD CHARACTER FROM TABLE
03721 011006 PIC 6 ADDRESS OF BUFFER
03722 022002 XMIT NES 2 TRANSMIT FLAG SET
03723 121721 BZE *-1 NO, GO BACK
03724 060401 TRA B,T TRANSFER BIT TO TRANSMIT DATA DRIVERS
03725 042404 SR1 B,B SHIFT B-REGISTER RIGHT ONE
03726 131721 BNZ XMIT WHOLE CHARACTER NOT OUT, GO BACK
1. The character to be transmitted is put into the B-register.

The transmit flag is tested to see if it is set.
When the flag sets the low order bit of B is sent to the transmit buifer.
Bits shifted right 1 place and tested for zero. If B is non-zero, control is transferred

back to transmit next bit., When B becomes zero, the BNZ test fails and the program
goes on to execute the next instruction.

The next two examples show how to receive a character and transmit a character using Hard-
ware Scan (SCN). It should be noted these are examples and do not necessarily show the way
they will be written in the operating programs.

DATANET =30

Receive - Hardware Scan

Location Instruction Symbol OPR Operand Remarks
REM SAMPLE HARDWARE SCAN RECEIVE
PROGRAM
05670 ORG 3000 ORIGIN 3000
01400 $SCW3 EQU 768 SCAN WORD STARTING ADDRESS
05670 377777 NBIT18 oCT 377777 MASK FOR RECEIVE FLAG
05671 030001 START SCN 1 SCAN BIT BUFFER
05672 603060 LDB $SCW3 LOAD CHARACTER BEING RECEIVED
05673 141671 BPL *-.2 CHARACTER NOT IN, GO BACK
05674 401670 LDA NBIT18 CHARACTER IN, GET MASK CONSTANT
05675 533060 NAM $SCW3 MASK OFF RECEIVE FLAG

Transmit - Hardware Scan

Location Instruction Symbol OPR Operand Remarks
01750 ORG 1000 ORIGIN LOCATION 1000
01000 $scwl EQU 513 SCAN WORD ONE
01200 $SCW2 EQU 641 - SCAN WORD TWO
01750 030001 SCN 1 SCAN BIT BUFFER
01751 603050 LDB $5CW2 LOAD SCAN WORD TWO
01752 141750 BPL *-2 TRANSMIT FLAG NOT SET, GO BACK
01753 603070 LDB SXWORD LOAD CHARACTER TO BE TRANSMITTED
01754 703040 STB $SCWl STORE IN SCAN WORD ONE
01755 601767 LDB BIT18N LOAD MASK
01756 733050 NBM $SCW2 MASK OFF TRANSMIT FLAG
01767 377777 BIT18N OoCT 377777 MASK CONSTANT
01600 $XWORD EQU 896 TABLE LOCATION, NEXT CHARACTER TO
XMIT.

Next, is a simplified example of a Program Interrupt Executive Routine containing a Scan instruc-
tion. At Symbol PIE1 is found the Store Flip-Flops instruction. This saves all the branch and
control flip~-flops from the last instruction executed. Next, all the registers are stored and the
SCN (Scan) instruction is issued. Upon leaving the Scan instruction, the registers and flip-
flops are restored and control is transferred back to the program which was interrupted.

If control of mode conditions within the bit buffers is required, it should be noted that the indi-
vidual channels must be set to their appropriate mode before entering the Scan Operation
(Receive or Transmit Mode).

DATANET =380

)

Location Instruction Szmbol
00000
00000 000000 PIE
00001 017500
17500
17500 361514 PIElL
17501 231515
17502 301511
17503 311512
17504 030001
17505 211512
17506 201511
17507 261514
17510 106000
17511 000000 PIEC
17512 000000 PIED
17513 000000
17514 000000 PIEF
17515 003554 PIEQ

Character Buffer Channel (CBC)

Operand x Remarks

SAMPLE PROGRAM INTERRUPT EXECUTIVE
0000 ORIGIN OF SUBROUTINE LINK

0 LOCATION ZERO

PIEL LOCATION ONE

8000 ORIGIN OF PIE SUBROUTINE
PIEF STORE FLIP-FLOPS

PIEQ LOAD Q-COUNTER

PIEC STORE C~COUNTER

PIED STORE A- AND B-REGISTERS

1 SCAN BIT BUFFERS

PIED LOAD A- AND B-REGISTERS

PIEC LOAD C-COUNTER

PIEF LOAD FLIP-FLOPS

PIE X BRANCH BACK TO EXIT POINT

0 TEMPORARY STORAGE FOR C-COUNTER
0 STORAGE FOR A-REGISTER

0 STORAGE FOR B-REGISTER

0 FLIP~FLOP STORAGE

1900 Q-COUNTER STORAGE (CONSTANT)

The character buffer channel provides the interface to a half-duplex transmission line. The
standard bit stream lengths are 5, 6, 7, and 8 bits. The character buffers should be used on
lines operating at 300 bits per second or greater.

