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This paper presents a short review of the progress that has 
occurred over the past 25-30 years in both the theoretical and 
practical characterization of frequency stability of precision fre- 
quency sources. The emphasis is on the evolution of ideas and 
concepts for the characterization of random noise processes in 
such standards in the time domain and the Fourier frequency 
domain, rather than a rigorous mathematical treatment of the 
problem. Numerous references to the mathematical treatments are 
made. 

I. INTRODUCTION 
High precision frequency standards have undergone 

tremendous advances during the decades since the advent 
of the first laboratory cesium beam clock in 1955. 
Thousands of atomic clocks, such as the cesium beam 
and the optically pumped rubidium standards manufactured 
by industry, are in routine use today. The ultrastable 
hydrogen maser is also used on a large scale for very 
demanding applications. Quality quartz-crystal-controlled 
oscillators have also shown such progress in stability that 
they can sometimes compete with rubidium clocks. These 
devices are used in applications such as: fundamental 
metrology, telecommunications systems, space missions, 
radars, broadcasting, etc. 

By the early-1960’s it was clearly recognized that there 
was a real need for a common set of frequency stability 
characterization parameters and for related measurement 
test-sets [ l] ,  [2]. 

These parameters were needed for at least two main 
purposes: 

1) to allow for meaningful comparisons between simi- 
lar devices developed by different laboratories, or 
between different devices in a given application; 

2) to access application performance in terms of the 
measured oscillator frequency stability. 

Manuscript received February 2, 1991; revised March 21, 1991. 
J. Rutman is with the Federation des Industries Electriques et Electron- 

F. L. Walls is with the Time and Frequency Division, National Institute 

IEEE Log Number 9101209. 

iques, 75116 Paris, France. 

of Standards and Technology, Boulder, CO 80303. 

Related experimental test sets with well-defined charac- 
teristics were of course needed in order to unambiguously 
measure the various frequency stability parameters. 

This paper presents a short review of the progress that 
has occurred during the last 25-30 years both in terms 
of theoretical characterization of frequency stability and of 
experimental measurement test sets. 

11. CHARCTERIZATION OF FREQUENCY STABILITY 

In this paper no attempt will be made to give mathemat- 
ical developments that can be found in many references 
[1]-[47]. Reference [21] contains many of the original 
papers with errata sheets. It attempts to point out inconsis- 
tencies between the notation of these papers and the updated 
recommendations of IEEE [7] and CCIR [38]. We will 
concentrate mainly on the evolution of ideas and concepts 
and try to highlight the key milestones with a minimum of 
mathematical symbols and equations. 

In simple terms, the practical problem is how to char- 
acterize the properties of the output signal from a real 
oscillator. The output signal from an ideal noise-free non- 
drifting oscillator would be a pure sine wave, but any real 
device, even the most stable, is disturbed by unavoidable 
processes such as random noises, drifts due to aging andlor 
environmental effects. This paper will be mainly devoted to 
the characterization of frequency instabilities due to random 
noises which exist in all kinds of devices. Hence, the first 
step is to develop a tractable mathematical model for the 
quasi-sinusoidal output signal of an oscillator. 

111. OUTPUT SIGNAL MODEL 
A relatively simple model that was introduced in the early 

1960’s and has found wide acceptance is 

where $(t) is a random process denoting phase noise [6], 
[7], [21], [33], [37], [38], [43], VO and vo are the nominal 
amplitude and frequency respectively; and amplitude noise 
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characterized by &(t) that can usually be neglected in high 
performance sources. (In this treatment we assume that 
frequency drift, if any, has been removed.) Such a quasi- 
sinusoidal signal has an instantaneous frequency defined 
as 

1 d  1 d+(t) (2) v(t)  = - -(27rvot + qqt)) = vo 4- - - 
27r dt 21r dt * 

Frequency noise is the random process defined by 

(3) 

which exists simultaneously with and has properties similar 
to phase noise, as will be seen later. Very often it is 
useful to introduce the normalized dimensionless frequency 
fluctuations, 

This quantity remains unchanged under frequency mul- 
tiplication or division and can be used as a basis for 
comparisons of oscillators at different nominal frequencies. 

