
A Structured VHDL Design Method

Jiri Gaisler

CTH / Gaisler Research

Outline of lecture

 Traditional 'ad-hoc' VHDL design style

 Proposed structured design method

 Various ways of increasing abstraction level
in synthesisable code

 A few design examples

Traditional VHDL design
methodology

 Based on heritage from schematic entry (!):

 Many small processes or concurrent statements

 Use of TTL-like macro blocks

 Use of GUI tools for code-generation

 Could be compared to schematic without wires (!)

 Hard to read due to many concurrent statements

 Auto-generated code even harder to read/maintain

 Hard to read = difficult to maintain

Traditional ad-hoc design style

 Many concurrent statments

 Many signal

 Few and small process statements

 No unified signal naming convention

 Coding is done at low RTL level:

Assignments with logical expressions

Only simple array data structures are used

Simple VHDL example

CbandDatat_LatchPROC9F: process(MDLE, CB_In, Reset_Out_N)

begin
 if Reset_Out_N = '0' then
 CBLatch_F_1 <= "0000";
 elsif MDLE = '1' then
 CBLatch_F_1 <= CB_In(3 downto 0);
 end if;
 end process;

 CBandDatat_LatchPROC10F: process(MDLE, CB_In, DParIO_In, Reset_Out_N)
 begin
 if Reset_Out_N = '0' then
 CBLatch_F_2 <= "0000";
 elsif MDLE = '1' then
 CBLatch_F_2(6 downto 4) <= CB_In(6 downto 4);
 CBLatch_F_2(7) <= DParIO_In;
 end if;
 end process;

CBLatch_F <= CBLatch_F_2 & CBLatch_F_1;

Problems

 Dataflow coding difficult to understand

 Algorithm difficult to understand

 No distinction between sequential and comb.
signals

 Difficult to identify related signals

 Large port declarations in entity headers

 Slow execution due to many signals and
processes

The ad-hoc style does not scale

Ideal model characteristics

 We want our models to be:

Easy to understand and maintain

Synthesisable

Simulate as fast as possible

No simulation/synthesis discrepancies

Usable for small and large designs

New design style/method needed !

1: abstraction of digital logic

A synchronous design can be abstracted
into two separate parts; a combinational
and a sequential

Comb
q = f(d,q

r
)

DFF

q

Clk

d

q
r

2: the abstracted view in VHDL
The two-process scheme

 A VHDL entity is made to contain only two
processes: one sequential and one
combinational

 Inputs are denoted d, outputs q

 Two local signals are declared: register-in (ri)
and register-out (r)

 The full algorithm (q = f(d,r))is performed in the
combinational process

 The combinational process is sensitive to all
input ports and the register outputs r

 The sequential process is only sensitive to clock

Two-process VHDL entity

Comb. Pro.
q = f

1
(d,r)

ri = f
2
(d,r) Seq.

Process

Out-port
In-ports

r

 ri

Clk

Q

d

Two-process scheme: data types

 The local signals r and rin are of composite type
(record) and include all registered values

 All outputs are grouped into one entity-specific
record type, declared in a global package

 Input ports can be of output record types from
other entities

 A local variable of the register record type is
declared in the combinational processes to hold
newly calculated values

 Additional variables of any type can be declared
in the combinational process for temporary
values

Example
use work.interface.all;

entity irqctrl is port (
 clk : in std_logic;
 rst : in std_logic;
 sysif : in sysif_type;
 irqo : out irqctrl_type);
end;

architecture rtl of irqctrl is

 type reg_type is record
 irq : std_logic;
 pend : std_logic_vector(0 to 7);
 mask : std_logic_vector(0 to 7);
 end record;

 signal r, rin : reg_type;

begin

 comb : process (sysif, r)
 variable v : reg_type;
 begin
 v := r; v.irq := '0';
 for i in r.pend'range loop
 v.pend := r.pend(i) or
 (sysif.irq(i) and r.mask(i));
 v.irq := v.irq or r.pend(i);
 end loop;
 rin <= v;
 irqo.irq <= r.irq;
 end process;

 reg : process (clk)
 begin
 if rising_edge(clk) then
 r <= rin;
 end if;
 end process;

end architecture;