CHARACTER BUFFER INSTRUCTIONS

Mnemonic

Register Transfer

Register Transfer

5,6,7, or 8 bits

8

Operand
,T

Word Times

(TRA from to'T)

The least significant 5, 6, 7 or 8 bits of the
Z~-drivers are sent to the transmit data buffer
and the transmit flag is reset.

(TRA from Rto__)

The 5, 6, 7 or 8 bits as specified by the size
of the character buffer are transferred from
R to the least significant positions in Y and
then in accordance with the register transfer
instructions, The receive data buffer and flag
are reset (DEF1),

e = U1

R (8,7,6, or 5 - 1)

DATANET =80

Mnemonic Operand Word Times

I A 1
-~ Reset receive flag and data register } VCA
- Reset transmit flag and data register 103A/F
- Reset requesttosend —™ 201A/B > 202C/D
- Set request to send
Set supervisor transmit data
- Reset supervisor transmit data
- Not used
- Set data mode 103A
- Reset data mode 202C/D

=)
=
+j

N
O © O U DN
1

b
=
0
—

1

- Receive flag set (data register contains a new character } %83£ /B \ 103A 202C/D
- Transmit flag set (data register is ready for a new character A

- Call in progress

- Request answer
Data mode } 103A/F

- Carrier on 201A/B

- Clear to send 202C/D

- Supervisory receive data-~-202C/D only
- Not used

OO -JOD U WM
1

©
1

The two models of this character buffer are CBC930 and CBC930G2. The character buffer channel
can interface with a Voltage Current Adaptor or telephone company data sets 103A/F, 201A/B,
or 202C/D. The DEF and NES instructions for a CBC vary depending on the model used and the
line interface. Model CBC930G2 has all the DEF and NES instructions shown above, Model
CBC930 has all instructions shown except DEF 5, DEF 6, and NES 9, The variations according
to the subset are indicated,

RECEIVE OPERATION

Assume that the character buffer channel (CBC) has been put in the receive mode by the pro-
gram, that the receive flag is reset, and that the sending unit is transmitting a continuous stream
of marks. (The line is in the idle condition.) The sending unit starts transmitting a character.
The character is preceded by a start bit (a space) and followed by a stop bit (a mark). When
the start bit is received, a clock is started. The clock is used to time the future sampling
of the line. The start bit is shifted into the shift register. At regular intervals, the line is
sampled and the bit which is present at sampling time is shifted into the shift register. When
the shift register is full, the character bits are automatically transferred into the data register,
the receive flag is set, and the clock is stopped. The clock will start again and the above process
will repeat when the next start bit is received on the transmission line. As a protection against
noise on the transmission line causing the clock to start running, the character buffer circuitry
requires that the space condition exist on the line for at least one-half of a bit time to start
the clock., Thus, noise of less duration than one-half of a bit time will have no effect. Since
the character buffer will transfer a word into the data register whether or not the data register
and receive flag are reset, the program must test the receive flag and take the character before

DATANET =80

another

is transferred into the data register. When the program takes the character from

the data register, the data register and the receive flag are automatically reset.

The timing diagram (Figure 16) illustrates how an 8-bit word would be received at a CBC.

1.
2,

N

DATANET =80

The DEF 3 instruction puts the CBC into the receive mode.
The DEF 1 instruction resets the receive flag and data buffer.
The receive clock is shown sampling the line every bit period.

Line 4 shows that the contents of the receive buffer are transferred to the data register
after all the bits are received.

Line 5 shows the receive communications line going into the CBC.
Line 6 shows what the receive buffer would look like after allbits are received.