Since we have modeled phase and frequency fluctuations 
by random processes, we are now in a position to 
use the various statistical tools which allow fluctuation 
characterization, such as correlation functions, spectral 
densities, averages, standard deviations and variances etc. 
Many textbooks exist on this subject. Now the problem 
of frequency (or phase) instability characterization is 
to introduce meaningful and practical (i.e. measurable) 
parameters for describing the statistical properties of 
+(t), 4 t ) ,  Av(t), 01 d t ) .  

IV. THE GREAT DICHOTOMY 
Users of frequency standards in various fields recognized 

early on that they needed two kinds of parameters in order 
to meet requirements of different applications-namely 
spectral parameters (related to the spread of signal energy 
in the Fourier frequency spectrum) and time parameters 
(allowing assessment of the stability over a given time 
interval). 

Therefore two sets of parameters have been introduced 
as tools for oscillator characterization: 

1) spectral densities of phase and frequency fluctuations, 

2) variances (or standard-deviation) of the averaged fre- 

We first view briefly these two different kinds of pa- 
rameters and then describe the mathematical relationships 
between them together with the related experimental con- 
sequences. A key point is the integral relationship which 
allows us to derive the variances from the knowledge of 
the spectral densities. 

in the so-called Fourier frequency domain. 

quency fluctuations in the time domain. 

V. FOURIER FREQUENCY DOMAIN 
In the Fourier frequency domain, phase and frequency 

fluctuations can be characterized by the respective one- 
sided spectral densities, S@( f )  and Sau (f), which are 

related by the simple law [6], [7], (211, [33], [37], [38], 

s A v ( f )  = f2s+(f) (5)  

which corresponds to the time derivative between +( t )  and 
Av(t). The spectral density Sy(f) is also widely used and 
is very simply related to S,,(f) and S@(f) by 

1 
(6) Sdf) = --s vo” A’ (f) = $S@(f). vo 

(Note the word “frequency” is used with two different 
meanings which should not be confused. v(t) is the time- 
dependent instantaneous frequency of the oscillator, and f 
is the time-independent Fourier frequency that appears in 
any spectral density. The spectral density is the Fourier 
transform of the autocorrelation function [6], [33].) 

It has been shown from both theoretical considerations 
and experimental measurements, that the spectral densities 
due to random noise of all high stability frequency standards 
can be modelled by the power law model where the spectral 
densities vary as a power of f .  More specifically, Sy(f) 
can be written as the sum: 

(7) 
a=-2 

for 0 5 f 5 fh where fh is an upper cutoff frequency. 
For a given type of oscillator two or three terms of 
the sum are usually dominant. Each term is related to 
a given noise source in the oscillator (internal and/or 
external white noise, flicker noise,. . .). The most common 
noise types encountered in practical sources are given in 
Table 1. Of course, power laws can sometimes lead to 
“mathematical pathologies” (divergence of integrals) when 
they are integrated from f = 0 to f = CO, but this is 
only a limitation of the model that can be overcome by 
physical considerations (limited bandwidth and duration, 
for example). 

Sy(f) was proposed in 1971 by the IEEE as the rec- 
ommended frequency stability measure in the Fourier fre- 
quency domain [6 ] .  The updated version given in [7] is 
in general agreement with the recommendations of CCIR 
[371, 1381. 

For stationary Gaussian random processes, the spectral 
density (or the autocorrelation function) contains the maxi- 
mum information about the process. The variances that will 
be defined later are all related to the spectral densities 
via integrals and transfer functions. Some information is, 
however, lost in the process. 

