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Preface

The basic concepts of type theory are fundamental to computer science, logic
and mathematics. Indeed, the language of type theory connects these regions
of science. It plays a role in computing and information science akin to that of
set theory in pure mathematics.

There are many excellent accounts of the basic ideas of type theory, especially
at the interface of computer science and logic — specifically, in the literature of
programming languages, semantics, formal methods and automated reasoning.
Most of these are very technical, dense with formulas, inference rules, and com-
putation rules. Here we follow the example of the mathematician Paul Halmos,
who in 1960 wrote a 104-page book called Näıve Set Theory intended to make
the subject accessible to practicing mathematicians. His book served many
generations well.

This article follows the spirit of Halmos’ book and introduces type theory
without recourse to precise axioms and inference rules, and with a minimum of
formalism. I start by paraphrasing the preface to Halmos’ book. The sections
of this article follow his chapters closely.

Every computer scientist agrees that every computer scientist must know
some type theory; the disagreement begins in trying to decide how much is
some. This article contains my partial answer to that question. The purpose
of the article is to tell the beginning student of advanced computer science the
basic type theoretic facts of life, and to do so with a minimum of philosophical
discourse and logical formalism. The point throughout is that of a prospective
computer scientist eager to study programming languages, or database systems,
or computational complexity theory, or distributed systems or information dis-
covery.

In type theory, “näıve” and “formal” are contrasting words. The present
treatment might best be described as informal type theory from a näıve point
of view. The concepts are very general and very abstract; therefore they may

∗This work was supported by the DoD Multidisciplinary University Research Initiative
(MURI) program administered by the Office of Naval Research, under Grant N00014-01-1-
0765.

1
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take some getting used to. It is a mathematical truism, however, that the more
generally a theorem applies, the less deep it is. The student’s task in learning
type theory is to steep himself or herself in unfamiliar but essentially shallow
generalities until they become so familiar that they can be used with almost no
conscious effort.

Type theory has been well exposited in articles by N. G. de Bruijn and the
Automath group; the writings of Per Martin-Löf, the originator of many of the
basic ideas; the writings of Jean-Yves Girard, another originator; the writings of
the Coq group, the Cornell group, and the Gothenberg group; and the writings
of others who have collectively expanded and applied type theory.

What is new in this account is treatment of classes and computational com-
plexity theory along lines that seem very natural. This approach to complexity
theory raises many new questions as can be seen by comparison to the lectures
of Niel Jones at the summer school.
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1 Types and equality

Section 1 of Näıve Set Theory notes that the book will not define sets. Instead
an intuitive idea (perhaps erroneous) will be delineated by saying what can be
correctly done with sets. Halmos notes already on page one that for the purposes
of mathematics one can assume that the only members of sets are other sets. It
is believed that all mathematical concepts can be coded as sets. This simplifying
approach makes set theory superficially very different from type theory.

Likewise, we delineate an intuition (possibly erroneous) about types: that
intuition might be acquired from programming languages or databases or from
set theory. We explain what can be correctly done with types, and how they
are used.

Beginning students of computer science might believe that the only members
of types need to be bits since all implementations ultimately reduce any data to
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bits. But this level of abstraction is too low to allow a good mathematical theory.
The right abstraction is at the “user level” where distinctions are made between
numbers, characters, booleans and other basic kinds of data. Type theory starts
in the middle, axiomatizing the user-level building blocks for computation and
information. From these it is possible to define realizations as bits — going
“downward” to the machine — and to define abstractions to classes, going
“upward” to systems.

Elements

Types are collections of elements, possibly empty. Elements are the data. When
a type is defined, the structure of the elements is specified. A type definition
says how to construct elements and how to take them apart. The basic way to
do this is to provide a construction pattern. On top of these, a more abstract
characterization can then be given in terms of operations called constructors
and destructors. But in order to define these computationally, we need at least
one concrete symbolic representation of the basic data. The representation must
be concrete like bits but general enough to naturally describe the objects we
manipulate mentally when we calculate.

The structure of data in type theory is given by abstract syntax. This follows
in the tradition of Lisp with its S-expressions as the basic data. To define a
type, we specify the form of its data elements. To say that we have a data
element is precisely to say that we have it in a specific predetermined format.
This is what is critical about all implementations of data types: we must know
the exact format. We call this exact format the canonical form of the data. To
have an element is to have access to its canonical form.

Let’s illustrate these ideas for the type of bits. The data elements we nor-
mally have in mind are 0 and 1, but let us analyze what this choice means. We
could also think of bits as boolean values; then we might use true and false. We
might prefer the constants of some programming language such as 0B, 1B.

The notion we have in mind is that there are two distinct symbols that
represent the bits, say 0, 1, and a bit is formed from them. We can say that
bit{0}, bit{1} are the data formats, or 0B, 1B are.

We intend that there are precisely two bits, given in distinct data formats.
To say this precisely we need a criterion for when two canonical data elements
are equal. For instance, we need to agree that we are using bit{0}, not 0B,
or agree that bit{0} and 0B are equal. Defining a type means settling these
matters.

Let us agree that bit{0} and bit{1} are the data elements formed from the dis-
tinct symbols 0 and 1. The only equalities are bit{0}=bit{0} and bit{1}=bit{1}.
These are required since equality must be an equivalence relation — hence re-
flexive. How do we say that bit{0}6=bit{1}?

The answer comes from understanding what it means to take the data el-
ements apart or use them. Key to our notion of the type is that 0 and 1 are
distinct characters. This is part of the type definition process, and moreover
we mean that we can effectively distinguish the two symbols. For example, the
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operation to check for equality of bits could be to access the parts inside {}
and compare them. This depends on our presumed ability to distinguish these
characters. We can make the computation more abstract by creating a compu-
tational form inside the type theory rather than relying on our computational
intuition about symbols so directly.

The way we accomplish the abstraction is to postulate an effective operation
on the data formats. The operation is to decide whether the data is bit{0}
or bit{1}. We represent this operation by a computation rule on a syntactic
form created explicitly to make decisions. Let us call the form a conditional
expression written as

if b then s else t fi.

The only meaning given to the form at this stage is in terms of the computation
rules.

if bit{0} then s else t fi reduces to s
if bit{1} then s else t fi reduces to t

With this form we can distinguish bit{0} and bit{1} as long as we can dis-
tinguish anything. That is, suppose we know that s6=t. Then we can conclude
that bit{0}6=bit{1} as long as if-then-else-fi respects equality. That is, e1 = e2

should guarantee that

if e1 then s else t fi = if e2 then s else t fi.

Given this, if bit{0}=bit{1}, then s=t. Let’s take 0 for s and 1 for t. Then
since 0 6=1 as characters, bit{0}6=bit{1}.

Why don’t we just postulate that bit{0}6=bit{1}? One reason is that this
can be derived from the more fundamental computational fact about if-then-
else-fi. This computational fact must be expressed one way or another. We’ll
see later that a second reason arises when we analyze what it means to know a
proposition; knowing 0 6=1 is a special case.

Equality

In a sense the equality relation defines the type. We can see this clearly in
the case of examples such as the integers with respect to different equalities.
Recall that “the integers modulo k,” Zk, are defined in terms of this equivalence
relation, mod(k), defined

x = y mod(k) iff (x− y) = k ·m for some m.

Z2 equates all even numbers, and in set theory we think of Z2 as the two
equivalence classes (or residue classes)

{0,±2,±4, . . .} and {±1,±3,±5, . . .}.
It is easy to prove that x = y mod(k) is an equivalence relation. What

makes Zk so interesting is that these equivalence relations are also congruences
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on the algebraic structure of Z with respect to addition (+), subtraction (−),
and multiplication (∗).

In type theory we do not use equivalence classes to define Zk. Instead we
define Zk to be Z with a new equality relation. We say

Zk == Z//mod(k).

The official syntax is

Zk == quotient(Z; x, y.x = y mod(k)).

This syntax treats x, y.x + y mod(k) as a binding construct. The binding
variables x and y have as scope the expression following the dot. In general, if
A is a type and E is an equivalence relation on A, then A//E is a new type
such that x = y in A//E iff xEy.

Recall that an equivalence relation written xEy instead of the usual relation
notation E(x, y) satisfies:

1. xEx reflexivity
2. xEy implies yEx commutativity
3. xEy and yEz implies xEz transitivity

The official syntax is quotient(A; x, y. xEy).
These types, A//E, are called quotient types, and they reveal quite clearly

the fact that a type is characterized by its equality. We see that Z and Z2 have
the same elements but different equalities.

We extend the notion of membership from the canonical data to any expres-
sion in this way. If expression a′ reduces to expression a, and a is a canonical
element of A, then a′ is an element of A by definition. For example, if a ∈ A,
then if bit{0} then a else b fi belongs to A as well.

If A is a type, and if a, b are elements of A, then a = b in A denotes the
equality on A. We require that equality respect computation. If a ∈ A and a′

reduces to a, then a′ = a in A.
In set theory the membership proposition, “x is a member of y,” is written

x ∈ y. This proposition is specified axiomatically. It is not presented as a
relation defined on the collection of all sets. Because x ∈ y is a proposition, it
makes sense to talk about not x ∈ y, symbolically ¬(x ∈ y) or x /∈ y.

In type theory, membership is not a proposition and not a relation on a
predefined collection of all objects that divides objects into types. We write
a inA to mean that a is an object of type A; this is a basic judgment. It tells us
what the form of object a is. If you like, A is a specification for how to build a
data object of type A. To judge a in A is to judge that indeed a is constructed
in this way.

It does not make sense to regard a in B as a proposition; for instance, it is
not clear what the negation of a in B would mean. To write a in B we must
first know that a is an object. So first we would need to know a in A for some
type A. That will establish what a is. Then if B is a type, we can ask whether
elements of A are indeed also elements of B.
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We could define a relative membership relation which is a proposition, say
x ∈ B wrt A, read “x belongs to B with respect to A.” This means that given
x is of type A, this relation is true exactly when x is also in the type B. We will
have little occasion to use this predicate except as a comparison to set theory.
The reasons for its scarce use are discussed when we talk about universes and
open-endedness in Section 6. But we see next a proposition that addresses some
useful examples of relative membership.