Line 8 shows the receive flag setting when the receive buffer is transferred to the
data register. :

1 DEF 3

2 DEF 1

3 Rec. Clock ———-—U_I_H_I—‘_l—l_l_l_ﬂ__'—l__l—l—l—]_.
4 Transfer Receive |__|

Buffer to Data

Register
5 Receive Line l—-' |——|
6 Receive Buffer o0j]1r 1 1 0 1 1 1

Data Stop Bits

Start Bit

7 Receive Flag

Figure 16, CBC Receive Timing Diagram

TRANSMIT OPERATION

Assume that the program has put the CBC in the transmit mode, the CBC is in theprocess
of sending a word out on the line, and a word is waiting in the data register. When the current
word has been shifted into the line, the CBC will transfer the word in the data register to the
shift register. At this time, the transmit flag will automatically be set. The 5 bits transferred
into the shift register will automatically be preceded by a start bit and followed by 2 stop bits
when transmitted onto the line for a total of 8 bits. When the shift register is again empty,
the CBC will transfer the word in the data register to the shift register and repeat the process
if the transmit flag is reset. However, if the transmit flag is still set, indicating that the program
has not put a new word into the data register, the CBC will continue to put stop bits (marks)
on the line until the transmit flag is reset. When the program transfers a new word into the
data register, the transmit flag will be automatically reset and the above process will be re~-
peated. For maximum line utilization, the program must test the transmit flag and supply a
new word before the current word has been completely shifted onto the line.

The timipg diagram (Figure 17) illustrates graphically what happens when a 5-bit character
is transmitted onto a communications line by a character buffer channel.

1 DEF 4 [)

2 Transmit Clock ”_H_J_IM L
r
3 Transfer Data J]

Register to Transmit
Buffer shift register

Start Data Stop
o
4 Transmit Buffer 0 1 0 1 1 1
N

5 Transmit Line

6 Transmit Flag

Figure 17, CBC Transmit Timing Diagram

DATANET =380

1. The DEF 4 instruction sets the character buffer to the transmit mode.
2. The transmit clock sends data onto the line at regular intervals.

3. When the transmit buffer shift register becomes empty the data contained in the data
register is transferred to the shift register.

4. This is the binary representation of the character in the shift register.
5. Line 5 shows the output of the transmit section of the character buffer.
6. The transmit flag is shown setting when the word is transferred from the data register

to the shift register.

The example below shows one method that might be used to receive characters from a character
buffer.

Symbol OPR Operand X Remarks
ORG 7000
DEF 31 SET RECEIVE MODE, RESET FLAG AND
BUFFER
LOOK NES 1 RECEIVE FILAG SET?
BZE *-1 NO, GO BACK
TRA R,B " YES, TRANSFER CHARACTER TO B
STB INPUT X STORE IN MEMORY :
ADO INPUT ADD ONE TO INPUT ADDRESS
XBZ EOM IS THIS THE END OF MESSAGE?
BNZ LOOK NO, GO GET ANOTHER CHARACTER
INPUT IND 1000 INPUT ADDRESS
EOM OCT 000077 END-~OF-~-MESSAGE CHARACTER

1. The DEF 31 instruction puts the character buffer into the receive mode and resets
the receive flag and data buffer.

. 2. The NES 1 command tests the receive flag for a set condition.
3. When the flag sets, the BZE testfails and the character is transferred to the B-register.
4. The character is stored inmemory andtestedto see if it is an end-of-message character.

5. If the character isn’t an EOM, control is transferred back to get next character.

Word Buffer Channel (WBC)

The word buffer channel (WBC) provides the interface to a half-duplex transmission line, on a
word basis. A WBC buffers a bit stream 20 bits in length, where the length is determined by
the wiring in the 20-bit code level connector.

DATANET =30

The 20-bit buffer is intended for interconnecting DATANET-30’s. Usually system considerations
indicate that a WBC should be used on lines operating at more than 300 bits per second. The
following rates are selectable with standard speed connectors: 600, 1200, 1800, 2000, 2400, and
3000 bits per second. Two WBC’s can be mounted in a buffer module and the speeds of operation
may be independently selected. Each buffer selector address of each WBC is independently
assigned and is specified by the wiring of the address plug for the module.

WORD BUFFER INSTRUCTION

Mnemonic Operand Word Times
Register Transfer ' R, (TRA from R, to)

The 20 bits in the data register are distributed as follows:

Bits 18-1 go to R(18-1). Bit 19 goes to the
control bit 1 flip-flop and bit 20 goes to the
control bit 3 flip-flops. The receive flag and
data register are reset.

20 19 18 1

1 R (18-1)

Control Bit 1 F-F

Control Bit 3 F-F

Register Transfer ,T (TRA from to T)

Bits 18-1 of the B-register are transferred
to bits 18-1 of the transmit data register.
Bits 19 and 20 of the transmit data register
come from control bit 1 and the word parity
network.

