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Abstract 

The mineral magnetite (Fe3O4) undergoes a complex structural distortion and becomes electrically insulating at 

temperatures less than 125 kelvin. Verwey proposed in 1939 that this transition is driven by a charge ordering of Fe
2+

 

and Fe
3+

 ions
1
, but the ground state of the low-temperature phase has remained contentious

2, 3
 because twinning of 

crystal domains hampers diffraction studies of the structure
4
. Recent powder diffraction refinements

5, 6, 7
 and resonant 

X-ray studies
8, 9, 10, 11, 12

 have led to proposals of a variety of charge-ordered and bond-dimerized ground-state models
13, 

14, 15, 16, 17, 18, 19
. Here we report the full low-temperature superstructure of magnetite, determined by high-energy x-ray 

diffraction from an almost single-domain, 40-micrometre grain, and identify the emergent order. The acentric structure 

is described by a superposition of 168 atomic displacement waves (frozen phonon modes), all with amplitude 0.24 Å. 

Distortions of the FeO6 octahedra show that Verwey’s hypothesis is correct to a first approximation and that the 

charge and Fe
2+

 orbital order are consistent with a recent prediction
17

. However, anomalous shortening of some Fe–Fe 

distances suggests that the localized electrons are distributed over linear three-Fe-site units, which we call ‘trimerons’. 

The charge order and three-site distortions induce substantial off-centre atomic displacements and couple the resulting 

large electrical polarization to the magnetization. Trimerons may be important quasiparticles in magnetite above the 

Verwey transition and in other transition metal oxides. 

 

Main text 

The cubic spinel type structure of magnetite distorts to a monoclinic superstructure with Cc space group symmetry 

below the TV ≈ 125 K Verwey transition
4, 20

. Cc domains
21

 ~1 μm in size are formed in up to 24 orientations within 

magnetite crystals, and microtwinning of these domains severely hampers diffraction studies. We have investigated 

the use of small magnetite grains as potential single-domain crystals for high-energy X-ray structure analysis (Fig. 1). 

In the smallest and least-twinned grain of many that we investigated, 89% of the scattering was from a single 

orientation and 11% was from a secondary domain (Fig. 1a). The Cc crystal structure was determined using 91,433 

symmetry-unique Bragg reflections from this 40-μm grain (see Methods Summary and Methods section in 

Supplementary Information for details of the structure and derived quantities used below). No further superstructure or 

lowering of space group symmetry below Cc was evident in the diffraction data. 

 

Figure 1. Reciprocal lattice synchrotron X-ray diffraction intensities for magnetite microcrystal grains at 90 K. 

Sections of (h k l) intensities in the h = 50 plane are shown. a, Intensities for an approximately spherical grain of 
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diameter 40 μm, which was used to determine the crystal structure. The microcrystal is almost single domain; faint 

spots to the right of the main intensities reveal the secondary twin. b, Intensities from an irregular grain of dimension 

~100 μm showing multiple twin domains. 

 

The low-temperature Cc crystal structure of magnetite has 168 variable (x, y, z) atomic coordinates, of which 166 are 

independent and two are constrained to fix the cell origin. The coordinates are equivalently described by the same 

number of amplitudes of frozen displacement waves (phonons), all with values q < 0.24 Å, as shown graphically in 

Fig. 2. Only one of these (an O-site Γ-mode) is present in the high-temperature cubic structure and the remainder all 

freeze at the Verwey transition. The three largest-amplitude modes have Δ5 symmetry and are acentric, heralding the 

large off-centre structural distortions described later, but the smoothly varying distribution of amplitudes shows that 

many centric and acentric Δ, X and W modes contribute significantly. Hence, the superstructure is not approximated 

well by a few frozen phonons, and even attempts to describe the important features with up to 100 lattice modes were 

unsuccessful. 