Hierarchical design

 Grouping of signals
makes code readable
and shows the direction
of the dataflow

use work.interface.all;

entity cpu is port (
 clk : in std_logic;
 rst : in std_logic;
 mem_in : in mem_in_type;
 mem_out : out mem_out_type);
end;

architecture rtl of cpu is
 signal cache_out : cache_type;
 signal proc_out : proc_type;
 signal mctrl_out : mctrl_type;
begin

 u0 : proc port map
 (clk, rst, cache_out, proc_out);

 u1 : cache port map
 (clk, rst, proc_out, mem_out cache_out);

 u2 : mctrl port map
 (clk, rst, cache_out, mem_in, mctrl_out,
 mem_out);

end architecture;

Proc

Cache

Mctrl

Memory

Clk, rst

Benefits

Sequential coding is well known and
understood

Algorithm easily extracted

Uniform coding style simplifies maintenance

 Improved simulation and synthesis speed

Development of models is less error-prone

Adding an port

 Traditional method:
 Add port in entity port

declaration

 Add port in sensitivity list
of appropriate processes
(input ports only)

 Add port in component
declaration

 Add signal declaration in
parent module(s)

 Add port map in
component instantiation in
parent module(s)

Two-process
method:

 Add element in the
interface record

Adding a register

 Traditional method:
 Add signal declaration (2

signals)

 Add registered signal in
process sensitivity list (if
not implicite)

 (Declare local variable)

 Add driving statement in
clocked process

Two-process
method:

 Add definition in register
record

Tracing signals during debugging

 Traditional method:
 Figure out which signals

are registered, which are
their inputs, and how they
are functionally related

 Add signals to trace file

 Repeat every time a port
or register is
added/deleted

Two-process method:
 Add interface records, r & rin

 Signals are grouped
according to function and
easy to understand

 Addition/deletion of record
elements automatically
propagated to trace window

Stepping through code during
debugging

 Traditional method:
 Connected processes do

not execute sequentially
due to delta signal delay

 A breakpoint in every
connected process needed

 New signal value in
concurrent processes not
visible

Two-process
method:

 Add a breakpoint in the
begining of the
combinational process

 Single-step through code
to execute complete
algorithm

 Next signal value (ri)
directly visible in variable v

Complete algorithm can be a
sub-program

 Allows re-use if placed in a global
package (e.g. EDAC)

 Can be verified quickly with local
test-bench

 Meiko FPU (20 Kgates):

 1 entity, 2 processes

 44 sub-programs

 13 signal assignments

 Reverse-engineered from
verilog: 87 entities, ~800
processes, ~2500 signals

 comb : process (sysif, r, rst)
 variable v : reg_type;
 begin

 proc_irqctl(sysif, r, v);

 rin <= v;
 irqo.irq <= r.irq;
 end process;

Sequential code and synthesis

 Most sequential
statements directly
synthesisable by modern
tools

 All variables have to be
assigned to avoid latches

 Order of code matters!

 Avoid recursion, division,
access types, text/file IO.

 comb : process (sysif, r, rst)
 variable v : reg_type;
 begin

 proc_irqctl(sysif, r, v);

 if rst = '1' then
 v.irq := '0';
 v.pend := (others => '0');
 end if;

 rin <= v;
 irqo.irq <= r.irq;
 end process;

Comparison MEC/LEON

 ERC32 memory contoller
MEC

 Ad-hoc method (15
designers)

 25,000 lines of code

 45 entities, 800 processes

 2000 signals

 3000 signal assigments

 30 Kgates, 10 man-years,
numerous of bugs, 3
iterations

 LEON SPARC processor

 Two-process method
(mostly)

