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Abstract. MetaPRL is the latest system to come out of over twenty five
years of research by the Cornell PRL group. While initially created at
Cornell, MetaPRL is currently a collaborative project involving several
universities in several countries. The MetaPRL system combines the prop-
erties of an interactive LCF-style tactic-based proof assistant, a logical
framework, a logical programming environment, and a formal methods
programming toolkit. MetaPRL is distributed under an open-source li-
cense and can be downloaded from http://metaprl.org/. This paper
provides an overview of the system focusing on the features that did not
exist in the previous generations of PRL systems.
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1 Introduction

MetaPRL is the latest in the PRL family of systems [5,11,12,17,18,29,49] devel-
oped over the last 25 years. MetaPRL’s predecessor NuPRL [5,18] was successfully
used for verification and automated optimization of the Ensemble group commu-
nication toolkit [14,38]. The Ensemble toolkit [23] is being used for both military
and commercial applications; its users include BBN, Nortel Networks and NASA.

The MetaPRL project (which was initially called NuPRL-Light [27]) was
started by Jason Hickey as a part of Ensemble verification effort to simplify
formal reasoning about the program code and to address scalability and modu-
larity limitations of NuPRL-4. As more effort was put into the system, MetaPRL
eventually grew into a very general modern system whose modularity on all
levels gives it flexibility to support a very wide range of applications.

MetaPRL is not only a tactic-based interactive proof assistant, it is also a
logical framework that allows users to specify their own logical theories rather
than requiring them to use a single theory. Additionally, MetaPRL is a logical
programming environment that incorporates many features to simplify reason-
ing about programs being developed. In fact, MetaPRL is implemented as an
extension of the OCaml compiler [50]. Finally, MetaPRL can be considered a log-
ical toolkit that exports not only the “high-level” logical interface, but all the
intermediary ones as well. This allows for rapid development of applications that
require formal or semi-formal handling of data.

While MetaPRL was written from scratch and without using any of the pre-
existing PRL code, it keeps many of the major design principles and concepts of
the NuPRL system. For example, the two systems have very similar term syntax
and MetaPRL implements several variations of the NuPRL type theory as one of
its logics (see Section 5.2).

However, MetaPRL is substantially different from NuPRL and has many new
features. In this paper we present an overview of the system focusing on the
features that were introduced in MetaPRL and that did not exist in previous
generations of PRL systems.

MetaPRL is an open-source software system distributed under the terms of
the GNU GPL. Documentation and download instructions can be found at [32].

2 Architecture Overview

At a very high level, the architecture of a tactic-based theorem prover can usually
be described as a layered architecture as shown in Figure 1.

The core of the system is its logical engine, or refiner [10]. It is responsible for
performing the individual proof steps (such as applying a single inference rule).
Next, there is the lower “support” layer for the logical theories. It usually includes
basic meta-theory definitions and possibly some basic proof search mecha-
nisms (such as basic tactics). Finally, at the top of the structure there are the
logical theories themselves, each potentially equipped with theory-specific mech-
anisms (such as theory-specific proof search strategies and theory-specific display
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mechanisms). In a way, the structure of the prover mim-
ics the structure of an operating system with logical
engine being the “kernel” of the system, meta-theory
being its “system library” and logical theories being its
“user space”.

We intentionally did not include any user inter-
face in Figure 1. The reason for such omission is
that often a user interface (such as the NuPRL Editor
[5,39] or Proof General [6]) would be a separate
package added on top of a formal system, rather than a part of the system
itself.

There are two main approaches to building such a prover — one can build
a monolithic prover (such as NuPRL-4) or one can build a modular one. There
are several advantages in a more modular architecture, especially in a research
environment where we want to work on general methodology of formal reasoning.

In a modular system with well-defined interfaces it is easier to try out new
ideas and new approaches. This allows for a greater flexibility and also helps in
bringing new people (including new students) to the project.

The modular architecture also allows one to have several implementations of
some critical module. For example, it is possible to have a generic implementa-
tion and at the same time create alternative implementations of some modules
that are optimized towards a particular class of applications. This approach is
especially useful in the trusted core of the system — there we can have a simple
“reference” implementation that is extensively tested and checked for correctness
as well as one (or more1) highly optimized implementations. Users can develop
proofs using the optimized modules and then later double-check them by re-
running the proof scripts using the reference implementation. This provides the
confidence of knowing that proofs were accepted by both implementations.