Word Parity Network

Control Bit 1 F-F

[——T (18-1)

20 19 18 1

DATANET=380-

Mnemonic Operand Word Times
DEF I 1
1 Reset receive flag and data buffer.
2 Reset transmit flag and data register.
3 Set receive mode (turn carrier off).
4 Set transmit mode (turn carrier on) and initiate transmission.
5-10 Not used.
NES I 1
1 Receive flag set (data register contains a new word).
2 Transmit flag set (data register is ready for a new word).
3-10 Not used. '

LDT - Do not use.
SCN - Do not use.

RECEIVE OPERATION

Assume that the WBC has been put in the receive mode by the program, that the receive flag
is reset, and that the sending unit is transmitting a continuous stream of marks (the line is in
the idle condition). The sending unit starts transmitting a 20-bit word. The word is preceded
by a start bit (a space) and followed by a stop bit (a mark). When the start bit is received, a
clock is started. The clock is used to time the future sampling of the line. The start bit is
shifted into the shift register. At regular intervals, the line is sampled and the bit which is
present at sampling time is shifted into the shift register. When the shift register is full, the
20-data bits are automatically transferred into the data register, the receive flag is set, and
the clock is stopped. The clock will start again and the above process will repeat when the
next start bit is received on the transmission line. As a protection against noise on the trans-
mission line causing the clock to start running, the word buffer circuitry requires that the space
condition exist on the line for at least one-half of a bit time to start the clock. Thus, noise of
less duration than one-half of a bit time will have no effect. Since the word buffer will transfer
a word into the data register whether or not the data register and receive flag are reset, the
program must test the receive flag and take the word before another is transferred into the data
register. When the program takes the word from the data register, the data register and the
receive flag are automatically reset.

The timing diagram (Figure 18) illustrates how a 20-bit word would be received at a WBC:
1. The DEF 3 instruction puts the WBC into the receive mode.
2. The DEF 1 instruction resets the receive flag and data buffer.

3. The receive clock is shown sampling the line every bit period.

DATANET = 80-

4. Line 4 shows that the contents of the receive buffer are transferred to the data register
after all the bits are received.

5. Line 5 shows the receive communications line going into the WBC.
6. Line 6 shows what the receive buffer would look like after all 22 bits are received.

7. Line 7 shows the receive flag setting when the receive buffer is transferred to the
data register.

1 DEF 3

2 DEF 1

3 Rec. Clock HHIH ”“”HH““””|||||HH|”Hl||||||lH”l

4 Transfer Receive
Buffer to Data
Register

5 Receive Line l ‘ ‘ l | l | | \ I |

of1 110 1 0 110100011001 O0T1

1
6 Receive Buffer / \Stop
Bit

Y

Start N
Bit il DATA BITS

7 Receive Flag

Figure 18. WBC Receive Timing Diagram

TRANSMIT OPERATION

Assume that the program has put the WBC in the transmit mode, the WBC is in the process of
sending a word out on the line, and a word is waiting in the data register. When the current
word has been shifted into the line, the WBC will transfer the word in the data register to the
shift register. At this time, the transmit flag will automatically be set. The 20 bits transferred
into the shift register will automatically be preceded by a start bit and followed by a stop bit

DATANET =80

when transmitted onto the line for a total of 22 bits. When the shift register is again empty,
the WBC will transfer the word in the data register to the shift register and repeat the process
if the transmit flag is reset. However, if the transmit flag is still set, indicating that the pro-
gram has not put a new word into the data register, the WBC will continue to put stop bits (marks)
on the line until the transmit flag is reset. When the program transfers a new word into the
data register, the transmit flag will be automatically reset and the above process will be re-
peated. For maximum line utilization, the program must test the transmit flag and supplya
new word before the current word has been completely shifted onto the line.

1 DEF 4 H
AR
2 Transmit Clock
M
3 Transfer Data ﬂ

Register to

‘——5) Transmit Buffer Start
1 Stop
r\
4 Transmit Buffer 0110101100111001011011

5 Transmit Line l__l |_J—_l_| __I—l_J—l_—I__

6 Transmit Flag

Figure 19. WBC Transmit Timing Diagram

’/,/.
\/

DATANET =30

The timing diagram (Figure 19) illustrates what happens when a 20-bit word is transmitted onto

a communications line by a word buffer channel:

RECEIVE~-WORD BUFFER EXAMPLE

The DEF 4 instruction sets the WBC to the transmit mode.

The transmit clock sends data onto the line at regular intervals determined by the
baud rate of the line.

When the transmit buffer shift register becomes empty the data contained in the data

register is transferred to the shift register.