Spectral densities of phase or frequency are measured 
by a spectrum analyzer (analog or fast Fourier transform) 
following some kind of demodulation of $(f) or Av(t) .  
Numerous experimental tests sets have been developed for 
that purpose [8], [MI, [23], [39]. Figure 1 shows Sy(f) 
for the five common power-law noise processes listed 
in Table 1. Specific techniques for measuring S@(f) (or 
equivalently Sy(f)) are described in [8], [9], [13], [18], 
[19], [21]-[23], [43]-[45]. Particular attention is focused 
on describing the errors in such measurements and in 
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Table 1 Listing of the five common types of noise found in practical sources. The asymptotic forms of U$(.) for various power-law noise types and 
two filter types are also listed. Note: W h / 2 ? r  = f h  is the measurement system bandwidth-often called the high-frequency cutoff. In E log 

u:(r) 

W h r  >> 1 WhT >> 1 WhT << 1 WhT << 1 
Infinite Sharp Single Pole Infinite Sharp Single Pole 

Name of Noise * S Y ( f )  Filter Filter Filter Filter 

t 

f 

Spectral density of frequency fluctuations S y ( f )  for Fig. 1. 
the five wmmon noise types. 

determining S,(f) or S+(f) for a single oscillator in 
[8], [18], [23]. Confidence intervals for spectral density 
measurement of nonwhite noise are treated in [41]. 

VI. TIME DOMAIN 
Time-domain characterization of frequency stability is 

widely used since it answers the obvious question: what 
is the stability over a time interval T for a given applica- 
tion? (T can range from milliseconds to months and years 
according to the application.) 

In the time domain, the basic measurement apparatus 
is a digital counter that yields results that can be related 
to vi,  the ith average value of y(t) over a time interval 
r beginning at time ti (any physical measurement has a 
finite duration r that cannot approach zero; instantaneous 
frequency cannot be measured). Figure 2 shows the basic 
measurement cycle. Simple counting techniques are, how- 
ever, severely limited in precision. Heterodyne techniques 
offer much higher accuracy at the expense of increased 
complexity [9], [20], [21], [24], [42]. 

In order to assess frequency stability over a time interval 
r (the sample time), it is necessary to make a series of 
measurements, each of duration T ,  which yields the results 
vi with i = 1-N. Of course, due to the random fluctuations 
of y(t), the vi's are samples of a random variable and 
frequency stability over r which can only be defined from a 
measure of the dispersion. A widely used statistical tool for 
that is the variance, u2, or the square root of the variance, 
u, normally called the standard deviation. 

Time 

Fig. 2. Measurements process for the computation of sample 
variances. The phase difference, between two oscillators, z ( t ) ,  is 
plotted as a function of time. Here T is the total cycle time and r is 
the averaging time for each measurement. The fractional frequency 
difference Yk is given by vk = z ( t k + r ! - z ( t k l .  

A very specific problem for oscillator characterization 
is that several kinds of variances have been introduced 
by several authors since the early 1960's and thus it is 
necessary to give a clear picture of the relationships (if 
any) between the variances and the spectral densities. 

A. Tnre Variance 

The true variance is a theoretical parameter denoted as 
12(.) and simply defined as: 12(r) =<$>. When y(t) has 
a zero mean, the bracket e > denotes an infinite time aver- 
age made over one sample of y(t). For stationary frequency 
fluctuations around vo , I2 ( T )  decreases from <y2 (t)> for 
T = 0 to 12(r) = 0, for r + CO where fluctuations 
are completely averaged away as shown in curve a of 
Fig. 3. However, despite its mathematical simplicity, the 
true variance is not really useful for experimental purposes 
since it approaches infinity for all real oscillators as shown 
by curve b in Fig. 3. Practical estimators of the time- 
domain stability relying on the sample variance concept 
were introduced in 1966 to avoid the divergence of the true 
variance observed in most sources [5]. 

B. Sample Variance 
The sample variance is a more practical estimate of time- 

domain stability based upon a finite number of N samples 
yk(k = 1-N) than the time variance. Each sample has a 
duration T ,  and the kth sample begins at t k ;  the (k + 1)th 

- 
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Fig. 3. Frequency instability in the time-domain. (a) Square root 
of the true variance for stationary frequency noise. @) Performance 
of practical frequency sources, i.e., reality. 

sample begins at t k + 1  = t k  +T; the dead time between two 
successive samples is then T - r. The quantity T is the 
repetition interval for individual measurements of duration 
r as shown in Fig. 2. The sample variance is defined as 

This quantity is itself a random variable, N being the 
sample size. Its average can be used as a measure of 
frequency stability over a time interval ~ : < a i ( N ,  T, T)>. 