Similarly to the modularity of the logical engine of a formal system, the
modularity of the logical theories supported by a system is also important. Some
provers only support reasoning in a single monolithic logical theory, while others,
including MetaPRL, not only give their users a choice of which logical theory to
use, but also allow users to add their own logical theories to the system. Such
systems are often called logical frameworks [47].

MetaPRL provides an implementation of the architecture presented in Fig-
ure 1. The implementation is highly modular on all levels — from logical engine
to logical theories.

The structure of the paper follows the structure of the system. In Section 3
we present the features of the MetaPRL logical engine, in Section 4 we present the
features of MetaPRL intermediate layer, and in Section 5 we present an overview
of logical theories in MetaPRL. We present the logical toolkit side of the system
in Section 6 and provide a brief overview of the related work in Section 7.

1 In fact, in MetaPRL some of the most performance-sensitive modules have up to 6
different implementations.
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3 Logical Engine

The core of the system is its logical engine or refiner [10] that performs two
basic operations. First, it builds the basic proof procedures from the parts of
a logic. The second refiner operation is the application of the basic proof steps
producing justifications from the proofs.

The MetaPRL refiner is based on a higher-order term rewriting engine. This
rewriting engine is used to apply the rules of the system (including both the
axioms and the derived rules described in Section 3.3) by rewriting the cur-
rent proof goal term into terms representing the subgoals that remain to be
proven. The rewriting engine is also used to apply computational and defini-
tional rewrites (see Section 3.4). When a rule or rewrite is defined in a logical
theory, the MetaPRL refiner compiles it to a bytecode program [31] that is run
whenever the rule or rewrite is applied. This precompilation phase significantly
improves performance.

The rewriting engine also has an “informal” mode that is used to convert
terms into strings to be displayed to a user (or to be written into a LATEX file).
This informal mode is also used to provide generic parsing capabilities and en-
ables users to specify parts of their logical theories in their own notation [21].
The rewriting engine is used to execute parsing derivations based on the formal
definition of the notation, which includes the specification of the grammar and
the semantic rules associated with each grammar production. For instance, one
can define a logical theory to reason about simple functional programs and use
actual programming syntax in rewrite rules to specify formal transformations.
When experimental parsing capabilities are more tightly integrated into the sys-
tem, the definitions of the notation will become an integral part of the logical
theories making the logical content more apparent and easy to understand.

3.1 Speed

In a tactic-based prover, the speed of the underlying logical engine has a direct
impact on the level of reasoning. If proof search is slow, more interactive user
guidance is needed to prune the search space, leading to excessive detail in the
tactic proofs. And if the system is fast, it allows users to concentrate more on
the high-level reasoning leaving it to the machine to fill in the “trivial” details.

MetaPRL was designed with efficiency in mind. In addition, MetaPRL code
is highly modular, which has made it easy to improve the efficiency of the pro-
cedures along the critical path (the rewriting engine). MetaPRL modularity has
also allowed us to replace generic modules with domain-specific implementations
that improve performance in some logics. As we explained in Section 2, adding
complex optimizations even to the “trusted core” of the system does not increase
the potential exposure to bugs since the proofs developed using the optimized
refiner can still be double-checked using the slower more trusted implementation.

As a result of our speed-conscious design and implementation (described in
detail in [31]) as well as the quality of the OCaml compiler, the MetaPRL logical
engine is considerably faster than NuPRL-4. We compared the two systems by
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writing tactics that implement a simple domain-specific proof search algorithm
in each of the systems. We performed several tests in several domains and in all
cases MetaPRL was over 100 times faster. And by distributing the system over
several processors and several computers we were able to achieve even greater
speed-ups.

3.2 Transparent Concurrent and Distributed Refinement

MetaPRL is capable of distributing a proof search over several processors using
the Ensemble group communication system [23]. The distribution is transparent
for both the tactic programmer and the system user. That is, the tactics are
programmed using a language very similar to that of NuPRL without restric-
tion. Processes may join and leave (even fail) at any time, affecting only the
speed of the distributed proof search. On a small number of processors, speed
improvements are usually superlinear in the number of processors participating
in a proof.

The distribution mechanism is described in-depth in [28].