2 Subtypes and set types

We say that A is a subtype of B (symbolically, A v B) if and only if a = a′ in
A implies that a = a′ in B. Clearly A v A, and if A v B and B v C, then
A v C. For the empty type, void, void v A for any A.

The subtype relation induces an equivalence relation on types as follows.
Define A ≡ B if and only if A v B and B v A. Clearly A ≡ B is an equivalence
relation, i.e. A ≡ A, if A ≡ B then B ≡ A and if A ≡ B and B ≡ C, then
A ≡ C. This equivalence relation is called extensional equality. It means that
A and B have the same elements; moreover, the equality relations on A and on
B are the same.

In set theory, two sets S1, S2 are equal iff they have the same elements. This
is called extensional equality. Halmos writes this on page 2 as an axiom. In type
theory it is a definition not an axiom, and furthermore, it is not the only equality
on types. There is a more primitive equality that is structural (or intensional);
we will encounter it soon.

The subtype relation allows us to talk about relative membership. Given
a in A and given that B is a type, we can ask whether A v B. If A v B, then
we know that a in A implies a inB, so talking about the “B-like structure of a”
makes sense.

We now introduce a type that is familiar from set theory. Halmos takes it
up in his section 2 under the title “axiom of specification.” The axiom is also
called separation. He says that:

To every set A and to every condition S(x), there corresponds a set B
whose elements are exactly those elements x of A for which S(x) holds.

This set is written {x : A | S(x)}. Halmos goes on to argue that given the
set B = {x : A | x /∈ x}, we have the curious relation

(∗) x ∈ B iff x ∈ A and x /∈ x.

If we assume that either B ∈ B or B /∈ B, then we can prove that B /∈ A.
Since A is arbitrary, this shows that either there is no set of all sets or else the
law of excluded middle, P or ¬P , does not hold on sets. The assumption that
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there is a universal set and that the law of excluded middle is true leads to the
contradiction known as Russell’s paradox.

In type theory the set type is defined just as in set theory. To every type A
and relation S on A there is a type whose elements are exactly those elements of
A that satisfy S. The type is denoted {x : A | S(x)}. But unlike in set theory,
we cannot form B = {x : A | x ∈ x} because x ∈ x is not a relation of type
theory. It is a judgment. The closest proposition would be relative membership:
x ∈ y wrt A (but y must be a type).

Also unlike set theory, we will not assume the law of excluded middle, for
reasons to be discussed later. Nevertheless, we cannot have a type of all types.
The reasons are deeper, and are discussed in Section 6.

Notice that we do know this:

{x : A | S(x)} v A

Also we can define an empty type, void. We use ∅ as its display.

∅ = {x : A | x 6= x in A}.

We know that for any type B
∅ v B.

In type theory, we distinguish {x : A | x = x in A} from A itself. While
A ≡ {x : A | x = x in A}, we say that {x : A | S(x)} = {x : A′ | S′(x)} iff
A = A′ and S(x) = S′(x) for all x.

Here is another interesting fact about subtyping.

Theorem 1 For all types A and equivalence relations E on A, A v A//E.

This is true because the elements of A and A//E are the same, and since E
is an equivalence relation over A, we know that E must respect the equality on
A, that is

x = x′ in A and y = y′ in A implies that xEy iff x′Ey′.

Thus, since xEx, then x = x′ in A implies xEx′.

3 Pairs

Halmos devotes one chapter to unordered pairs and another one to ordered
pairs. In set theory ordered pairs are built from unordered ones using a clever
“trick;” in type theory the ordered pair is primitive. Just as in programming,
ordered pairing is a basic building block. Ordered pairs are the quintessential
data elements. But unordered pairs are not usually treated as distinct kinds of
elements.

Given a type A, an unordered pair of elements can be defined as:

{x : A | x = a ∨ x = b}.



3 PAIRS 8

This is a type. We might also write it as {a, b}A. It is unordered because
{a, b}A ≡ {b, a}A. We’ll see that this notion does not play an interesting role in
type theory. It does not behave well as a data element, as we see later.

Given types A,B, their Cartesian product, A × B, is the type of ordered
pairs, pair(a; b). We abbreviate this as < a, b >. Given a in A, b in B, then
< a, b > in A×B. The constructor pair(a; b) structures the data. The obvious
destructors are operations that pick out the first and second elements:

1of(< a, b >) = a 2of(< a, b >) = b.

These can be defined in terms of a single operator, spread(), which splits a pair
into its parts. The syntax of spread() involves the idea of binding variables.
They are used as a pattern to describe the components. Here is the full syntax
and the rules for computing with it.

If p is a pair, then spread(p; u, v.g) describes an operator g for de-
composing it as follows:

spread(< a, b >; u, v.g) reduces in one step to g[a/u, b/v]

where g[a/u, b/v] is the result of substituting a for the variable u,
and b for the variable v.

Define

1of(p) == spread(p; u, v.u)
2of(p) == spread(p; u, v.v).

Notice that

spread(< a, b >; u, v.u) reduces to a
spread(< a, b >; u, v.v) reduces to b.

Is there a way to treat {a, b} as a data element analogous to < a, b >? Can we
create a type Pair(A; B) such that

{a, b} in Pair(A;B)
{a, b} = {b, a} in Pair(A;B) and Pair(A; B) = Pair(B;A)?

If we had a union type, A ∪ B, we might define the pairs as {a, b} = {x :
A ∪B|(x = a in A) or (x = b in B)}, and let Pair(A; B) be the collection of all
such pairs. We exploe this collection later, in Sections 4 and 6.

How would we use {a, b}? The best we can do is pick elements from the
pair, say pick(p; u, v.g) and allow either reduction:

pick({a, b};u, v.g) reduces either to g[a/u, b/v] or to g[b/u, a/v].
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4 Union and intersection

Everyone is familiar with taking unions and intersections of sets and writing
them in the standard cup and cap notations respectively, as in the union X ∪Y
and intersection X ∩ Y . These operations are used in type theory as well, with
the same notations. But the meanings go beyond the set idea, because the
definitions must take account of equalities.

Intersection is the easier idea. If A and B are types, then equality holds on
A ∩B when it holds in A and in B; that is,

a = b in A ∩B iff a = b in A and a = b in B.

In particular,

a = a in A ∩B iff a = a in A and a = a in B.

For example, Z2 ∩ Z3 has elements such as 0, since 0 = 0 in Z2 and 0 = 0
in Z3. And 0 = 6 holds in Z2 ∩ Z3 since 0 = 6 in Z2 and 0 = 6 in Z3. In fact,
Z2 ∩ Z3 = Z6.

Intersections can be extended to families of types. Suppose B(x) is a type
for every x in A. Then ∩x :A. B(x) is the type such that

b = b′ in ∩ x :A. B(x) iff b = b′ in B(x) for all x in A.

For example, if Nk = {0, . . . , k − 1} and N+ = {1, 2, . . .} then ∩x : N+.Nx

has only 0 in it.
It is interesting to see what belongs to ∩x : A. B(x) if A is empty. We

can show that there is precisely one element, and any closed expression of type
theory denotes that element. We give this type a special name because of this
interesting property.

Definition Top == ∩x :void. x, for void, the empty type.

Theorem 2 If A,A′ are types and B(x) is a family of types over A, then

1. A ∩A′ v A A ∩A′ v A′

2. ∩x :A. B(x) v B(a) for all a in A

3. A v Top

4. If C v A and C v A′, then C v A ∩A′

If A and B are disjoint types, say A∩B = void, then their union, A∪B, is
a simple idea, namely

a = b in A ∪B iff a = b in A or a = b in B.
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In general we must consider equality on elements that A and B have in
common. The natural thing to do is extend the equality so that if a = a′ in
A and a′ = b in B, then a = b in A ∪ B. Thus the equality of A ∪ B is the
transitive closure of the two equality relations, i.e.

a = b in A ∪B iff a = b in A or a = b in B or
∃ c : A ∪B a = c in A ∪B and c = b in A ∪B.

Note in Z2 ∪ Z3 all elements are equal, and Z4 ∪ Z6 = Z2.

Exercise: What is the general rule for membership in Zm ∪ Zn?

Exercise: Unions can be extended to families of types. Give the definition of
∪x : A. B(x). See the Nuprl Web page under basic concepts, unions, for
the answer.

Theorem 3 If A and A′ are types and B(x) is a family of types over A, then

1. A v A ∪A′ A′ v A ∪A′

2. B(a) v ∪x :A. B(x) for all a in A

3. If A v C and A′ v C, then A ∪A′ v C.

In set theory the disjoint union A⊕B is defined by using tags on the elements
to force disjointness. We could use the tags inl and inr for the left and right
disjuncts respectively. The definition is

A⊕B = {< inl, a >, < inr, b > | a ∈ A, b ∈ B}.

The official definition is a union:

({inl} ×A) ∪ ({inr} ×B).

We could define a disjoint union in type theory in a similar way. Another
approach that is more common is to take disjoint union as a new primitive type
constructor, A + B.

If A and B are types, then so is A + B, called their disjoint union. The
elements are inl(a) for a in A and inr(b) for b in B.

The destructor is decide(d;u.g1; v.g2), which reduces as follows:

decide(inl(a); u.g1; v.g2) reduces to g1[a/u] in one step

decide(inr(b); u.g1; v.g2) reduces to g2[b/v] in one step.

Sometimes we write just decide(d; g1; g2), if g1 and g2 do not depend on the
elements of A and B, but only on the tag. In this way we can build a type
isomorphic to Bit by forming Top + Top.
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5 Functions and relations

We now come to the heart of type theory, an abstract account of computable
functions over all types. This part of the theory tells us what it means to have an
effectively computable function on natural numbers, lists, rational numbers, real
numbers, complex numbers, differentiable manifolds, tensor algebras, streams,
on any two types whatsoever. It is the most comprehensive theory of effective
computability in the sense of deterministic sequential computation. Functions
are the main characters of type theory in the same way that sets are the main
characters of set theory and relations are the main characters of logic. Types
arise because they characterize the domains on which an effective procedure
terminates.