This is the binary representation of the binary word in the shift register.

Line 5 shows the output of the transmit section of the WBC.

The transmit flag is shown setting when the word is transferred from the data register
to the shift register.

- Location Instruction

03720
03720 011017
03721 026005
03722 022001
03723 121722
03724 060044
03725 705730
03726 341730
03727 101722
03730 005670

Symbol

RECVE

MEMORY

OPR

REM
ORG
PIC
DEF
NES
BZE

STB
ADO
BRU
IND

Operand X Remarks

RECEIVE VIA WORD BUFFER
2000 ORIGIN LOCATION 2000
15 PLACE BUFFER ADDRESS IN C
31 SET RECEIVE MODE, RESET BUFFER
1 TEST FOR FLAG SET
*-1 NOT SET, GO BACK
R,B SET, TRANSFER R TO B
MEMORY X STORE WORD IN MEMORY
MEMORY - INCREMENT MEMORY ADDRESS
RECVE GO GET NEXT WORD
3000 INPUT AREA INDIRECT ADDRESS

Initially the word buffer address is put into the C-register. The receive mode is set and the

buffer is reset by the DEF 3 1 instruction.

The flag is tested and the program waits for the

flag to set. When the flag sets, the contents of the data buffer are transferred to the B-register,
which automatically resets the receive flag and data buffer. The data is stored in memory,
and control is transferred back to get next word.

DATANET =30

)

TRANSMIT-WORD BUFFER-EXAMPLE

Location Instruction
07640
07640 011032
07641 062004
07642 022002
07643 121642
07644 060401
07645 026010
07646 605655
07647 022002
07648 121647
07649 060401
07650 341655
07651 351654
07652 131646
07653 106000
07654
07655

DATANET =80

Symbol

LOOP

WDCNT
NEXTWD
WBCHN

OPR Operand
ORG 4000
PIC WBCHN
TRC 0,B
NES 2

BZE *-1
TRA B,T
DEF 4

LDB NEXTWD
NES 2

BZE *-1
TRA B,T
ADO NEXTWD
SBO WDCNT
BNZ Loop
BRU 0

DEC 50

IND 6000
EQU 26

Remarks
—_—

ORIGIN LOCATION 4000

PUT WORD BUFFER ADDRESS IN C
TRANSFER ALL 1's TO B
TRANSMIT FLAG SET

NO, GO BACK

YES, TRANSFER WORD TO BUFFER
SET TRANSMIT MODE

LOAD NEXT WORD TO GO
TRANSMIT FLAG SET

NO, GO BACK

YES, TRANSFER WORD TO BUFFER
ADD ONE TO OUTPUT AREA ADDRESS
SUBTRACT ONE FROM WORD COUNT
BRANCH TO TRANSMIT NEXT WORD
BRANCH LOCATION 0

NUMBER OF WORDS TO GO

OUTPUT AREA INDIRECT ADDRESS

PROGRAMMING THE PERFORATED TAPE READER

The perforated tape reader reads at a continuous rate of 300 characters per second. Tape can
be read under program control or hardware control, depending upon the format in which it is
punched, Perforated tape punched in the hardware load format is always read at the maximum
300-character-per-second rate under automatic control of the DATANET-30 circuitry, The
perforated tape reader is always on buffer selector address 0,

Perforated tape may be read under program control in two modes, continuous mode and step
mode, Five- to eight-level tape may be read but normally only eight-level tape will be used,
If perforated tape is read in continuous mode, the character under the read station must be taken
away 500 microseconds after the flag is set, If the 500 microsecond timing restriction is not
met, reading must be done in the stepmode at a speed of approximately 50 characters per second,

In either mode, when the sprocket hole is detected, the character under the read station causes
the receive flag to be set, When the character is taken away, the flag is automatically reset
and the reader moves the tape to the next character, This control of the movement of tape is
in effect at both 300 and 50 characters-per-second speeds, The sprocket hole serves as a timing
source, A sprocket hole only indicates a character and will set the receive flag,

The reader is turned on by the POWER ON switch on the perforated tape reader control panel,
Normal operation requires that the reader be turned on at all times.