3.3 Derived Rules

In an interactive theorem prover it is very useful to have a mechanism allow-
ing users to prove some statement in advance and then reuse the derivation in
further proofs. Often it is especially useful to be able to abstract the particu-
lar derivation. For example, suppose we wish to formalize a data structure for
labeled binary trees. If binary trees are not primitive to the system, we might
implement them in several ways, but the details are irrelevant. The more impor-
tant feature is the inference rule for induction. In a sequent logic, the induction
principle would be similar to the following: for an arbitrary predicate P ,

Γ � P (leaf ) Γ, a : btree, P (a), b : btree, P (b) � P (node(a, b))
Γ, x : btree � P (x)

If this rule can be established, further proofs may use it to reason about
binary trees abstractly without having to unfold the btree definition. This leaves
the user free to replace or augment the implementation of binary trees as long
as she can still prove the same induction principle for the new implementation.
Furthermore, in predicative logics, or in cases where well-formedness is defined
logically, the inference rule is strictly more powerful than its propositional form.
For example, in NuPRL-style type theories certain induction principles can only
be expressed as rules and can not be fully expressed in a propositional form.

If a mechanism for establishing a derived rule is not available, one alterna-
tive is to construct a proof “script” or tactic that can be reapplied whenever a
derivation is needed. There are several problems with this. First, it is inefficient
— instead of applying the derived rule in a single step, the system has to run
through the entire proof each time. Second, the proof script would have to unfold
the btree definition, exposing implementation detail. Third, proof scripts tend
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to be fragile, and must be reconstructed frequently as a system evolves. Finally,
by looking at a proof script or a tactic code, it may be hard to see what exactly
it does, while a derived rule is essentially self-documenting.

Another advantage of derived rules is that they usually contain some informa-
tion on how they are supposed to be used. For example, an implication A⇒ B
can be stated and proved as an A elimination rule or as a B introduction rule,
depending on how we expect it to be used. As we will see in Section 4.2, such
information can be made available to the proof automation procedures, signifi-
cantly reducing the amount of information users have to provide manually.

MetaPRL provides a purely syntactical mechanism for derived rules. The
mechanism is very general and does not depend on a particular logical theory
being used. The key idea of our approach is in using a special higher-order
language for specifying rules; we call it a sequent schemata language [44]. From
a theoretical point of view, we first take some logical theory and express its
rules using sequent schemata. Next, we extend the language of the theory with
the language of sequent schemata. After that we allow extending our theory
with a new derived rule S1 · · · Sn

S whenever we can prove S from Si in the
expanded theory. We have shown [44] that this mechanism would only allow
deriving statements that were already derivable in a conservative extension of
the original theory.

In MetaPRL the user only has to provide the axioms of the base theory in
a sequent schemata language and the rest happens automatically. The system
immediately allows the user to mix the object language of a theory with the
sequent schemata meta-language. Whenever a derived rule is proven in a system,
it allows using that rule in further proofs as if it were a basic postulate of the
theory.2

3.4 Computational Rewrites

In MetaPRL it is possible to define not only logical rules, but also logical rewrites.
A logical rewrite states an equivalence between two terms is valid in any context.
For example, in NuPRL-style type theory, the computationally equivalent terms,
such as λx.A(x) B and A(B), can always be interchanged.

MetaPRL also allows “rewrite theorems” (derived rewrites) and conditional
rewrites — rewrites that state that two terms can be interchanged in contexts
where a certain condition is true. For example, the rewrite (x �= 0) −→ (x/x←→
1) states that in any context where x is known to be non-zero, x/x can be
interchanged with 1.

This powerful rewrite mechanism allows MetaPRL users to avoid stating and
proving well-formedness subgoals in cases when they are not really necessary.
2 MetaPRL would also allow the reverse order — first state a derived rule, use it, and

later “come back” and prove the derived rule. Of course, this means that a proof
is not considered complete until all the derived rules used in it are also proven.
Such an approach allows one to “test-drive” a derived rule before investing time into
establishing its admissibility.
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Additionally, the context-independence of rewrites enables us to chain rewrite
applications (and rewrite application attempts) in a very efficient manner, mak-
ing rewrite applications an order of magnitude faster than rule applications.

4 Proof Search Automation

In addition to the logical engine, MetaPRL also provides considerable proof au-
tomation, using extensible proof-search procedures coded as LCF-style [20] tac-
tics.

4.1 Resources

Often some basic tactics are designed to behave very differently in different con-
texts. One of the best examples of such a tactic is the decomposition tactic [33,
Section 3.3] present both in NuPRL and in MetaPRL. When applied to the con-
clusion of a goal sequent, it will try to decompose the conclusion into simpler
ones, normally by using an appropriate introduction rule. When applied to a hy-
pothesis, the decomposition tactic would try to break the hypothesis into simpler
ones, usually by applying an appropriate elimination rule.