The computational model is more abstract than machine models, say Turing
machines or random access machines or networks of such machines. Of all the
early models of computability, this account is closest to the idea of a high-level
programming language or the lambda calculus. A distinguishing feature is that
all of the computation rules are independent of the type of the data, e.g., they are
polymorphic. Another distinguishing feature is that the untyped computation
system is universal in the sense that it captures at least all effective sequential
procedures — terminating and non-terminating.

Functions

If A and B are types, then there is a type of the effectively computable functions
from A to B, and it is denoted A → B. Functions are also data elements, but
the operations on functions do not expose their internal structure. We say that
the canonical form of this data is λ(x. b). The symbol lambda indicates that the
object is a function. (Having any particular canonical form is more a matter
of convenience and tradition, not an essential feature.) The variable x is the
formal input, or argument. It is a binding variable that is used in the body of
the function, b, to designate the input value. The body b is the scope of this
binding variable x. Of course the exact name of the variable is immaterial, so
λ(x. b) and λ(y. b[y/x]) are equal canonical functions.

The important feature of the function notation is that the body b is an
expression of type theory which is known to produce a value of type B after
finitely many reduction steps provided an element of type A, say a, is input
to the function. The precise number of reduction steps on input a is the time
complexity of λ(x. b) on input a. We write this as

b[a/x] ↓ b′ in n steps

Recall that b[a/x] denotes the expression b with term a substituted for all
free occurrences of x. A free occurrence of x in b is one that does not occur
in any subexpression c which is in the scope of a binding occurrence of x, i.e.
not in λ(x. c) or spread(p; u, v.c), where one of u, v is x. The notion of binding
occurrence will expand as we add more expressions to the theory. The above
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definition applies, of course, to all future extensions of the notion of a binding
occurrence.

The simplest example of a computable function of type A → A is the identity
function λ(x. x). Clearly if a ∈ A, then x[a/x] is a ∈ A.

If a0 is a constant of type A, then λ(x. a0) is the constant function whose
value is a0 on any input. Over the natural numbers, we will have functions such
as λ(x. x + 1), the successor, λ(x. 2 ∗ x), doubling, etc.

We say that two functions, f and g, are equal on A → B when they produce
the same values on the same inputs.

(f = g in A → B) iff f(a) = g(a) in B for all a in A.

This relation is called extensional equality. It is not the only sensible equality,
but it is the one commonly used in mathematics.

We might find a tighter (finer) notion of equality more useful in computing,
but no widely agreed-upon concept has emerged. If we try to look closely at the
structure of the body b, then it is hard to find the right “focal length.” Do we
want the details of the syntax to come into focus or only some coarse features
of it, say the combinator structure?

Functions are not meant to be “taken apart” as we do with pairs, nor do
we directly use them to make distinctions, as we use the bits 0, 1. Functions
are encapsulations of computing procedures, and the principal way to use them
is to apply them. If f is a function, we usually display its application as f(a)
or fa. To conform to our uniform syntax, we write application primitively as
ap(f ; a) and display this as f(a) or fa when no confusion results.

The computation rule for ap(f ; a) is to first reduce the expression for f to
canonical form, say λ(x. b), and then to reduce ap(λ(x. b); a). One way to
continue is to reduce this to b[a/x] and continue. Another way is to reduce a,
say to a′, and then continue by reducing b[a′/x]. The former reduction method
is called call by name and the latter is call by value. We will use both kinds,
writing apv(f ; a) for call by value.

Notice that when we use call by name evaluation, the constant function
λ(x. a0) maps B into A for any type B, even the void type. So if a0 ∈ A, then
λ(x. a0) ∈ B → A for any type B.

The function λ(x. λ(y.x)) has the type A → (B → A) for any types A and
B, regardless of whether they are empty or not. We can see this as follows.
If we assume that z is of type A, then ap(λ(x. λ(y. x)); z) reduces in one step
to λ(y. z). By what we just said about constant functions, this belongs to
(B → A) for any type B. Sometimes we call the function λ(x. λ(y.x)) the K
combinator. This stresses its polymorphic nature and indicates a connection to
an alternative theory of functions based on combinators.

Exercise: What is the general type of these functions?

1. λ(x. λ(y. < x, y >))

2. λ(f. λ(g. λ(x. g(x)(f(x)))))
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The function in (1) could be called the Currying combinator, and Curry called
the function in (2) the S combinator; it is a form of composition.

The function λ(f.λ(g.λ(x.g(f(x))))) belongs to the type (A → B) → ((B →
C) → (A → C)) because for x ∈ A, f(x) ∈ B and g(f(x)) ∈ C. This is a
composition combinator, Comp. It shows clearly the polymorphic nature of our
theory. We can express this well with intersection types:

Comp in (∩A,B,C : Type. (A → B) → ((B → C) → (A → C))).

We will need to discuss the notion A : Type etc. in Section 6 before this is
entirely precise.

There are polymorphic λ-terms that denote sensible computations but which
cannot be directly typed in the theory we have presented thus far. One of the
most important examples is the so-called Y-combinator discovered by Curry,

λ(f. λ(x.f(xx))λ(x.f(xx))).

The subtyping relation on A → B behaves like this:

Theorem 4 For all types A v A′, B v B′

A′ → B v A → B′.

To see this, let f = g ∈ A′ → B. We prove that f = g in A → B′. First
notice that for a ∈ A, we know a ∈ A′, thus f(a′) and g(a′) are defined, and
f(a′) = g(a′) in B. But B v B′, so f(a′) = g(a′) in B′.

This argument depends on the polymorphic behavior of the functions; thus,
if f(a) terminates on any input in A′, it will, as a special case, terminate for
any element of a smaller type. We say that v is co-variant in the domain.

In set theory, functions are defined as single-valued relations, and relations
are defined as sets of ordered pairs. This reduces both relations and functions to
sets, and in the process the reduction obliterates any direct connection between
functions and algorithms.

A function f ∈ A → B does generate a type of ordered pairs called its graph,
namely

graph(f) = {x : A×B|f(1of(x)) = 2of(x) in B}.
Clearly graph(f) v A × B, somewhat as in set theory. If we said that

a relation R on A × B is any subtype of A × B, then we would know that
R v A×B. But we will see that in type theory we cannot collect all such R in
a single “power type.” Let us see how relations are defined in type theory.

Relations

Since functions are the central objects of type theory, we define a relation as
a certain kind of function, a logical function in essence. This is Frege’s idea
of a relation. It depends on having a type of propositions in type theory. For
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now we denote this type as Prop, but this is amended later to be Propi for
fundamental reasons.

A relation on A is a propositional function on A, that is, a function A →
Prop. Here are propositional functions we have already encountered:

x = y in A

is an atomic proposition of the theory. From it we can define two propositional
functions:

λ(x. λ(y. x = y in A)) in A → (A → Prop)

λ(p. 1of(p) = 2of(p) in A) in A×A → Prop.

We also discussed the proposition

x ∈ B wrt A,

from which we can define the propositional function

λ(x. x ∈ B wrt A) in A → Prop for a fixed B.

This propositional function is well-defined iff

x = y in B implies that (x ∈ B wrt A)

is equal to the proposition
(y ∈ B wrt A).

The type Prop includes propositions built using the logical operators &
(and), ∨ (or), ⇒ (implies), and ¬ (not), as well as the typed quantifiers ∃x : A
(there is an x of type A) and ∀x : A (for all x of type A). We mean these in the
constructive sense (see Section 9).

6 Universes, powers and openness

In set theory we freely treat sets as objects, and we freely quantify over them.
For example, the ordered pair < x, y > in set theory is {x, {x, y}}. We freely
form nested sets, as in the sequence starting with the empty set: ∅, {∅}, {{∅}}, {{{∅}}}, . . .
All of these are distinct sets, and the process can go on indefinitely in “infinitely
many stages.” For example, we can collect all of these sets together

{∅, {∅}, {{∅}}, {{{∅}}}, . . .}

and then continue {{∅, {∅}, . . .}}, {{{∅, {∅}, . . .}}}. There is a precise notion
called the rank of a set saying how often we do this.

In set theory we are licensed to build these more deeply nested sets by
various axioms. The axiom to justify {∅, {∅}, {{∅}}, {{{∅}}}, . . .} is the axiom
of infinity. Another critical axiom for nesting sets is called the power set axiom.
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It says that for any set x, the set of all its subsets exists, called P(x), the power
set of x. One of its subsets is {x}; another is ∅.

In type theory we treat types as objects, and we can form {∅}, {{∅}}, . . . But
the licensing mechanism is different, and types are not much used as objects of
computation, because more efficient data is available and is almost always a
better choice.

The licensing mechanism for building large sets is critical because
paradoxes arise if sets are allowed to be “too large,” as with a set of all sets,
called a universe. A key idea from set theory is used to justify large types. The
idea is this: if we allow a fixed number of ways of building sets safely, such as
unions, separation, and power sets, then we can form a safer kind of universe
defined by allowing the iteration of all these operations indefinitely. This is the
idea of a universe in type theory.

A universe is a collection of types closed under the type-building opera-
tions of pairing, union, intersection, function space and other operations soon
to be defined. But it is not closed under forming universes (though a controlled
way of doing this is possible), and we keep careful track of how high we have
gone in this process. As a start, we index the universes as U1,U2,U3, . . . The
elements are codes that tell us precisely how to build types. We tend to think
of these indices as the types themselves.

Here is how we can use a universe to define {∅}. Recall that ∅, the void type,
could be defined as {x : B | x 6= x in B}. This type belongs to Ui for all i. Now
define {∅} as {x : U1| x = ∅ in U1}. In our type theory, we cannot define this
set without mentioning U1. Thus we are forced to keep track of the universe
through which a type of this sort is admitted.