Reading Perforated Tape Under Program Control
PERFORATED TAPE READER INSTRUCTIONS

Following are the perforated tape reader instructions:
Register Transfer (From R,)

The character contained in the buffer is transferred to register A or B, as in the diagram below,
The receive flag and data buffer are reset, If stopped, any register transfer instruction from
R starts tape moving or allows the movement of tape to continue,

21 20 19|18 6 5 4 3 2 1 To A or B

L

[:: Input Buffer O
0000.000
Channel 1
Sprocket
Channel 8

DATANET =30

DEF 1 Reset flag and read next character, The reader starts tape moving through the
reader or allows the movement of tape to continue,

DEF 2-10 No effect,

NES 1 Read flag set (a new character is ready),
SCN Do not use, -
LDT No effect,

Register Transfer , T - No effect,

The following example is a few lines of coding which show one way in which perforated tape
might be read, In. this example, tape is punched in 6-level code and 3 characters are assembled
into one word, Channels 7 and 8 are not punched, In this example, the 7 and 8 channels are
transferred but are not used,

Location Instruction Symbol OPR Operand X Remarks
13560 ORG 6000 ORIGIN LOCATION.
13560 011000 PIC 0 PUT PAPER TAPE READER ADDRESS IN C
13561 022001 READ NES 1 CHARACTER PRESENT?
13562 121561 BZE *-1 NO, GO BACK
13563 044044 SL6 R,B YES, SHIFT TO B-REGISTER
13564 022001 NES 1 CHARACTER PRESENT?
13565 121564 BZE *-1 NO, GO BACK
13566 044444 SL6 BR,B YES, SHIFT TO B-REGISTER
13567 022001 NES 1 CHARACTER PRESENT?
13570 121567 BZE *-1 - NO, GO BACK
13571 060444 TRA BR,B YES, TRANSFER TO B
13572 705576 STB WKSTOR X STORE IN MEMORY INPUT AREA
13573 341576 ADO - WKSTOR ADD 1 TO INDIRECT MEMORY ADDRESS
13574 771577 XBZ STOP IS THIS A STOP WORD?
13575 131561 BNZ READ NO, GO READ NEW WORD
13576 001750 WKSTOR IND 1000 INDIRECT ADDRESS
13577 777777 STOP OCT 777777 ~ STOP CONSTANT

Initially buffer selector address 0 is put into the C-register, The NES1 command tests the
buffer for a character, and status line 1 will remain a 0 until a character is present, When
the flag sets, the program falls through the BZE test and shifts the character into the B-register,
When three characters have been assembled in the B-register, they are stored away in memory
and a test is made to see if the last word was a stop signal., If the word was not a stop signal,
control is transferred back to the symbol READ and the reading process continues,

Note: When tape is loaded in the reader, the tape will stop with a sprocket hole over the read
station. A sprocket hole by itself will set the flag and represents a “blank” character,

DATANET =80

PROGRAM LOAD FORMAT

A perforated tape generated by General Assembly Program 3 (run on a2 GE-225 computer) in the
program load format can only be loaded into the DATANET-30 by a loader program, Itis not
hardware loadable,

The program load perforated tape code is shown below:

Channel on Tape
8 7 6 5 4 3 2 1
Leader p»-0 O 0 1 o0 o0 0o 0 1 = Hole
Flag———p=1 0 O 0 O O O O 0 = No Hole
Digit 0 o 0 1 1 1 0 0 O
1 0o o0 o0 0 O 0 o0 1
2 0o 0 o 0 0o o0 1 o0
7 o o o0 O 0o 1 1 1
EXAMPLE: Sprocket hole
" 18 inch Leader
H
°
°
°
‘.

-———Tlag

Word Count

(Number of data words
in this record)

Tape Movement

Origin

Binary Data Card <
Image
Data
6 frames/word

Hash Total

et Blank Frame
| Flag
~g— _Word Count

- Origin (6 frames)

BinaryI]I)n«’;th card (\\\\\\\\\\\\\

——

—f——Data

Hash Total
~¢——————Blank
: ; Flag
Transfer Card A"‘——_[go%'d‘Count
(WD CNT = 0) \\\\\\\\\\\\\\\\4———_—4—LE;§23 or Next

Program

DATANET =50

Hardware Load and the Perforated Tape Reader

Once initiated, the loading of data from the perforated tape reader is accomplished entirely under

hardware control,

A special format (operation code), in channels 7 and 8 (the control channels)

controls the shift of data in channels 1-6 from the reader to the B-register and then into memory,
The characters in channels 1-6 are transferred into the B-register and assembled to form a
word, Since the DATANET-30 word is 18 bits, two shifts of 6 bits each are required.

18

13 12 7 6 1

!