(See [3] for more detailed considerations about the various 
possible definitions of sample variances and their respective 
advantages or limitations-biased or unbiased estimates.) 

C.  Allan Variance 

With the sample variance as defined above, we are faced 
with several possible values for the parameters N and T 
(besides r,  which is the duration over which stability is 
measured). To achieve the goal of recommending a unique 
time-domain measure that can be used unambiguously in 
laboratories all around the world, some choices must be 
made. 

Following the pioneering work of David Allan in 1966 
[5], the IEEE subcommittee on frequency stability recom- 
mended in 1971 to use the average of the variance with 
N = 2 and adjacent samples (that is T = r, or zero dead 
time) [6]. The resulting measure is denoted as 

(9) 
1 
2 o;(r) = - <(& 

and known as the Allan variance, or two-sample variance, 
since pairs of adjacent measurements are grouped together. 
oi ( T) is also a theoretical measure since infinite duration 

is implied in the average denoted as < >. However, it has a 
much greater practical utility than 12(.) since it exists for 
all the spectral density power laws encountered in real oscil- 
lators (Table 1) including flicker frequency noise. This will 
be shown later from the mathematical relationship between 
frequency- and time-domain parameters. Moreover, simple 
experimental estimates may be derived for a;(.) since 
groups of only two measurements are involved. The choice 
of N = 2 in the preferred stability time domain measure is 
really the key feature in the definition of oi(r). Although 

there are no recommended values for the measurement 
bandwidth, fh, it has to be specified with any experimental 
results for comparison purposes (and also because the result 
can be fh-dependent for some kinds of noise.) 

D. Estimates of the Allan Variance 

Experimentally only estimates of o;(r) can be obtained 
from a finite number of samples gk taken over a finite 
duration. Therefore an inherent statistical uncertainty (error 
bars) exists when m values of g k  are used to estimate o,”(r). 
A widely used estimator is: 

. m-1 

This quantity is itself a random variable whose variance 
(the variance of the variance) may be used to calculate 
the error bars on the plot of c~(T) versus 7. This subject 
was treated in great detail by Lesage and Audoin in 1973, 
when they calculated the error bars for Gaussian noises 
characterized by power law spectral densities [ll]. An 
additional treatment of the confidence limits is to be found 
in [21]. For long-term stability (r of the order of days, 
months, or even a year) the size of m is severely limited. 
In any case, m should be stated with any results to avoid 
ambiguity and to allow for meaningful comparisons. 

Estimates of the bias in experimental measurements made 
with dead time have been made by Barnes [12], as shown 
below: 

B2 is the bias function given in [12]. This is of practical 
interest since counting techniques usually have nonzero 
dead time between successive measurements. Estimates of 
the biases caused by unequally spaced data are given by 
Barnes and Allan [25]. Most precision measurement tech- 
niques eliminate the problems of dead time and hence do 
not require these bias functions [20], [24], [42]. Techniques 
for determining oY(7) for an individual oscillator are treated 
in [17], [NI, [21], [23], [29], [44] as well as many of the 
other references. Figure 4 shows the dependence of ay(.) 
on measurement time for the five common power-low noise 
process in the limit that 2TfhT is large compared to 1. 