 

 

 

Magnetite has an AB2O4 spinel structure in which Fe
3+

 occupies the tetrahedrally coordinated A cation sites, and a 1:1 

order of Fe
2+

 and Fe
3+

 is expected over the 16 inequivalent octahedral B sites of the Cc superstructure in the Verwey 

hypothesis. Each B-site FeO6 octahedron has an irregular distortion from which the amplitudes of radial expansion 

(breathing) local modes (QRad) and tetragonal Jahn–Teller (QJT) local modes were extracted because these are sensitive 

to charge-ordering and associated orbital-ordering displacements. For QJT we find a bimodal Verwey-type distribution 

← Figure 2. The 168 displacement amplitudes 

of the low-temperature Cc magnetite 

structure. Main panel: centric and acentric mode 

amplitudes, q, which have estimated standard 

deviations <0.003 Å. Top panel: distribution of 

amplitudes. A, B and O atom modes of the cubic 

Fd  m AB2O4 spinel type structure are coloured 

blue, green and red, respectively. The 

displacement waves have periodicities 

corresponding to the Γ (0, 0, 0), Δ (0, 1/2, 0), X 

(0, 1, 0) and W (1/2, 1, 0) points in the Brillouin 

zone of the cubic structure. Many acentric and 

centric Δ, X and W modes involving the B and O 

sites contribute significantly to the overall 

superstructure, but the Γ modes are less 

important. 
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(Fig. 3a) in which eight near-zero values are consistent with Fe
3+

, which is Jahn–Teller inactive as the high-spin 3d
5
 

electron configuration is non-degenerate. The other eight QJTvalues are negative as expected for 3d
6
 Fe

2+
, where 

tetragonal Jahn–Teller compression removes the degeneracy created by the extra electron occupying one of the three 

t2g symmetry d orbitals (dxy, dxz or dyz). In addition, the plot of QRad (the increase in octahedral average Fe–O bond 

distance) against QJT shows that the eight Jahn–Teller-distorted B sites are also the eight most expanded, consistent 

with Fe
2+

, and that the eight undistorted sites are the least expanded, as expected for Fe
3+

. The bimodal distribution of 

tetragonal distortions and their correlation with the radial amplitudes demonstrate experimentally that Verwey’s Fe
2+

–

Fe
3+

 ordering hypothesis is correct to a useful first approximation. However, the distribution of QRad and equivalent 

bond valence sum (BVS) estimates of formal Fe charge (Fig. 3a) does not seem bimodal, indicating the more complex 

electronic order described later. 

 

 

Figure 3. Local distortion distributions that reveal electronic order in the low-temperature magnetite structure. 

(a) Plot of local distortions for the 16 distinct FeO6 octahedra. QRad and QJT are the amplitudes of the radial (breathing) 

and tetragonal Jahn–Teller distortions. Their estimated standard deviations of <0.002 Å are smaller than the symbols 

shown. QRad is the difference between the average Fe–O bond distance in an FeO6 octahedron and the average over all 

octahedra. The points fall into two groups describing characteristic local distortions for Fe
2+

 and Fe
3+

 (blue and yellow 

bars and symbols, respectively). The distributions of the two modes (inside top and right edges of plot, with scales top 

right) show that there is bimodal segregation of the QJT amplitudes but that the QRad dispersion is more continuous. 

BVS estimates of formal Fe charge are shown above the QRad distribution. (b), Distribution of the 48 distinct Fe–Fe 
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distances between neighbouring B sites, relative to the average DBB ( = 2.967 Å), coloured according to the Fe charge 

states. The 16 distances from the eight Fe
2+

 sites to their two neighbours perpendicular to the local orbital ordering 

axis (Fe
3+

 in 15 cases and Fe
2+

 once) are hatched. The anomalous shortening of most of these distances indicates the 

linear three-site (trimeron) distortions as shown in Fig. 4c. 

 

The average BVS formal oxidation states for the eight Fe
2+

- and Fe
3+

-like B sites in the Ccmagnetite structure are 2.47 

and 2.75, respectively, consistent with an earlier partial refinement
5, 6

and structural results for other charge-ordered 

transition metal oxides
22

. The Fe
2+

–Fe
3+

arrangement (Fig. 4a) differs from the original prediction of Verwey
23

, but the 

charge and Fe
2+

orbital ordering (Fig. 4b) are in agreement with a recent model based on electronic structure 

calculations
17

. The arrangement is close to a centric structure in which the Fe
2+

 states form chains of corner-linked 

(Fe
2+

)3 triangles, but with a neighbouring Fe
2+

–Fe
3+

 pair exchanged at every fourth triangle as shown (Fig. 4a). 