—t——
SL6 SL6 6 bits from reader

When the B-register is filled with the third transfer of data into B, the word is transferred
to memory. (Operation code 01XXXXXX,)

Operation code in
channels 8 & 7

8 7 654321
) 10 111111

0 0 XXXXXX

0 1 XXXXXX
[

1 1 XXXXXX

DATANET =80

Operation

Begin hardware load, The reader searchesfor this code before the transfer
of data can start,

SL6 BR,B

Bits 1-6 from the paper tape reader are OR-ed into 1-6 of Y with the
contents of the B-register, Y is shifted left 6 to Z, Z is transferred to
the B-register.

TRA BR,B .
Store B in memory location specified by P, Count Pup 1, Clear B,

Bits 1-6 from the paper tape reader are OR-ed into 1-6 of Y with the
contents of the B-register., Y is transferred to Z without change, Z is
transferred to the B-register., The contents of the B-register are stored
in memory as specified by P. P is counted up by 1, and the B~register
is cleared,

TRA BR,B
TRA B,P, Clear B

Bits 1-6 from the paper tape reader are OR-ed into 1-6 of Y with the
contents of the B-register, Y is transferred to Z without change, Z is
transferred to B. Then the contents of the B-register are transferred
to P, and the B-register is cleared,

Operation code in

channels 8 & "7 Operation
1 0 XXXXX0 End hardware load, Control is automatically transferred to the program,

The program starts at the address specified by the P-counter,

Note: Only begin hardware load and end hardware load use all 8 channels for the operation
code, A punch is a 1, a blank is a 0. A blank space (sprocket hole only) causes zeros to be
transferred into B,

DATANET =80

STRUCTURE TABLE TO
HARDWARE LOAD OPERATION

The sequence of operations for hardware load is shown by the following steps:
1. When hardware load is initiated, the C-register is set to zero, the Q-counter is set
to -1, the paper starts moving through the reader, and the tape is examined for the

begin hardware load character,

2. Read a character,

-
Character
- 87 | 654321 This Occurs Go To Step
|
10 |llllll Sets B-register to Zero 3
:Begin HWL
1
|
XX XXXXXX Nothing happens 2
any character
except hardware
load
3 3. Read a character,
{
Ch%racter
87 l654321 : Go To Step
i
00 | XXXXXX (0XX) SL6 BR,B 3
AN
0| X X
}
01 : KXXXXX (LXX) TRA BR,B
"‘IW STE "P CIR'
1 | X X Count P (P=P+l)
@ | Set B-register to zero 3
|
e J1,) XXRXXX (3XX) TRA BR,P
|\:89i’, Set B-register to zero 3
3 I X X
!
10} 000000 (200) Start the program at
é | QHJKEJ location specified by
t P~counter Starting Location
| of Program

DATANET =80

Hardware Load Format

The Hardware Load format output of the assembly program may be loaded into the DATANET-30
by either Hardware Load or a Loader program. When the perforated tape is loaded via a Loader
program, checking is accomplished by the block hash total and program hash total. When the
perforated tape is loaded via Hardware Load, no checking by hash total is accomplished,

The block hash total is located at position N + 1 of a block of N words, Program hash total is
located after the address of a transfer word, and before the end hardware load character, Block
is the equivalent of a binary card or binary tape record, Octal cards will be converted to a
block length of one. An example of Hardware Load perforated tape format is shown below:

e

18 inches of Leader

Tape
Moves —f—————.Start H.L. Character
This Way ~f—————Word Count (N)

_
Binary Dm < &\\\\\\\\\\\\ ~¢——— Origin

—

gl | B Data

—-f— — Block Hash Total

~€————jord Count

Binary Data Card \\\\\\\\\\\\\\ ~¢—————Origin

—_— ————

—— ——_. |y-—————Data

l l l ~of—— - Block Hash Total

Transfer Card ~}—————Word Count (=0)
e

\\ ~#———— Origin (Transfer)

—~———— Program Hash Total

i} ~g—— End H.L. Character

}~¢——————— 3 Blank Frames

i

Next Program or 18 inches
of Leader

¢ (next Program will start
P with "Start H.L. Character')

DATANET =30

»,

ASSEMBLY PROGRAMS

DATANET-30 source programs can be assembled either on a GE-225/235 computer or on a
DATANET-30,

The DATANET-30 assembly program run on the GE-225/235 is CD225F2,001/2, Information
on this assembly program is included in Appendix A of this manual,

The DATANET-30 assembly program run on the DATANET-30 is CDD30F1,001/2, Information
on this assembly program is contained in publication CPB-1074,

The assembly program run on the DATANET-30 will accept programs written for the DATANET-
30 assembly program run on the GE-225 computer, thus providing compatibility for assembling
DATANET-30 source programs,