E. Comments on U,(.) 

The slope of cy(.) versus 7 is virtually the same for 
a = 1 and a = 2. As a consequence oY(r) is not useful 
for distinguishing between these noise types. With both 
noise types, frequency (or phase) fluctuations at f = fh 
dominate o,(T), even for extremely long measurement 
times. Changes in the average frequency over long times 
do not bias the characterization of short-term frequency 
stability as occurs with 12(.). The determination of oy(.) 
is dependent on the noise bandwidth and, in the limit 
27rfhT 5 1, the type of low-pass filter. This is illustrated 
for (Y = 2 in Fig. 5.  c;(T) is a very efficient estimator 
for noise types a = 0, -1, -2 but diverges for a 5 -3. 
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Fig. 4. U',(.) versus r for the five common power-law noise types 
in the limit that 2TfhT is large compared to 1 and an infinitely 
sharp filter is used. Curve a is for random-walk frequency modu- 
lation, Sy(f) = h - ~ f - ~ .  Curve b is for flicker frequency 
modulation, S,(f) = h-lf-'. Curve c is for white frequency modu- 
lation, S,(f) = ho. Curve d is for flicker phase modulation, 
S,(f) = hlf and a bandwidth of 16 Hz. Curve e is for white phase 
modulation, S,(f) = h 2 f 2  and a bandwidth of 16 Hz. h-2 = h-1 = ho 
= hl = h2 = 2 x 10-24. 

Fig. 5. u , ( T )  for white phase modulation (cy = 2) as a function 
of measurement time, T ,  and measurement bandwidth, fh. Curves a, b, and 
c have an infinitely sharp filter with width, fh  = 16 Hz, fh = 0.016 
Hz, f h  = 0.0016 Hz, respectively. Curves d and e have a single 
pole filter width, fh  = 0.016 Hz and f h  = 0.0016 , respectively. 
h2 = 2 x 10-24 

More convergent variances are introduced in F below and 
in Section VIII. 

F. Modified Allan Variance 
The relatively poor discrimination of cy(.) against white 

and flicker phase noise prompted the development of the 
modified Allan variance, mod c ~ ( T ) ,  as shown below, in 
1981 [30], [31]. 

mod c:(nTo) 

- ?42(7) . . . Y 2 n ( 7 )  - Yn(.,,) (12) 

Here the xi's are the time variations measured at intervals 
t o  and ti(.) = -?Ci)/(n~o). See Fig. 6. Ti is the 

Fig. 6. Measurement process for determining xi's used in the determi- 
nation of mod U,(.). 

1.E-09 E- a 

Mod 

I .E-17F  I I I I I I I I I  I I I I I I I I I  I I I l l l l l l  

1 .E+OO Measurement Time (s) l.E+03 

Fig. 7. Mod U , ( T )  versus T for the five common power-law noise 
types in the limit that 2TfhTO is large compared to 1 and an 
infinitely sharp filter is used. Curve a is for random walk frequency 
modulation, S,(f) = h - 2 f - I .  Curve b is for flicker frequency modu- 
lation, S,(f) = L l f -  . Curve c is for white frequency 
modulation, S,(f) = ho. Curve d is for flicker phase modulation, 
S,(f) = hl f and a bandwidth of 16 Hz. Curve e is for white 
phase modulation, S,(f) = h 2 f 2  and a bandwidth of 16 Hz. 
h-2 = h-1 = ho = hl = hz = 2 ~ 1 0 ~ ~ ~ .  SeeFig. 4forthevalues 
of U,(.) for the same noise levels. 

phase averaged over n adjacent measurements of duration 
TO. Thus mod C: ( T )  is proportional to the second difference 
of the phase averaged over a time nT0. Viewed from 
the frequency domain, mod (T;(T) is proportional to the 
first difference of the frequency averaged over n adjacent 
samples. If n = 1 then ( T ~ ( T )  is equal to mod e$(.). 
This measurement process results in an equivalent noise 
bandwidth of fhln when 2nfnro >> 1. Figure 7 shows 
the dependence of mod aY(n70) on measurement time 
nT0 for the five common noise types, in the limit that 
2TfhTO >> 1 [26]-[28], [31], [34]. Figure 8 shows the 
ratio of mod e; (nTO)/c,2 (nq,) versus n. 