With universes we can define a limited power type, namely

Pi(A) = {x : Ui|x v A}.
These might be seen as “pieces” of some ideal P(A) for any type A. But we do
not know a provably safe way to define the ideal P(A).

The universe construction forms a cumulative hierarchy, U1 ∈ U2,U2 ∈
U3, . . . , and Ui v Ui+1. Note that Top inUi for all i, and yet Ui v Top. There
is nothing like Top in set theory.

7 Families

Unions, intersections, products and function spaces can all be naturally ex-
tended from pairs of types to whole families. We saw this already in the case of
unions. Halmos devotes an entire chapter to families.

Let us consider the disjoint union of a family of types indexed by a type A,
that is, for every x in A, there is a type B(x) effectively associated to it. The
disjoint union in both set theory and type theory is denoted by Σx : A. B(x),
and the elements are pairs < a, b > such that b in B(a). In type theory this
is a new primitive type constructor, but it uses the pairing operator associated
with products. It also uses spread(p; u, v.g) to decompose pairs. Unlike pairing
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for products where A×B is empty if either A or B is, the disjoint union is not
empty unless all of the B(x) for each x in A are empty.

In set theory the disjoint union of a family of types is defined in terms of
A× ∪x :A. B(x),

Σx :A. B(x) = {p : A× ∪x :A. B(x)|1of(p) ∈ A & 2of(p) ∈ B(1of(p))}
and where the ordinary union ∪x :A. B(x) is defined as the union of the range
of the function B from A into sets, e.g. ∪{B(x)|x ∈ A}.

The type Σx : A. B(x) behaves both like a union and a product. It is a
product because its elements are pairs, so we expect the type to be related to
A × B. But it is not like a product in that it can be nonempty even if one of
the B(x) types is empty.

One reason for computer scientists to think of this as a product is that
it is called a variant record in the literature of programming languages, and
records are treated as products. It is a “variant” record because the initial
componenents (leftmost) can influence the type of the later ones, causing them
to “vary.”

As a product, we call this type a dependent product, and we employ notation
reminiscent of products, namely

x : A×B(x)

where x is a binding variable, bound to be of type A and having scope B(x). So

y : A×B(y)

is the same type as (equal to) x : A×B(x).
Here is an example of this type. We’ll consider which alternative view is

most natural. Suppose the index set (first component) is in N2 + R2; thus it
is either a pair of natural numbers or a pair of computable reals. Suppose the
second component will be a number representing the area of a rectangle defined
by the first pair. Its type will be N or R, depending on the first value. To define
this, let Area(x) be defined as

Area(x) = decide(x;N;R)

(or, more informally, Area(x) = if is left(x) then N else R fi). The type we
want is Σx : (N2 + R2). Area(x), or equivalently x : (N2 + R2)× Area(x). How
do we think of this? Is it a union of two types (N2×N) and (R2×R), or does it
describe data that looks like < inl(< nat, nat >), nat > or < inr(< real, real >
), real >?

There are examples where the contrast is clearer. One of the best is the
definition of dates as < month, day >, where

Month = {1, . . . , 12} and
Day(2) = {1, . . . , 28}
Day(i) = {1, . . . , 30} for i = 3, 6, 9, 11
Day(i) = {1, . . . , 31} otherwise.
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Date = m : Month × Day(m) seems like the most natural description of the
data we use to represent dates, and the idea behind it is clearly a pair whose
second component depends on the first.

We can also extend the function space constructor to families, forming a
dependent function space. Given the family B(x) indexed by A, we form the
type

x : A → B(x).

The elements are functions f such that for each a ∈ A, f(a) in B(a).
In set theory the same type is called an infinite product of a family, written

Πx :A. B(x), and defined as

{f : A → ∪x :A. B(x)| ∀x :A. f(x) ∈ B(x)}.
An example of such a function takes as input a month, and produces the maxi-
mum day of the month — call it maxday. It belongs to

m : Month → Day(m).

The intersection type also extends naturally to families, yet this notion was only
recently discovered and exploited by Kopylov, in ways that we illustrate later.
Given type A and family B over A, define

x : A ∩B(x)

as the collection of elements x of A such that x is also in B(x). If a = b in A
and a = b in B(a), then a = b in x : A ∩B(x).

8 Lists and numbers

The type constructors we have examined so far all build finite types from finite
types. The list constructor is not this way. The type List(A) is limitless or
infinite if there is at least one element in A. Moreover, the type List(A) is
inductive. From List(A) we can build the natural numbers, another inductive
type. These types are an excellent basis for a computational understanding of
the infinite and induction.

In set theory induction is also important, but it is not as explicitly primitive;
it is somewhat hidden in the other axioms, such as the axiom of infinity—
which explicitly provides N—and the axiom of regularity, which provides for
(transfinite) induction on sets by asserting that every ε-chain x1 ∈ x0, x2 ∈
x1, x3 ∈ x2, . . . must terminate.

If A is a type, then so is List(A). The canonical data of List(A) is either
the empty list, nil, or it is a list built by the basic list constructor, or cons for
short. If L is a list, and a in A, then cons(a; L) is a list. The standard way to
show such an inductive construction uses the pattern of a rule,

a in A L in List(A)
cons(a; L) in List(A).
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Here are some lists built using elements a1, a2, a3, . . . The list nil is in any
type List(A) for any type A, empty or not. So List(A) is always nonempty.
Next, cons(a1;nil) is a list, and so are

cons(a1;nil), cons(a1; cons(a1; nil)), cons(a1; cons(a2;nil)),

and so forth. We typically write these as

[a1], [a1, a2], [a1, a2, a3].

If A is empty, then List(A) has only nil as a member.
Here is a particularly clear list type. Let 1 be the type with exactly one ele-

ment, 1. Then the list elements can be enumerated in order, nil, cons(1; nil), cons(1; cons(1; nil)), cons(1; cons(1; cons(1; nil))), . . .
We will define the natural numbers to be this type List(1). The type List(Top)
is isomorphic to this since Top has just one element, but that element has a
limitless number of canonical names.

The method of destructing a list must make a distinction between nil and
cons(a; L). So we might imagine an operator like spread, say dcons(L; g1;u, t.g2)
where dcons(nil; g1; u, v.g1) reduces to g1 in one step and dcons(cons(a;L); g1, u, t.g2)
reduces to g2[a/u, L/t] in one step. This allows us to disassemble one element.
The power of lists comes from the inductive pattern of construction,

a in A L in List(A)
cons(a; L) in List(A).

This pattern distinguishes List(A) from all the other types we built, making it
infinite. We need a destructor which recognizes this inductive character, letting
us apply dcons over and over until the list is eventually nil.

How can we build an inductive list destructor? We need an inductive def-
inition for it corresponding to the inductive pattern of the elements. But just
decomposing a list will be useless. We want to leave some trace as we work
down into this list. That trace can be the corresponding construction of an-
other object, perhaps piece by piece from the inner elements of the list.

Let’s imagine that build(L) is constructing something from L as it is decom-
posed. Then the inductive pattern for building something in B is just this:

build b0 in B
a in A, assume b in B is built from L

combine a, L, and b to build g(a, L, b) in B.

This pattern can be expressed in a recursive computation on a list

build(nil) = b0 build(cons(a; L)) = g(a, L, build(L)).

This pattern can be written as a simple recursive function if we use dcons as
follows:

f(L) = dcons(L; b0; u, t.g(u, t, f(t)).

There is a more compact form of this expression that avoids the equational
form. We extend dcons to keep track of the value being built up. The form is
list ind(L; b0;u, t, v.g(u, t, v)), where v keeps track of the value.
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We say that list ind(L; b0; u, t, v.g(u, t, v)) in B, provided that b0 in B and
assuming that u ∈ A, t ∈ List(A) and v in B, then g(u, t, v) in B.

The reduction rule for list ind is just this:

list ind(nil; b0; u, t, v.g(u, t, v)) reduces to b0

list ind(cons(a; L); b0;u, t, v.g(u, t, v)) reduces to g(a, L, v0)

where v0 = list ind(L; b0; u, t, v.g(u, t, v)).
There are several notations that are commonly adopted in discussing lists.

First, we write cons(a; l) as a.l. Next we notice that

list ind(l; a; u, t, v.b)

where v does not occur in b is actually just a case split on whether l is nil
followed by a decomposition of the cons case. We write this as:

case of l; nil → b; a.t → b

Here are some of the basic facts about lists along with a sketch of how we
prove them.

Fact: nil 6= cons(a;L) in List(A) for any a or L.

This is because if nil = cons(a; L) in List(A), then list ind(x; 0; u, t, v.1) would
reduce in such a way that 0 = 1, which is a contradiction. The basic fact is that
all expressions in the theory respect equality.

One of the most basic operations on lists is appending one onto another, say
[a1, a2, a3]@[a4, a5] = [a1, a2, a3, a4, a5]. Here is a recursive definition:

x@y = case of x; nil → y; a.t → a.(t@y).

This abbreviates
list ind(x; λ(y.y); a, t, v.λ(y.a.v(y))).

Fact: For all x, y, z in List(A), (x@y)@z = x@(y@z).

We prove this by induction on x. The base case is (nil@x)@y = nil@(x@y).
This follows immediately from the nil case of the definition of @.

Assuming that (t@x)@y = t@(x@y), then ((u.t)@y)@z = u.t@(y@z) again
follows by the definition of @ in the cons case. This ends the proof.

If f is a function from A to B, then here is an operation that applies it to
every element of l in List(A):

map(f ; l) = case of l; nil → nil; a.t → f(a).map(f ; t).

Fact: If f : A → B and g : B → C and l : List(A), then map(g;map(f ; l))
= map(λ(x.g(f(x))); l) in List(C).
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Fact: If f : A → B and x, y : List(A), then map(f ;x@y) = map(f ; x)
@map(f ; y) in List(B).

Fact: x@y = nil in List(A) iff x = nil and y = nil in List(A).

Exercise: What would List({nil}) look like? Do all the theorems still work in
this case? How does this compare to List(∅)?