UTILITY ROUTINES

Since the output from the DATANET-30 assembly program run on the GE-225 is magnetic tape
(switch option) or punched cards andthe inputto the DATANET-30 is perforated tape, a conversion
program is needed, A utility routine (General Assembly Program 3) on the DATANET-30 General
Assembly Program systems tape will accomplish this, producing perforated tape in various
formats on a free-standing perforated tape unit which has the eight-level straight transfer mode.
One of the formats is compatible with Hardware Load, so that self-loading programs can be
produced, Other formats are read by tape loader programs. The Paper Tape Conversion
(General Assembly Program 3) Utility Routine for perforated tape can be run following the
DATANET-30 General Assembly Program by setting the console switches,

DATANET =30

PROGRAMMING AIDS

Aids for program debugging are abailable, The following is a list of these and other software

that have been developed,

Information regarding these and other software aids as they are

developed can be obtained from the Computer Program Library, Computer Department, General
Electric Company, P,O, Box 2961, Phoenix, Arizona, 85001.

LIBRARY NUMBER

CDD30B1.001

CDD30B1.002
CDD30B2,001

CDD30B2.,002

CDD30B2,003

CDD30B2,005

CDD30B2,006

CDD30B3.001

CDD30B3,002

CDD30B3.003

CDD30B3.004

CDD30D1.001

CDD30D1.002

DATANET =80

DESCRIPTION

Card Loader--Loads binary and octal cards into memory, This
is a paper tape loop for the tape reader of the DATANET-30,

Bootstrap Tape Loader--Loads programs from magnetic tape.

Edited Memory Dump--Dumps all of memory on the printer except
for the memory dump program, Prints 8 memory locations per
line, The starting address of the 8 memory locations is to the
left of each line printed, (8 or 16k.)

CORE Dump Mnemonics--Dumps memory on the printer, Dumps
a line in octal and on the next line prints mnemonic op code,

Memory Dump--Octal/Baudot--Dumps on the printer 8 words per
line followed on the same line by the Baudot Equivalent of the
8 words,

Trace-~Prints. every instruction of a non-real time program and
the state of the working registers after each instruction is executed,

Memory Lookup--Searches for specified bit patterns entered
through the switches and lists on the printer all locations where
the bit pattern appears. Will also list all references to a specific
memory location,

Magnetic Tape Dump--Dump to printer binary or BCD tape in
octal format,

Tape or Card to Tape--Writes BCD tapes to tape or Hollerith
cards to tape,

Decimal Tape to Printer--Dumps BCD tape to printer,

Mixed Binary Octal Cards to Magnetic Tape-~-Writes DATANET-30
object programs on magnetic tape,

Multiply--Multiplies two 17 bit words to produce a 35 bit product,

Divide--Divides 35 bit word by 17 bit word to produce up to a 17
bit quotient and 16 bit remainder,

)

LIBRARY NUMBER

CDD30E1,001

CDD30E8.001

CDD30E8.002

CDD30E8.003

CDD30ES,004
CDD30ES8,005

CDD30F2,001
CDD30F2,002
CDD225F2,001
CDD225F2,002

DATANET =30

DESCRIPTION

Card Read--Reads a card and stores in memory, No con-
version,

Disc Storage Unit I/O--Simplifies the use of the DSU by
performing the necessary preparatory and error checking
functions associated with reading and writing on the DSU,

Data to Disc Storage Unit--Loads card data on DSU in Octal,
Baudot or BCD,

Dynamic DSU Dump with I/O--Permits dumping the DSU
transfers in real-time on the printer, Also permits DSU
updates and moves.

DSU Dump to Printer--Printout in octal and Baudot of selected
sequential DSU records,

Zero DSU--Zero selected areas of the DSU under console
switch control,

DATANET-30 Assembler on the DATANET-30 (Cards),
DATANET-30 Assembler on the DATANET-30 (Tape).
DATANET-30 Assembler on the GE-225 (Cards),

DATANET-30 Assembler on the GE-225 (Tape).

APPENDIX A

ASSEMBLY PROGRAMS

Appendix A to this manual covers the DATANET-30 General Assembly Program
run on the GE-225 computer. .

Publication CPB-1074 covers the DATANET-30 Assembly Program run on the
DATANET-30.

Both Appendix A to this manual and CPB-1074 are available from:

Marketing Distribution Center
Computer Department
General Electric Company

P. O. Box 2961

Phoenix, Arizona, 85002

DATANET =80