G. Comments on mod U,(.) 

Mod ey(nTO) behaves very similarly to ey(nTo) for 
a = 0,-1,-2 and -3. Noise types a = 1 and a = 2 
are easily separated using mod cy (n70). this approach 
is actually a software realization of the variable noise 
bandwidth proposal of [32]. In the presence of noise 
types a 2 1, mod e ( n T 0 )  depends on TO. By way of 
illustration, assume a = 2; then mod a y ( l O n ~ , ~ o )  = 
1/10-1/2 mod cy(ni, 1070). It is therefore necessary to 
specify f h ,  nT0 and n or TO for measurements of 

956 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 7, JULY 1991 



S,(f)=h,fa 

2 1  , , , , , , , , ,  ,\" , , , , ,,,I 
1 2  5 1 0 2  5 1 0 0 2  5 1 m  

0.01 

n, Number of Samples Averaged 

Fig. 8. Ratio of mod a; ( T)' to a, ( T)' as a function of n, the number 
of points averaged to obtain mod ay(.) in the limit that 2 7 r f h ~ o  is much 
larger than 1. The measurement time T = n.0, where TO is the minimum 
data interval. 

mod o , ( ~ T o )  whereas only fh  and  TO are required for 
a,(nq). The effect of noise types (Y = 1 and 2 on the 
determination of average frequency or time in practical 
sources can be eliminated by making n large enough 
or equivalently, TO small enough. Under this condition, 
mod a,(n~o) becomes independent of n for n greater than 
some minimum value which depends on the ratio of a = 1 
and 2 noise to (Y = -1, - 2  and -3 noise. This extremely 
important result, first expounded by Bernier [34] in 1987, 
is now used to improve the determination of time interval 
and/or frequency in a number of precision applications. 

VII. CALCULATION OF U:(.) AND mod U ; ( T )  FROM THE 
FOURIER FREQUENCY DOMAIN 

Cutler and Searle derived the calculation of ay(.) from 
S,(f) [41: 

Mod ay(.) can be calculated from the Fourier frequency 
domain using [21], [26]-[28], [31], [33] 

(14) 

The integrals in (13) and (14) can be calculated analytically 
for a number of simple cases [26], [31]; however, the 
general case is most easily evaluated numerically [27], [28]. 
For both integrals it is necessary to specify the value and 
shape of the low-pass filter for noise types with CY > 0. 
The most common shapes are the infinitely sharp low-pass 
filter with cut off frequency f h ,  and a single pole filter of 
equivalent noise bandwidth f h .  The results for a = 2 are 
particularly dependent on the shape of the low-pass filter. 
See Figs. 4-9. 

More generally, any variance is related to the spectral 
density S, (f)  by an integral mathematical relationship 
(Section VIII, (20)) wherein the transfer function H (  f )  
is a Fourier transform of a stepwise function associated 
with the measurement response in the time domain [3]. It 
can be shown, and this is the key point, that the general 
shape, degree of selectivity, and the behavior at very 
low Fourier frequencies of the transfer function give a 
good understanding of the specific properties of the related 
variance. The transfer function approach has also been used 
to develop new types of experimental measurement systems 
as will be shown in Section VIII. Much of this development 
has been made possible by recent advances in high speed 
digital processing and microprocessors. 

A .  Application to Sinusoidal FM: 

Even the best sources are frequency modulated by un- 
wanted sinusoidal signals. Although the above stability 
measures were developed to deal with random processes, 
sinusoidal instabilities do have an influence on them. 

1) Fourier Frequency Domain: If 

AVO 
y ( t )  = - sin(% fmt) 

VO 

then the spectral density S,(f) contains a discrete line at 
the modulating frequency f,: 

where 6 is the Dirac delta function. Looking for discrete 
lines in spectral densities provides a convenient and pow- 
erful means to identify periodic variations. Their presence 
usually does not interfere with the identification of the 
slopes due to random noise. The substitution of (16) in 
(13) yields 

Substitution .of (16) into (14) yields 
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Thus the effect of sinusoidal FM in both cases is 0 when 
T equals the modulation period T, = f;' or one of 
its multiples, since the modulating signal is completely 
averaged away. 