9 Logic and the Peano axioms

Following the example of Halmos, we have avoided attention to logical matters,
but there is something especially noteworthy about logic and type theory. We
use logical language in a way that is sensitive to computational meaning. For
instance, when we say ∃x : A. B(x), read as “we can find an x of type A such
that B(x),” we mean that to know that this proposition is true is to be able
to exhibit an object a of type A, called the witness, and evidence that B(a) is
true; let this evidence be b(a). It turns out that we can think of a proposition
P as the type of evidence for its truth. We require of the evidence only that it
carry the computational content of the sense of the proposition. So in the case
of a proposition of the form ∃x :A. B(x), the evidence must contain a witness a
and the evidence for B(a). We can think of this as a pair, < a, b(a) >.

When we give the type of evidence for a proposition, we are specifying the
computational content. Here is another example. When we know P implies Q
for propositions P and Q, we have an effective procedure for taking evidence
for P into evidence for Q. So the computational content for P implies Q is the
function space P → Q, where we take P and Q to be the types of their evidence.

This computational understanding of logic diverges from the “classical” in-
terpretation. This is especially noticeable for statements involving or. To know
(P or Q) is to either know P or know Q, and to know which. The rules of
evidence for (P or Q) behave just as the rules for elements of the disjoint union
type, P + Q.

The computational meaning of ∀x :A. B(x) is that we can exhibit an effective
method for taking elements of A, a, to evidence for B(a). If b(a) is evidence for
B(a) given any element of a in A, then λ(x. b(x)) is computational evidence for
∀x :A. B(x). So the evidence type behaves just as x : A → B(x).

For atomic propositions like a = b in B, there is no interesting computational
content beyond knowing that when a and b are reduced to canonical form, they
will be identical, e.g. bit{0} = bit{0} or bit{1} = bit{1}. For the types we will
discuss in this article, there will be no interesting computational content in the
equality proposition, even in f = g in A → B. We say that the computational
content of a = b in A is trivial. We will only be concerned with whether there
is evidence. So we take some atomic object, say is true, to be the evidence for
any true equality assertion.

What is remarkably elegant in this account of computational logic is that
the rules for the evidence types are precisely the expected rules for the logical
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operators. Consider, for example, this computational interpretation of ∃x :
A.¬Q(x) implies (∀x :A. (P (x) ∨Q(x)) implies ∃x :A. P (x).

To prove ∃x :A. P (x), let a be the element of A such that ¬Q(a). We interpret
¬S for any proposition S as meaning S implies False, and the evidence type for
False is empty. Taking a for x in ∀x : A.(P (x) ∨Q(x)) we know P (a) ∨Q(a).
So there is some evidence b(a) which is either evidence for P (a) or for Q(a).
We can analyze b(a) using decide since P (a) ∨Q(a) is like P (a) + Q(a). If b(a)
is in P (a) then we have the evidence needed. If b(a) is in Q(a), then since we
know Q(a) → False, there is a method, call it f , taking evidence for Q(a) into
False.

To finish the argument, we look at the computational meaning of the asser-
tion (False implies S) for any proposition S. The idea is that False is empty,
so there is no element that is evidence for False. This means that if we assume
that x is evidence for False, we should be able to provide evidence for any
proposition whatsoever.

To say this computationally, we introduce a form any(x) with the typing
rule that if x is of type False, then any(x) is of type S for any proposition S.

Now we continue the argument. Suppose b(a) is in Q(a). Then f(b(a)) is in
False, so any(f(b(a))) is in P (a). Thus in either case of P (a) or Q(a) we can
prove the ∃x :A. P (a). Here is the term that provides the computation we just
built:

λ(e.λ(all. decide(all(1of(e));
p.p;
q.any(f(q))))).

Note that e is evidence for ∃x : A.¬Q(x), so 1of(e) belongs to A. The
function all produces the evidence for either P (a) or Q(a), so all(1of(e)) is
what we called b(a). We use the decide form to determine the kind of evidence
b(a) is; in one case we call it p and in the other q. So any(f(q)) is precisely
what we called any(f(b(a))) in the discussion.

Now we turn to using this logic. In 1889 Peano provided axioms for the
natural numbers that have become a standard reference point for our under-
standing of the properties of natural numbers. We have been using N to denote
these numbers (0, 1, 2, . . . ).

Set theory establishes the adequacy of its treatment of numbers by showing
that the set of natural numbers, ω, satisfies the five Peano axioms. These axioms
are usually presented as follows, where s(n) is the successor of n.

1. 0 is a natural number, 0 ∈ N.

2. If n ∈ N, then s(n) ∈ N.

3. s(n) = s(m) implies n = m.

4. Zero has no predecessor, ¬(s(n) = 0).

5. The induction axiom, if P (0), and if P (n) implies P (s(n)), then P holds
for all natural numbers.
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In set theory axioms 1 and 2 are part of the definition of the axiom of infinity;
axiom 3 is a general property of the successor of a set defined as s(x) = x∪{x}.
Induction comes from the definition of ω as the least inductive subset of the
postulated infinite set.

In type theory we also deal with axioms 1 and 2 as part of the definition.
One way to treat N is to define it as a new type whose canonical members are
0, s(0), s(s(0)), and so forth, say using these rules:

0 in N
n in N

s(n) in N.

Another approach is to define N using lists. We can take N as List(1), with
nil as 0 and cons(1;n) as the successor operation. Then the induction principle
follows as a special case of list induction.

In this definition of N, the addition operation x + y corresponds exactly to
x@y, e.g. 2 + 3 is just [1, 1]@[1, 1, 1].

Exercise: Show how to define multiplication on lists.

10 Structures, records and classes

Bourbaki’s encyclopedic account of mathematics begins with set theory, and
then treats the general concept of a structure. Structures are used to define
algebraic structures such as monoids, groups, rings, fields, vector spaces, and so
forth. They are also used to define topological structures and order structures,
and then these are combined to provide a modular basis for real analysis and
complex analysis.

Structures

The idea of a structure is also important in computer science; they are the
basis for modules in programming languages and for classes and objects in
object-oriented programming. Also, just as topological, order-theoretic, and
algebraic structures are studied separately and then combined to explain aspects
of analysis, so also in computing, we try to understand separate aspects of a
complex system and then combine them to understand the whole.

The definition of structures in set theory is similar to their definition in
type theory, as we next illustrate; later we look at key differences. In algebra
we define a monoid as a structure < M, op, id >, where M is a set, op is an
associative binary operation on M , and id is a constant of M that behaves as
an identity, e.g.

x op id = x and id op x = x.

A group is a structure < G, op, id, inv > which extends a monoid by including
an inverse operator, e.g.

x op inv(x) = id and inv(x) op x = id.
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In algebra, a group is considered to be a monoid with additional structure.
These ideas are naturally captured in type theory in nearly the same way. We
start with a structure with almost no form,

A : Ui × Top.

This provides a carrier A and a “slot” for its extension. We can extend by
refining Top to have structure, for example, B×Top. Notice that B×Top v Top,
and

A× (B × Top) v A× Top, since
A v A and B × Top v Top.

Generally,
A× (B × (C × Top)) v A× (B × Top).

We can define a monoid as a dependent product:

M : Ui × ((M → (M → M))× (M × Top)).

An element has the form < M,< op, < id, • >>> where:

M in Ui, op in M → (M → M), id ∈ M, and • in Top.

Call this structure Monoid.
A group is an extension of a monoid which includes an inverse operator,

inv : G → G. So we can define the type Group as

G : Ui × (G → (G → G)× (G× ((G → G)× Top))).

It is easier to compare these dependent structures if we require that the type
components are related. So we define parameterized structures. We specify the
carrier C of a monoid or group, etc., and define

Monoid(C) = C → (C → C)× (C × Top)
Group(C) = C → (C → C)× (C × (C → C × Top)).

Then we know

Fact: If M ∈ Ui, then Group(M) v Monoid(M).

Exercise: Notice that G v M need not imply that

Group(G) v Monoid(M).

These subtyping relationships can be extended to richer structures such as
rings and fields, though not completely naturally. For example, a ring consists
of two related structures: a group part (the additive group) and a monoid part
(the multiplicative monoid). We can combine the structures as follows, putting
the group first:

Ring(R) = R → (R → R)× ((R× (R → R)× (R → (R → R)× (R× Top)))).
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We can say that Ring(R) v Group(R), but it is not true that the
multiplicative structure is directly a substructure of Monoid(R). We need to
project it off,

Mult Ring(R) = (R → (R → R)× (R× Top)).

Then we can say Mult Ring(R) v Monoid(R). Given a ring

Rng in Ring(R),

< R,< add op,< add id, < add inv, < mulop, < mulid, • >>>>>>,

we can project out the multiplicative part and the additive part:

add(Rng) = < add op,< add id, < add inv,− >>>
mul(Rng) = < mulop,< mulid, • >>,

and we know that add(Rng) in Group(R) and mul(Rng) in Monoid(R).

Records

Our account of algebraic structure so far is less convenient than the informal one
on which it is based. One reason is that we must adhere to a particular ordering
of the components and access them in this order. Programming notations deal
with this inconvenience by associating names with the components and accessing
them by name. The programming
construct is called a record type; the elements are records. A common nota-
tion for a record type is this:

{a : A; b : B; c : C}.
Here A,B,C are types and a, b, c are names called field selectors. If r is a
record, the notations r.a, r.b, r.c select the component with that name. The
order is irrelevant, so {b : B; c : C; a : A} is the same type, and we know that
r.a ∈ A, r.b ∈ B, r.c ∈ C.