Anderson’s condition
24

 that each tetrahedron of four neighbouring B sites should contain two Fe
2+

 ions is only 

satisfied in a quarter of the tetrahedra. The complexity of the charge and orbital ordering may be explained in part by 

the distribution of Jahn–Teller distortions. The octahedral compressions of the 16 Fe
2+

 sites in the basic cell act 

parallel to the a, b, and c axes of the high-temperature cubic lattice in a 5:5:6 ratio that minimizes strain in the highly 

connected spinel lattice. More-symmetric charge and orbital orderings tend to have less equal ratios. The small 

anisotropy arising from excess distortion in the c direction may account for the change in magnetic easy-axis from 

cubic [111] to [001] at temperatures less thanTV. 

 

Figure 4. Charge, orbital and trimeron order in the low-temperature magnetite structure. (a) Distribution of 

Fe
2+

 and Fe
3+

 states (blue and yellow spheres, respectively) in the first-approximation Verwey-type model, shown in 
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the √2a × √2a × 2a Cc supercell (a is the high-temperature cubic-cell parameter). Nearest-neighbour Fe
2+

–Fe
2+

 

connections (blue lines) describe irregular chains, parallel to thea axis, derived from a more symmetric, centric 

arrangement of corner-linked triangles by exchange of Fe
2+

–Fe
3+

 pairs (one pair indicated). (b) Jahn–Teller distortions 

arising from orbital order within a single Fe
2+

 chain shown as long and short bonds (grey and blue lines, respectively) 

to oxygen atoms (red spheres). (c) Coupled distribution of a minority-spin electron (with approximate atomic 

populations indicated by the sizes of blue t2g orbitals) and associated atomic displacements (purple arrows) within a 

linear three-Fe-site (trimeron) unit. Orbital order at the central Fe
2+

 site (blue) localizes the minority-spin electron in 

one of the t2g orbitals and elongates the four Fe–O bonds perpendicular to the local Jahn–Teller axis. Weak bonding 

interactions transfer minority-spin density into coplanar t2g orbitals at two neighbouring B sites (shown as yellow Fe
3+

) 

and shorten the Fe–Fe distances. The minority-spin electron density is approximated by a scalene ellipsoid 

encompassing the three Fe sites. Other B-site Fe
2+

 or Fe
3+

neighbours (black spheres) do not participate. (d) Trimeron 

distribution in the low-temperature magnetite structure, following the experimentally observed distortions, with Fe
2+

 

and Fe
3+

 states shown as blue and yellow spheres, respectively, and trimeron ellipsoids as in c. The trimerons are 

mainly end-linked through Fe
3+

 ions, but one trimeron is terminated by an Fe
2+

 ion (circled). Some Fe
3+

 sites do not 

participate in any trimerons. 

 

Edge sharing of FeO6 octahedra allows direct B–B electronic interactions within linear chains that extend in six 

directions. The nearest-neighbour B–B distances, DBB, are all equivalent in the cubic magnetite structure, but 

DBB(Fe
2+

–Fe
3+

), the nearest-neighbour Fe
2+

–Fe
3+

 distance, in particular shows a wide distribution in the Verwey phase 

(Fig. 3b). Electrostatic repulsions tend to disperse the distance values such that DBB(Fe
2+

–Fe
2+

) < DBB(Fe
2+

–

Fe
3+

) < DBB(Fe
3+

–Fe
3+

), so the observed tail of anomalously short Fe
2+

–Fe
3+

 distances is not expected in a Verwey 

model and indicates magnetically driven B–B bonding by the additional t2g electrons. (The five parallel unpaired d-

electron spins at all B sites are ferromagnetically ordered below the Curie temperature (858 K), so only the additional 

electron from each 3d
6
 Fe

2+
 state has an opposed, minority, spin and may be delocalized between B sites through 

bonding.) Chains of alternating short and long B–B distances are predicted in bond-dimerized models
13, 16,19

, but are 

not observed in our structure. Instead, the two B–B distances perpendicular to the local orbital-ordering axis at each of 

the eight Fe
2+

 positions both tend to be shortened: this is the case for 14 of these 16 distances (Fig. 3b, hatched). This 

suggests that minority-spin t2g electron density is significantly delocalized from an Fe
2+

 donor onto two adjacent B-site 

acceptors, which are usually Fe
3+

 sites. This single charge, delocalized over three B sites with associated 

displacements of the two acceptor B sites and surrounding oxygen atoms (Fig. 4c), corresponds to a highly structured 

small polaron that may be described as a ‘trimeron’, by analogy with dimeron quasiparticles in La1−xCaxMnO3 (ref. 