The largest value of mod o,(T) due to sinusoidial FM 
occurs when T is near T,/2 or one of its odd multiples 
[9]. Mod o , ( ~ T o )  falls n times faster than a,(n~o) for 
R f m n q  >> R for sinusoidal FM. As a practical conse- 
quence, when caution has not been exercised about the 
relation between T, and the experimental values of 7, some 
scatter of the data results because of the oscillating behavior 
of (17) and (18). This scatter is added to the contribution 
due to the random noise(s) present as illustrated in Fig. 9. 
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Fig. 9. Mod uy(.) versus T for the case of white phase noise (S,(f) = 4 x 10-’9f2,  fh = 1,  and frequency modulation with sy(f) = 
3 x 10-186(f - 0.125). 

B. Application to Linear Frequency Drift: 

Equations (13) and (14) are not useful for evaluating 
c$(T) when linear frequency drift exists (i.e., y(t) = dit) 
since no tractable model seems to exist for Sy(f) in this 
case. 

Direct calculation in the time domain from (10) and (12) 
yields 

dl di 
Jz Jz oY(7) = -T and mod oY(7) = - T .  (19) 

Thus, linear frequency drift yields a T + ~  law for both ~ ~ ( 7 )  

and mod ay(t). 

VIII. OTHER MEASURES OF FREQUENCY STABILITY 

A number of other measures have been proposed and 
used during the past 20 years. Each one possesses some 
advantages and limitations compared to the well-established 
ones. The Hadamard variance [13] has been developed for 
making high resolution spectral analysis of y(t) from mea- 
surements of gk; that is, the frequency domain parameter 
Sy(f) is estimated from data provided by digital counters. 
The high-pass variance [14] has been developed through the 
“transfer function approach” wherein a variance is defined 
by the transfer function H ( f )  appearing in the general 
relationship 

variance has also been introduced [ 141 to solve the problem 
of separating CY = 1 form CY = 2, and yields a slope of 7-l 

for cr = 1 and T - ~ / ~  for CY = 2. A “filtered Allan variance” 
has also been used to separate the various noise types 
[29]. A modified three-adjacent-sample variance denoted 
as Cy(.) has also been proposed [3] in the framework 
of a more general finite-time frequency control method 
[46]. The new parameter, whose experimental estimation by 
counting techniques is not very complicated, has the same 
general behavior as oy ( T )  for power-law spectral densities, 
except that it converges for both a = -3 and CY = -4 
noise types. cy ( T )  varies as T for CY = 2 and T ~ / ~  for 
a = 4 noise types. 

Another point of view was proposed in [47] which 
may appear more useful than cy(.) for certain kinds of 
prediction problems. It relies on a two-sample variance 
(with nonadjacent samples) which is studied versus T for 
a fixed value of 7 (not versus T as in the other measures). 
The structure function approach [15], [16] plays a unifying 
role in the sense that most of the time-domain parameters 
appear as particular cases of the general structure function 
concept. This concept finds application in the determination 
of polynomial frequency drifts. A comparison of these and 
other approaches can be found in [3], [lo], [13]-[16], 
[33] - [44]. 

( 2 ~ )  IX. CONCLUSION 
We have briefly described some of the developments 

and features of frequency stability measures, both in the 
Fourier frequency domain and in the time-domain, Spectral 
densities play a key role in the sense that all the time- 

It can be shown that an estimate of the Allan variance 
is provided by high-pass filtering the demodulated phase 
noise, without the need for counting techniques. A bandpass 
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domain measures may be deduced from them, whereas 
general inversion of the integral formulas is usually very 
difficult if not impossible. It has been shown that the 
concept of the transfer function allows one to understand 
clearly the advantages and limitations of each parameter. 

The primary focus has been the Allan or two sample 
variance and the modified Allan variance because they 
are by far the most commonly used. They provide useful 
well-behaved measures for all random noise types found 
in precision oscillators and equipment used in signal pro- 
cessing. They are, however, general purpose measures and 
other measures may be more useful in specific cases [3]. 
Complete mathematical descriptions of these measures can 
be found in the included references. The contribution of 
many individuals must be recognized together with the 
initiating and coordinating role of organizations of NASA, 
NBS (now NIST), IEEE, and CCIR. 
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