In this notation, one type for a group over G is

{add op : G → (G → G); add id : G; add inv : G → G}.
The field selectors in this example come from a type called Label, but more
generally we can say that a family of these group types abstracted over the field
selectors, say GroupType(G; x, y, z), is

{x : G → (G → G); y : G; z : G → G}.
We can combine MonoidType(G; u, v) = {u : G → (G → G); v : G} with

the GroupType to form a RingType(R;x, y, z, u, v) =

{x : G → (G → G); y : G; z : G → G; u : G → (G → G); v : G}.
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Record types can be defined as function spaces over an index type such as
Label. First we associate with each x in Lable a type, say T : Label → Ui. If we
have in mind a type such as group, parameterized by G, then we map add op
to G → (G → G), add id to G, add inv to G → G, and all other lables to Top.
Call this map Grp(x). Then the group type is

x : Label → Grp(x).

An element of this type, g, is a function such that g(add op) ∈ G → (G → G),
g(add id) ∈ G, g(add inv) ∈ G → G, and g(z) ∈ Top for all other z in Label.

The record types we use have the property that only finitely many labels are
mapped to types other than Top. For example, {a :A; b :B; c :C} is given by a
map T : Label → Ui such that T (a) = A, T (b) = B, T (c) = C, and T (x) = Top
for x not in {a, b, c}. Thus

{a : A; b : B; c : C} = x : Label → T (x).

We say that such records have finite support of {a, b, c} in Label. If I is the
finite support for T , we sometimes write the record as x : I → T (x).

It is very interesting that for two records having finite support of I1 and I2

such that I1 ⊆ I2, and such that T : Label → Ui agree on I2, we know that

x : I2 → T (x) v x : I1 → T (x).

For example, consider {a, b, c} ⊆ {a, b, c, d}, with records R1 = {a : A; b : B;
c :C} and R2 = {a :A; b :B; c :C; d :D}. Then R2 v R1. This natural definition
conforms to programming language practice and mathematical practice. We will
see that this definition, while perfectly natural in type theory, is not sensible in
set theory.

If we use standard labels for algebraic operations on monoids, groups, and
rings, say

Alg : {add op, add id, add inv, mul op,mul id} → U1

then
Add Monoid(G) = i : {add op, add id} → Alg(i)
Group(G) = i : {add op, add id, add in} → Alg(i)
Mul Monoid(G) = i : {mul op,mul id} → Alg(i)
Ring(G) = i : {add op, add id, add inv, mul op,mul id} → Alg(i)

and we have

Group(G) v Add Monoid(G)
Ring(G) v Group(G) v Add Monoid(G)
Ring(G) v Mul Monoid(G).

The reason that these definitions don’t work in set theory is that the sub-
typing relation on function spaces is not valid in set theory. Recall that the
relation is

A v A′ B v B′

A′ → B v A → B′.
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This is true in type theory because functions are polymorphic. If f ∈ A′ → B,
then given a ∈ A, the function f applies to a; so f(a) is well-defined and the
result is in B, hence in B′. In set theory, the function f is a set of ordered pairs,
e.g. f = {< a, b >∈ A′ × B|f(a) = b}. This set of ordered pairs can be larger
than {< a, b >∈ A×B′|f(a) = b}, so A′ → B 6⊆ A → B′. The difference in the
notion of function is fundamental, and it is not clear how to reconcile them.

Dependent Records

A full account of algebraic structures must include the axioms about the oper-
ators. For a monoid we need to say that op is associative, say

(1) Assoc (M, op) is
∀x, y, z : M. (x op y)op z = x op(y op z) in M .

and we say that id is a two-sided identity:

(2) Id(M, op, id) is
∀x : M. (x op id = x in M) and (id op x = x in M).

For the group inverse the axiom is

(3) Inv(M, op, id, inv) is
∀x : M. (x op inv(x) = id in M) and (inv(x)op x = id in M).

In set theory, these axioms are not included inside the algebraic structure
because the axioms are propositions, which are “logical objects,” not sets. But
as we have seen, propositions can be considered as types. So we can imagine an
account of a full-monoid over M that looks like this:

{op : G → (G → G); id : G; ax1 : Assoc(G, op); ax2 : Id(G, op, id)}.
If g is a full-monoid, then g(op) is the operator and g(ax1) is the computational
evidence that op is associative; that is, g(ax1) is a mathematical object in the
type Assoc(G, op).

Does type theory support these kinds of records? We call them dependent
records, since the type Assoc(G, op) depends on the object g(op). Type theory
does allow us to define them.

The object we define is the general dependent record of the form

{x1 : A1;x2 : A1(x1); . . . ;xn : An−1(x1, . . . , xn−1)}.
In Automath these are called telescopes, and they are primitive concepts. We de-
fine them from the dependent intersection following Kopylov. Other researchers
have added these as new primitive types, and Jason Hickey defined them from a
new primitive type called the very-dependent function space. (See Bibliographic
Notes for this section.)

Recall that the dependent intersection, x : A∩B(x) is the collection of those
elements a of A which are also in B(a).
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We define {x : A; y : B(x)} as the type

f : {x : A} ∩ {y : B(f.x)}.
The elements of {x : A} are the functions {x} → A; that is, functions in
i : Label → A(i) where A(x) = A and A(i) = Top for i 6= x. The singleton
label, {x}, is the finite support. The elements of the intersection are those
functions f in {x} → A such that on input y from Label, f(y) in B(f(x)).

To define {x : A; y : B(x); z : C(x, y)}, we have the choice of associating the
dependent intersection to the right or left; we chose to the left.

∗g : (f : {x : A} ∩ {y : B(f(x))}) ∩ {z : C(g(x), g(y))}.
The function g must agree with f on label x. We can see that the outermost
binding, g, satisfies the inner constraints as well. So as we intersect in more
properties, we impose more constraints on the function.

The value of associating to the left is that we can think of building up the
dependent record by progressively adding constraints. It is intuitively like this:

({x : A} ∩ {y : B(x)}) ∩ {z : C(x, y)}.
This kind of notational simplicity can be seen as an abbreviation of

∗∗ s : (s : {x : A} ∩ {y : B(s(x))}) ∩ {z : C(s(x), s(y))},
because the scoping rules for binding operators tell us that * and ** are equal
types.

In programming languages such as ML, modules and classes are used to mod-
ularize code and to make the code more abstract. For example, our treatment
of natural numbers so far has been particularly concrete. We introduced them
as lists of a single atomic object such as 1. Systems like HOL take the natural
numbers (N) as primitive, and Nuprl takes the integers (Z) as primitive, defin-
ing N as {z : Z|0 ≤ z}. All these approaches can be subsumed using a class to
axiomatize an abstract structure. We define numbers, say integers, abstractly
as a class over some type D which we axiomatize as an ordered discrete integral
domain, say Domain(D). The class is a dependent record with structure. We
examine this in more detail here.

First we define the stucture without induction and then add both recursive
definition and induction. We will assume display forms for the various field
selectors when we write axioms. Here is a table of displays:

Field Selector Display
Name (inside the class and outside)

add +
zero 0

minus -
mult *
one 1
div ÷
mod mod infix

less eq ≤



10 STRUCTURES, RECORDS AND CLASSES 28

The binary operators are given by the type BinaryOp(D). This can be the
“curried style” type D → (D → D) that we used previously, or the more “first-
order” style, D×D → D, or it can even be the “Lisp-style,” where we allow any
list of arguments from D, say List(D) → D. We can define monoids, groups, etc.
using the same abstraction, which we select only at the time of implementation.
Likewise, we can abstract the notion of a binary relation to BinaryRel(D). We
can use D → (D → Propi) or D ×D → Propi or List(D) → Propi.

Definition For D a type in Ui the class Domain(D) is:

{ add : BinaryOp (D) ; assoc add : Assoc (D, add);
zero : D ; identity zero : Identity (D, add, zero);
minus : D → D ; inverse minus : Inverse (D, add, zero, minus);
mult : BinaryOp (D) ; assoc mult : Assoc (D, mult);
one : D ; identity one : Identity (D, mult, one);
div : BinaryOp (D);
rm : BinaryOp (D) ; ∀x, y : D.(x=y ∗ div(x, y) + rm(x, y) inD);
discrete : ∀x, y : D.(x = y in D or x 6= y in D);
less eq : BinaryRel (D); porder : PartialOrder (D, less eq);
trichot : ∀x, y : D.(x ≤ y or y ≤ x)

and (x ≤ y & y ≤ x implies x = y in D);
cong : ∀x, y, z : D.(x ≤ y implies x + z ≤ y + z) and

(x ≤ y and z ≥ 0 implies x ∗ z ≤ y ∗ z) and
(x ≤ y and z < 0 implies y ∗ z ≤ x ∗ z). }

The domain can be made inductive if we add an induction principle such as

ind : ∀P : D → Propi. (P (0) & ∀z : {x : D|x ≥ 0}.P (z) implies P (z + 1)

& ∀z : {x : D|x < 0}. P (z + 1) implies P (z)) implies ∀x :D. P (x).

In type theory it is also easy to allow a kind of primitive recursive definition
over D by generalizing the induction to

ind : ∀A : D → Ui.A(0) → (z : {y : D|y ≥ 0} → A(z) → A(z + 1)) →
(z : {y : D|y < 0} → A(z + 1) → A(z))∀x : D.A(x).

ind eq : ∀b : A(0).∀f : (z : {y : D|y ≥ 0} → A(z) → A(z + 1)).

∀g : z : ({y : D|y < 0} → A(z + 1) → A(z)).

ind(b)(f)(g)(0) = b in A(0) and ∀y : D(y ≥ 0 implies

ind(b)(f)(g)(y) = f(y)(ind(b)(f)(g)(y − 1)) in A(y))

and ∀y : D.(y < 0 implies

ind(b)(f)(g)(y) = g(y)(ind(b)(f)(g)(y + 1)) in A(y)).

If we take A to be the type (D → D), then the induction constructor allows
us to define functions D → (D → D) by induction. For example, here is a
definition of factorial over D. We take A(x) = D for all x, so we are defining
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a function from D to D. On input 0, we build 1; in the case for z > 0 and
element u in A(z), we build the element z ∗ u as result. For z < 0, we take 0 as
the result. The form of definition is

ind(λ(x.D))(1)(λ(z.λ(u.z ∗ u)))(λ(z.λ(u.0))).