25). Fifteen of the 16 trimeron acceptor sites are Fe
3+

 ions, but one Fe
2+

 (Fig. 4d, circled) accepts into a t2g orbital that 

is orthogonal to its own trimeron. Trimeron distortions are intrinsically symmetric (having DBB = 2.832 and 2.848 Å in 

the most regular environment of the Cc structure, where DBB = 2.967 Å on average), but asymmetric connectivity 

leads to off-centre distortions and long B–B bonds in 2 of 16 cases. 

The linear three-site (trimeron) distortions (Fig. 4d) significantly perturb charge order in the Ccmagnetite structure and 

couple the magnetism to the complex overall distortion. Only two B ions are available per minority-spin electron, so 

trimeron units are constrained to share sites. End-sharing connections with angles of 60°, 120° and 180° are possible, 

but 180° linkages are apparently avoided to maximize charge transfer because two or three different t2g orbitals are 
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used by an Fe
3+

ion participating in two or three trimerons. This is analogous to the formation of two or three shortcis-

bonds in some d
0
 transition metal oxides and oxynitrides

26
, and creates off-centre Fe

3+
displacements that contribute 

strongly to the acentric lattice modes and electric polarization. High connectivity seems favourable because four of the 

eight Fe
3+

 sites participate in the maximum of three trimerons. The orderings of linear three-site, one-electron units 

along the infinite B chains correspond to charge density waves with wavevector magnitude qc = 1/N for a repeat 

sequence of one trimeron for every N B sites. The structural average is qc = 1/6 but only chains with qc = 0, 1/8 and 

1/4 are present, in a 1:6:5 ratio. The unique qc = 0 chain contains only Fe
2+

 ions (Fig. 4a, b) but their three-site 

distortions are always within other chains. 

The linear three-site distortions we attribute to trimerons also account for the non-Verwey distribution of radial 

amplitudes (QRad) and BVS values for the B-site FeO6 octahedra (Fig. 3a). Each Fe
2+

 ion donates minority-spin t2g 

electron density to two B-site acceptors within a trimeron (Fig. 4c), so the eight Fe
2+

-like sites have a narrow QRad 

distribution and BVS ≈ 2.4. However, Fe
3+

ions are acceptors in varying numbers of trimerons. Two Fe
3+

 sites do not 

participate in any trimerons and so have the two lowest QRad values and the highest B-site BVS values, ~3.0 (Fig. 3a). 

The other six Fe
3+

 sites are acceptors for one to three trimerons and thus have a spread of higher QRad values and lower 

valences with BVS ≈ 2.6–2.8. Charge transfer within trimerons tends to equalize the electron density across B sites: in 

the limit of maximum donor-to-acceptor transfers (of 0.2e, where e is the electron charge), an Fe
3+

 ion participating in 

three trimerons has the same formal charge, +2.4e, as the Fe
2+

 donor sites. However, the two states are still 

distinguished by their minority-spin t2g distributions, as the former site has populations dxy
0.2

dxz
0.2

dyz
0.2

 that preserve the 

high symmetry of Fe
3+

, whereas the latter has a distribution such as dxy
0.6

dxz
0
dyz

0
, retaining the orbital order of Fe

2+
. 

This justifies the use of formal valence states to describe charge-ordered structures even when the apparent charge 

separations are small, as here in magnetite. 

The discovery of multiferroism in charge-ordered LuFe2O4 (ref. 27) has led to recent interest in the coupling of 

magnetism and the ferroelectric polarization expected in the acentric Cc magnetite superstructure
16, 17

. Measured 

electric polarization values of P ≈ 0.05 C m
−2

 for magnetite crystals and thin films agree with estimates from previous 

structural models
17

, but an Fe
2+

–Fe
3+

–O
2−

 point-charge calculation for our structure gives a polarization larger by an 

order of magnitude (Pa = 0.118 C m
−2

, Pc = 0.405 C m
−2

; P = 0.422 C m
−2

; where Pa and Pc are the respective 

magnitudes of the polarization vector components parallel to the crystallographic a and c axes and P is the magnitude 

of the resultant polarisation vector). The same calculation with average Fe
2.5+

 B-site charges gives similar results (Pa = 

0.080 C m
−2

, Pc = 0.346 C m
−2

; P = 0.355 C m
−2

), showing that atomic displacements resulting from charge order and 

three-site distortions are responsible for most of the polarization, with exchange of Fe
2+

–Fe
3+

 pairs (Fig. 4a) 

contributing only 16% of the total. The large Pc component, parallel to the magnetic easy axis, shows that a substantial 

magnetoelectric coupling is expected in single magnetite domains. 