 15,000 lines of code

 37 entities, 75 processes

 300 signals

 800 signal assigments

 100 Kgates, 2 man-years,
no bugs in first silicon

Increasing the abstraction level

 Benefits

 Easier to understand
the underlying
algorithm

 Easier to
modify/maintain

 Faster simulation

 Use built-in module
generators (synthesis)

 Problems

 Keep the code
synthesisable

 Synthesis tool might
choose wrong gate-
level structure

 Problems to understand
algorithm for less
skilled engineers

Using records

 Useful to group related
signals

 Nested records further
improves readability

 Directly synthesisable

 Element name might be
difficult to find in
synthesised netlist

type reg1_type is record
 f1 : std_logic_vector(0 to 7);
 f2 : std_logic_vector(0 to 7);
 f3 : std_logic_vector(0 to 7);
end record;

type reg2_type is record
 x1 : std_logic_vector(0 to 3);
 x2 : std_logic_vector(0 to 3);
 x3 : std_logic_vector(0 to 3);
end record;

type reg_type is record
 reg1 : reg1_type;
 reg2 : reg2_type;
end record;

variable v : regtype;

v.reg1.f3 := “0011001100”;

Using ieee.numeric_std.all;

 Declares to additional
types: signed and
unsigned

 Declares arithmetic and
various conversion
operators: +, -, *, /, <, >,
=, <=, >=, /=,
conv_integer

 Built-in, optimised versions
available in all simulators
and synthesis tools

 Should be preferred to
std_logic_arith

type unsigned is array (natural range
<>) of st_logic;

type signed is array (natural range
<>) of st_logic;

variable u1, u2, u3 : unsigned;
variable v1 : std_logic_vector;

u1 := u1 + (u2 * u3);

if (v1 >= v2) then ...

v1(0) := u1(conv_integer(u2));

Use of loops

 Used for iterative
calculations

 Index variable implicitly
declared

 Typical use: iterative
algorithms, priority
encoding, sub-bus
extraction, bus turning

variable v1 : std_logic_vector(0 to 7);
variable first_bit : natural;

-- find first bit set
for i in v1'range loop
 if v1(i) = '1' then
 first_bit := i; exit;
 end if;
end loop;

-- reverse bus
for in 0 to 7 loop
 v1(i) := v2(7-i);
end loop;

Multiplexing using integer
conversion

 N to 1 multiplexing

 N to 2**N decoding

function genmux(s, v : std_logic_vector)
return std_logic is

variable res : std_logic_vector(v'length-1
downto 0);

variable i : integer;
begin
 res := v; -- needed to get correct index
 i := conv_integer(unsigned(s));
 return(res(i));
end;

function decode(v : std_logic_vector) return
std_logic_vector is

variable res :
 std_logic_vector((2**v'length)-1 downto 0);
variable i : natural;
begin
 res := (others => '0');
 i := conv_integer(unsigned(v));
 res(i) := '1';
 return(res);
end;

State machines

 Simple case-
statement
implementation

 Maintains current
state

 Both combinational
and registered output
possible

architecture rtl of mymodule is
type state_type is (first, second, last);
type reg_type is record
 state : state_type;
 drive : std_logic;
end record;
signal r, rin : reg_type;
begin
 comb : process(...., r)
 begin
 case r.state is
 when first =>
 if cond0 then v.state := second; end if;
 when second =>
 if cond1 then v.state := first;
 elsif cond2 then v.state := last; end if;
 when others =>
 v.drive := '1'; v.state := first;
 end case;
 if reset = '1' then v.state := first; end if;
 modout.cdrive <= v.drive; -- combinational
 modout.rdrive <= r.drive; -- registered
 end process;
.

Conclusions

The two-process design method provides
a uniform structure, and a natural division
between algorithm and state

 It improves

Development time (coding, debug)

Simulation and synthesis speed

Readability

Maintenance and re-use