11 The axiom of choice

Halmos notes that it has been important to examine each consequence of the
axiom of choice to see “the extent to which the axiom is needed in the proof.”
He said, “an alternative proof without the axiom of choice spelled victory.” It
was thought that results without the axiom of choice were safer. But in fact, in
the computational mathematics used here, which is very safe, one form of the
axiom of choice is provable! We start this section with a proof of its simplest
form.

If we know that ∀x :A. ∃y :B. R(x, y), then the axiom of choice tells us that
there is a function f from A to B such that R(x, f(x)) for all x in A. We can
state this symbolically as follows (using ⇒ for implication):

Axiom of Choice ∀x :A. ∃y :B. R(x, y) ⇒ ∃f :A → B. ∀x :A. R(x, f(x)).

Here is a proof of the axiom. We assume ∀x :A. ∃y :B. R(x, y). According to
the computational meaning of ∀x : A, we know that there is a function g from
A to evidence for ∃y :B. R(x, y). The evidence for ∃y :B. R(x, y) is a pair of a
witness, say b(x), and evidence for R(x, b(x)); call that evidence r(x). Thus the
evidence is the pair < b(x), r(x) >.

So now we know that on input x from A, g produces < b(x), r(x) >. We
can define f to be λ(x. b(x)). We know that f in A → B since b(x) in B
for any x in A. So the witness to ∃f : A → B is now known. Can we also
prove ∀x : A. R(x, f(x))? For this we need a function, say h, which on input
x produces a proof of R(x, f(x)). We know that λ(x.r(x)) is precisely this
function. So the pair we need for the conclusion is

< λ(x.b(x)), λ(x.r(x)) >

where b(x) = 1of(g(x)) and r(x) = 2of(g(x)). Thus the implication is exhibited
as

λ(g. < λ(x.1of(g(x))), λ(x.2of(g(x))) >).

This is the computational content of the axiom of choice.
In set theory the corresponding statement of the axiom of choice is the

statement that the product of a family of sets B(x) indexed by A is nonempty
if and only if each B(x) is. That is:

Πx : A. B(x) is inhabited
iff

for each x in A, B(x) is inhabited.
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We can state this as a special case of our axiom by taking R(x, y) to be trivial,
say True.

∃f : (x : A → B(x)). T rue iff ∀x :A. ∃y :B(x). T rue.

Another formulation of the axiom in set theory is that for any collection C of
nonempty subsets of a set A, there is a function f taking x ∈ C to an element
f(x) in x. Halmos states this as

∃f. ∀x : (P(A)− {∅}). f(x) ∈ x

We can almost say this in type theory as: there is an element of the type

x : {Y : P(A) |Y is nonempty} → x.

One problem with this formulation is that P(A), the type of all subsets of A,
does not exist. The best we can do, as we discussed in the section on power
sets, is define

Pi(A) = {x : Ui |x v A}.
If we state the result as the claim that

x : (Y : Pi(A)× Y ) → x

is inhabited, then it is trivially true since the choice function f takes as input
a type Y , that is, a subtype of A and an element y ∈ Y , and it produces the y,
e.g.

f(< Y, y >) = y

so f(x) = 2of(x).
But this simply shows that we can make the problem trivial. In a sense our

statements of the axiom of choice have made it too easy.
Another formulation of the axiom of choice would be this:

Set Choice x : {y : Pi(A)|y} → x.

Recall that the evidence for {x :A|B} is simply an object ainA; the evidence
for B is suppressed. That is, we needed it to show that a is in {x : A|B}, but
then by using the subtype, we agree not to reveal this evidence. Set Choice says
that if we have an arbitrary subtype x of A which is inhabited but we do not
know the inhabitant, then we can recover the inhabitant uniformly.

This Set Choice is quite unlikely to be true in type theory. We can indeed
make a recursive model of type theory in which it is false. This is perhaps the
closest we can get in type theory to stating the axiom of choice in its classical
sense, and this axiom is totally implausible. Consider this version:

P : {p : Propi|p ∨ ¬p} → P ∨ ¬P.

We might call this “propositional choice.” It is surely quite implausible in
computational logic.
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12 Computational complexity

As Turing and Church showed, computability is an abstract mathematical con-
cept that does not depend on physical machines (although its practical value
and its large intellectual impact do depend very much on physical machines,
and on the sustained steep exponential growth in their power). Computability
can be axiomatized as done in these notes by underpinning mathematical ob-
jects with data having explicit structure, and by providing reduction rules for
destructor operations on data.

Hartmanis and Stearns showed that the cost of computation can also be
treated mathematically, even though it might at first seem that this would de-
pend essentially on characteristics of physical machines, such as how much time
an operation required, or how much circuitry or how much electrical power or
how much bandwidth, etc. It turns out that our abstract internal characteriza-
tions of resource expenditure during computation is correlated in a meaningful
way with actual physical costs. We call the various internal measures computa-
tional complexity measures.

Although we can define computational complexity mathematically, it is to-
tally unlike all the ideas we have seen in the first eleven sections. Moreover,
there is no comparably general account of computational complexity in set the-
ory, since not all operations of set theory have computational meaning.

Let’s start our technical story by looking at a simple example. Consider
the problem of computing the integer square root of a natural number, say
root(0) = 0, root(2) = 1, root(4) = 2, root(35) = 5, root(36) = 6, etc. We can
state the problem as a theorem to be proved in our computational logic:

Root Theorem ∀n : N. ∃r : N. r2 ≤ n < (r + 1)2.

We prove this theorem by induction on n. If n is zero, then taking r to be 0
satisfies the theorem.

Suppose now that we have the root for n; this is our induction hypothesis,
namely

∗ ∃r :N. r2 ≤ n < (r + 1)2.

Let r0 be this root. Our goal is the find the root for n + 1. As in the case of
root(34) = 5 and root(35) = 5 and root(36) = 6, the decision about whether
the root of n + 1 is r0 or r0 + 1 depends precisely on whether (r0 + 1)2 ≤ n + 1.
So we consider these two cases:

1. Case n + 1 < (r0 + 1)2; then since r0
2 ≤ n, we have:

r0
2 ≤ n + 1 < (r0 + 1)2.

Hence, r0 is the root of n + 1.

2. Case (r0 + 1)2 ≤ n + 1. Notice that since n < (r0 + 1)2, it follows that:
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n + 1 < (r0 + 1)2 + 1 and ((r0 + 1) + 1)2 > (r0 + 1)2 + 1.

Hence r0 + 1 is the root of n + 1. This ends the proof.
By the axiom of choice, there is a function root ∈ N→ N such that

∀n :N. root(n)2 ≤ n < (root(n) + 1)2.

Indeed, we know the code for this function because it is derived from the com-
putational meaning of the proof. It is this recursive function:

root(0) = 0.
root(n + 1) = let r0 = root(n)

in if n + 1 < (r0 + 1)2 then r0

else r0 + 1
end .

It’s easy to determine the number of computation steps needed to find the root
of n. Basically it requires 4 · root(n). This is a rather inefficient computation.
It is basically the same as the cost of the program:

r : = 0
while r2 ≤ n do
r : = r + 1
end.

There are worse computations that look similar, such as

slow root(n) = if n < 0 then 0
else if n < (slow root(n− 1) + 1)2

then slow root(n− 1)
else slow root(n− 1) + 1.

This computation takes 4 · 2root(n).
We might call slow root an “exponential algorithm,” but usually we measure

computational complexity in terms of the length of the input, which is essentially
log(n). So even 4 ·root(n) is an exponential algorithm. It is possible to compute
root(n) in time proportional to log(n) if we take large steps as we search for the
root. Instead of computing root(n− 1), we look at root(n÷ 4). This algorithm
will call root at most log(n) times. Here is the algorithm:

sqrt(x) = if x = 0 then 0
else let r = sqrt(x÷ 4)
in if x < (2 ∗ r + 1)2 then 2 ∗ r
else 2 ∗ r + 1
end.
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This algorithm comes from the following proof. It uses the following efficient-
induction principle:

If P (0) and if for y in N, P (y ÷ 4) implies P (y), then ∀x :N. P (x).

Fast Root Theorem ∀x :N. ∃r : N. r2 ≤ x < (r + 1)2.

Proceed by efficient induction. When x = 0, take r = 0. Otherwise, assume
∃r : N.r2 ≤ x ÷ 4 < (r + 1)2. Now let r0 be the root assumed to exist and
compare (2 ∗ r0 + 1)2 with x.

1. Case x < (w ∗ r0 + 1)2; then since r0
2 ≤ x÷ 4, we know that

(2 ∗ r0)2 ≤ x.

So 2 · r is the root of x.

2. Case (2 ∗ r0 + 1)2. Then we know that:

(2 ∗ r0 + 2)2 = (2 · (r1))2 = 4 · (r + 1)2 > x,

since

x÷ 4 < (r0 + 1)2 and 4 · (x÷ 4) < 4 · (r0 + 1)2.

So 2 · r0 + 1 is the root of x. This ends the proof.
If we use binary (or decimal) notation for natural numbers and implement

the basic operations of addition, subtraction, multiplication and integer divi-
sion efficiently, then we know that this algorithm operates in number of steps
0(log(x)). This is a reasonably efficient algorithm.

The question we want to explore is how to express this basic fact about
runtime of sqrt inside the logic. Our observation that the runtime is 0(log(x))
is made in the metalogic, where we have access to the computation rules and
the syntax of the algorithm. Inside the logic we do not have access to these
aspects, and we cannot easily extend our rules to include them because these
rules conflict with other more basic decisions. Let’s look at this situation more
carefully.

In the logic, the three algorithms root, slow root, and sqrt are functions
from N to N, and as functions they are equal, because slow root(x) = sqrt(x)
for all x inN. Thus slow root = sqrt inN→ N. This fact about equality means
that we cannot have a function Time such as

Time(slow root)(x) = 4 ∗ 2 root(x)

and
Time(sqrt)(x) = 0(log(x)),
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because a function such as Time must respect equality; so if f = g then
Time(f) = Time(g).