Lattice effects are significant in the cubic phase of magnetite as diffuse scattering is observed above the Verwey 

transition,
12, 28

 and the electrical conductivity rises continuously to a maximum at ~3TV. Hence, trimeron fluctuations 

may be significant quasiparticles in the cubic phase. The expected entropy change at the Verwey transition is 

conventionally assumed to be Rln4 = 1.4R (R is the molar gas constant) for full disorder of Fe
2+

/Fe
3+

 charges, but our 

structure shows that this change should be Rln12 = 2.5R for additional randomisation of the triply-degenerate Fe
2+

 

orbital states. Hence the observed entropy change of ~0.7R corresponds to only 30% of the possible disorder at TV.
29
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Previous estimates have used Anderson or other charge configurations within tetrahedra of four B sites, but trimeron-

based models may provide alternative predictions. An approximate calculation based on the above local connectivity 

of Fe
3+

 sites reduces the predicted transition entropy from 2.5R to 2.1R (or from 1.4R to 1.0R if orbital states are 

neglected) – these estimates are still greater than above the observed value and suggest that trimeron or other 

correlations persist above TV. 

In conclusion, we have determined the low temperature structure of magnetite to high experimental precision from 

high energy x-ray structure analysis of a small, almost single-domain, magnetite grain. Many frozen lattice modes 

contribute to the Cc superstructure including substantial acentric amplitudes from which a large electrical polarisation 

is predicted. Verwey’s charge ordering hypothesis is correct to a useful first approximation, but analysis of the Fe-Fe 

distances indicates that the minority spin Fe
2+

 electrons are delocalised over linear three-site (trimeron) units. 

Selforganisation of the charge and orbital states couples the spin order of this eponymous magnetic material to the 

complex Verwey distortion. Trimerons may be significant quasiparticles above the Verwey transition and may also be 

relevant to other transition metal oxides such as superconducting LiTi2O4 spinel. Finally, we note that a full ab initio 

simulation of the low-temperature magnetite structure starting from calculations on the cubic state presents a future 

challenge to improve understanding of the Verwey phase, now that the experimental structure has been determined. 

 

Methods Summary 

Grains from a highly stoichiometric powder used in previous studies
5, 6, 8

 were placed in a 100-μm, focused 

monochromatic beam (wavelength, 0.16653(1) Å; estimated standard deviation shown in parenthesis) on the ID11 

diffractometer at ESRF, Grenoble. Multiple scattering and extinction problems were reduced by using small 

crystallites and a high X-ray energy (74 keV), which also gave access to an abundance of diffraction peaks at very 

high momentum transfer and reduced absorption effects. Crystals were aligned and de-twinned using a permanent 

magnet (producing a field of approximately 0.1 T at the sample), and were verified as being cubic single domains at 

130 K before cooling through the Verwey transition to 90 K. 

The grain used for structure determination was approximately spherical with diameter ~40 μm. We used ω-scans with 

varying exposure times to increase the dynamic range of the data from the charge-coupled-device detector (Frelon2K 

camera) and these were performed at azimuthal anglesφ and φ + 180° to improve data redundancy and test for multiple 

scattering. Reciprocal lattice sections (Fig. 1a) were reconstructed using local software. Small-box integrations were 

used to identify the orientation of the two observed domains, and large-box integration was performed to encompass 

intensity from both domains and allow structure refinement as a pseudo-merohedral twin. 

2,000 starting models were generated by applying random atomic displacements to the high-temperature structure and 

were optimized by least-squares refinement. A global minimum at residual R[F
2
 > 4σ] = 4.99% (where F and σ are the 

observed magnitude and standard deviation of a structure factor) was observed most frequently (292 times), in 

addition to local refinement minima (R[F
2
 > 4σ] ≥ 5.88%). The final refinement of the global minimum model used 

independent anisotropic thermal parameters for all atoms and all data to a resolution of d ≥ 0.3 Å, giving R 

valuesR[F
2
 > 4σ] = 3.40%, R[F

2
] = 5.18% and weighted residual wR2 = 6.96%. Full crystallographic information and 

details of the analysis software are given in Supplementary Information.  
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