At the metalevel we are able to look at slow root and sqrt as terms rather
than as functions. This is the nature of the metalogic; it has access to syntax
and rules. So our exploration leads us to ask whether we can somehow express
facts about the metalogic inside the object logic. Gödel showed one way to do
this, by “encoding” terms and rules as numbers by the mechanism of Gödel
numbering.

We propose to use a mechanism more natural than Gödel numbering; we
will add the appropriate metalogical types and rules into the logic itself. We
are interested in these components of the metalogic:

Metalogic Object Logic
term Term

x evalsto y in m steps x EvalsTo y in m Steps
eval(x) Eval(x)

The idea is that we create a new type, called Term. We show in the metalogic
that Term represents term2 in that for each t ∈ term, there is an element
rep(t) in Term. If t = t′ in term, then rep(t) = rep(t′) in Term.

If t evaluates to t′ in term, then rep(t) EvalsTo rep(t′) in Term, and if
eval(t) = t′, then Eval(rep(t)) = rep(t′).

We will also introduce a function, ref(t), which provides the meaning of
elements of Term. So for a closed term t in Term, ref(t) will provide its
meaning as an element of a type A of the theory, if it has such a meaning. For
each type A, there will be the collection of Terms that represent elements of A,
denoted [A] = {x : Term|∃y : A.ref(x) = y in A}. The relation ref(x) in A is
a proposition Term×A → Prop.

For each type A we can define a collection of Terms that denote elements
of A. Let

[A] = {x : Term|∃y : A.ref(x) = y in A}.
The relation ref(x) is in A is defined as

∃y : A. ref(x) = y in A.

This is a propositional function on Term×A.
Now given an element of [A], we can measure the number of steps that it

takes to reduce it to canonical form. This is done precisely as in the meta
theory, using the relation e EvalsTo e′ in n steps. Having Term as a type
makes it possible to carry over into the type theory the evaluation relation and
the step counting measure that is part of it. We can also define other resource
measures as well, such as the amount of space used during a computation. For
this purpose we could use the size of a term as the basic building block for a
space measure.
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Once we have complexity measures defined on Term, we can define the
concept of a complexity class, as follows.

The evaluation relation on Term provides the basis for defining computa-
tional complexity measures such as time and space. These measures allow us
to express traditional results about complexity classes as well as recent results
concerning complexity in higher types. The basic measure of time is the number
of evaluation steps to canonical form. Here is a definition of the notion that e
runs within time t:

Time(e, t) iff ∃n:[0 · · · t]. ∃f :[0 · · ·n]→ Term. f(0) = e in Term ∧
iscanon(f(n)) = true in B ∧
∀i:[0 · · ·n− 1].

f(i) EvalsTo f(i + 1).

We may define a notion of space in a similar manner. First, we may easilynoin-
dent define a function size with type Term→N which computes the number of
operators in a term. Then we define the predicate Space(e, s), that states that
e runs in space at most s:

Space(e, s) iff ∃n:N. ∃f :[0 · · ·n]→
Term. f(0) = e in Term and

iscanon(f(n)) = true in B and
∀i:[0 · · ·n− 1]. f(i) EvalsTo f(i + 1) and
∀i:[0 · · ·n]. size(f(i)) ≤ s.

Using these, we may define the resource-indexed type [T ]ts of terms that evaluate
(to a member of T ) within time t and space s:

[T ]ts
def= {e : [T ] | Time(e, t) and Space(e, s)}

One interesting application of the resource-indexed types is to define types
like Parikh’s feasible numbers, numbers that may be computed in a “reasonable”
time. Benzinger shows another application.

With time complexity measures defined above, we may define complexity
classes of functions. Complexity classes are expressed as function types whose
members are required to fit within complexity constraints. We call such types
complexity-constrained function types. For example, the quadratic time, poly-
nomial time, and polynomial space computable functions may be defined as
follows:

Quad(x:A −→ B) =

{f : [x:A→B] | ∃c:N. ∀a:[A]0.Time(〈〈app∗, f, a〉〉, c · size(a)2)}
Poly(x:A −→ B) =

{f : [x:A→B] | ∃c, c′:N. ∀a:[A]0.Time(〈〈app∗, f, a〉〉, c · size(a)c′)}
PSpace(x:A −→ B) =
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{f : [x:A→B] | ∃c, c′:N. ∀a:[A]0.Space(〈〈app∗, f, a〉〉, c · size(a)c′)}

One of the advantages of constructive logic is that when the existence of an
object is proven, that object may be constructed, as we saw in our discussion of
the axiom of choice, where a computable function is constructed from a proof.
However, there is no guarantee that such functions may feasibly be executed.
This has been a serious problem in practice, as well as in principle.

Using the complexity-constrained functions, we may define a resource-bounded
logic that solves this problem. As we noted in Section 9 under
the propositions-as-types principle, the universal statement ∀x : A. B
corresponds to the function space x :A→B. By using the complexity-constrained
function space instead, we obtain a resource-bounded universal quantifier. For
example, let us denote the quantifier corresponding to the polynomial-time com-
putable functions by ∀polyx :A. B. By proving the statement ∀polyx:A.∃y:B. P (x, y),
we guarantee that the appropriate y may actually be feasibly computed from a
given x.

The following is a proposition expressing the requirement for a feasible inte-
ger square root:

∀polyx : N. ∃r : N. {r2 ≤ x < (r + 12}.

Bibliographic notes

Section 1 — Types and Equality

The Halmos book [57] does not cite the literature since his account is of the
most basic concepts. I will not give extensive references either, but I will cite
sources that provide addtional references.

One of the best books about basic set theory, in my opinion, is still Foun-
dations of Set Theory, by Fraenkel, Bar-Hillel and Levy [50].

There are a few text books on basic type theory. The 1986 book by the PRL
group [34] is still relevant, and it is now freely available at the Nuprl Web site
(www.cs.cornell.edu/Info/Projects/NuPrl/). Two other basic texts are Type
Theory and Functional Programming, by Thompson [103], and Programming in
Martin-Löf ’s Type Theory [86], by Nordstrom, Petersson and Smith. A recent
book by Ranta, Type-theoretical Grammar [93], has a good general account
of type theory. Martin-Löf type theory is presented in his Intuitionistic Type
Theory [80] and Constructive Mathematics and Computer Programming [79].

Section 2 — Subtypes and Set Types

The notion of subtype is not very thoroughly presented in the literature. There
is the article by Constable and Hickey [39] which cites the basic literature.
Another key paper is by Pierce and Turner [91]. The PhD theses from Cornell
and Edinburgh deal with this subject, especially Crary [46], Hickey [63], and
Hofmann [65].
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Section 3 — Pairs

Cartesian products are standard, even in the earliest type theories, such as
Curry [47] and deBruijn [49].

Section 4 — Union and Intersection

The intersection type is deeply studied in the lambda calculus. See the papers
of Coppo and Dezani-Ciancaglini [42], Compagnoni [33], and Pierce [92].

The logical role of intersection is discussed by Caldwell [26, 25] and earlier
by Allen [4]. The newest results are from Kopylov [71] and Girard [54].

Section 5 — Functions and Relations

This section is the heart of the untyped and typed lambda calculus. See Baren-
dregt [7, 8], Stenlund [102], and Church [29]. The treatment of relations goes
back to Frege and Russell and is covered well in Church [30].

Section 6 — Universes, Powers and Openness

The account of universes is from Per Martin-Löf [79] and is informed by Allen
[4] and Palmgren [88]. Insights about power sets can be found in Fraenkel et al.
[50], Beeson [11], and Troelstra [105].

Section 7 — Families

Families are important in set theory, and accounts such as Bourbaki [18] inform
Martin-Löf’s approach [79].

Section 8 — Lists and Numbers

List theory is the basis of McCarthy’s theory of computing [82]. The Boyer-
Moore prover was used to create an extensive formal theory [19], and the Nuprl
libraries provide a constructive theory.

Section 9 — Logic and the Peano Axioms

Our approach to logic comes from Brouwer as formalized in Heyting [61]. One
of the most influential accounts historically is Howard [66] and also deBruijn
[48, 49] for Automath. The Automath papers are collected in [85].

The connection between propositions and types has found its analogue in set
theory as well. The set theory of Anthony P. Morse from 1986 equated sets and
propositions. He “asserted a set” by the claim that it was non-empty. Morse
believed “that every (mathematical) thing is a set.” For him, conjunction is
intersection, disjunction is union, negation is complementation. Quantification
is the extension of these operations to families.

“Each set is either true or false, and each sentence is a name for a set.”
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Section 10 — Structures, Records and Classes

The approach to records and classes developed here is based entirely on the work
of Constable, Hickey and Crary. The basic papers are [39, 46]. The account by
Betarte and Tasistro [15] is related. There is an etensive literature cited in the
books of Gunter and Mitchell [56]. The treatment of inductive classes is based
on Basin and Constable [9].

Section 11 — The Axiom of Choice

There are many books about the axiom of choice. One of the best is Fraenkel
et al.[50] Another is Gregory Moore’s Zermelo’s Axiom of Choice : Its Origins,
Development, and Influence [83]. Our account is based on Martin-Löf [79].

Section 12 — Computational Complexity

The fundamental concepts and methods of computational complexity theory
were laid down in the seminal paper of Hartmanis and Stearns, On the Compu-
tational Complexity of Algorithms [60]. Many textbooks cover this material, for
example [75]. The extension of this theory to higher-order objects is an active
field [99], and the study of feasible computation is another active area related to
this article [12, 69, 72, 73, 74]. These topics are covered also in Schwichtenberg
[13], and in the articles of Jones [70], Schwichtenberg [98], and Wainer [87] in
this book.

The work reported here is new and based largely on Constable and Crary
[38] and Benzinger [14], as well as examples from Kreitz and Pientka [90].

One interesting application of the resource-indexed types is to define types
like Parikh’s feasible numbers [89], numbers that may be computed in a “rea-
sonable” time. Benzinger [14] shows another application.
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