Even with a fixed base logic, as in NuPRL, these automated procedures need
to be updated dynamically as new definitions and theorems are added. In Meta-
PRL, with multiple (perhaps conflicting) logics, this has the added complexity
that definitions and theorems can be used for automation only in the logic in
which they are defined or proved.

MetaPRL automates this process through a mechanism called resources. A
resource is essentially a collection of pieces of data (with each piece of data
residing in a particular logical theory); the resource interface provides an inheri-
tance mechanism based on the logical hierarchy (see Section 5.1). Resources are
managed on a per-theorem granularity — when working on a particular proof,
the resource state reflects everything collected from the current theory up to the
theorem being proved, as well as everything inherited from the theories that are
ancestors of the current one in the logical hierarchy.

MetaPRL has resources controlling the behavior of the decomposition tactic,
of the type inference heuristic, of the term simplifier rewriting tactic, and many
others.

4.2 Resource Annotations

When a new rule (or rewrite) is added to a system, new data has to be added
to some resources if we want to allow the proof search procedures controlled by
those resources to take advantage of the new rule (rewrite). It turns out that
most such resource updates are rather uniform. For most MetaPRL resources
we have been able to automate these resource insertions by giving the resource
updating functions access to the text of the newly added rules and rewrites (as
opposed to just giving them access to primitive tactics corresponding to those
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rules and rewrites), essentially creating a reflective mechanism. This is possible
because all rules and rewrites are expressed in a formally defined language of
sequent schemata (see Section 3.3).

From the MetaPRL user’s perspective this mechanism has a form of resource
annotations. When adding a new rule, a user only has to annotate it with the
names of resources that need to be automatically improved. Users can also pass
some optional arguments to the automatic procedure in order to modify its be-
havior. As a result, when a new logical object (rule, rewrite, etc) is added to a
MetaPRL theory, the user can usually update all relevant proof search automa-
tion by only typing a few extra symbols. Moreover, adding new resources is quite
easy, and there are many tools that make automation of resource improvements
simpler.

For more information on resource annotations, see [43, Section 4.3].

4.3 Generic Tactics

Derived rules and resource annotations combined provide a new way of imple-
menting many complex tactics. Instead of writing large tactics code that may
be hard to debug and to understand, MetaPRL users can view a tactic as a
number of deterministic sequences of rule applications together with some con-
trol information that specifies which sequences get executed and in what order.
Deterministic sequences would be implemented as derived rules, and control in-
formation would be added as resource annotations on some of the rules. This
improves the efficiency of these tactics (applying a derived rule only takes one
step of the rewriting engine) and usually makes them easier to maintain.

When a tactic is implemented via resource annotations, most of its code is
generic and does not depend on particular details of a logical theory. The great
advantage of such generic tactics is that they can be implemented once and then
reused in a wide range of logical theories with no or a little additional effort. In
a logical framework like MetaPRL this leads to a significant degree of code reuse
and greatly simplifies the task of automating proof search when new theories are
added to the system.

Another approach to creating generic tactics in MetaPRL is turning decision
procedures and automated proving procedures into heuristics. We observe that
proving the decision procedure is correct in a particular instance is much easier
than proving that it will always be correct and the former can often be estab-
lished automatically. When a decision procedure can be enhanced to output some
evidence along with the “yes” answer, it can be turned into a tactic that first ex-
ecutes the enhanced decision procedure and then tries to interpret the provided
evidence, turning it into a complete proof. Since tactics go through the logical
engine, we now get a decision procedure that does not have to be trusted. This
decouples the procedure from the theory it is being used in since we no longer
have to keep making sure the procedure correctly matches the theory every time
we want to change either the theory, or the decision procedure.
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This approach was used by Stephan Schmitt for implementing the JProver
decision procedure in MetaPRL. JProver [48] is a complete3 theorem prover for
first-order intuitionistic logic that is based on a strategy called the connection
method [13,36]. Upon success it generates a sequent proof for the proof goal [37]
that may be inspected by a user.

JProver is implemented on top of MetaPRL core in a very generic way [48],
using MetaPRL as a theorem proving toolkit (see Section 6) without referring
to any specific logical theory. When it finds a proof, JProver outputs a simple
generic encoding of the proof that can be easily converted to a tactic in, for
example, type theory. Since JProver’s output is converted to a tactic and is not
“trusted”, this allows us to use it even when not all assumptions JProver makes
about the underlying logic are actually valid (as it happens in type theory).

Both approaches to generic tactics are essentially replacing a human-intensive
approach with a computer-intensive one. In case of an updatable tactic we have
the system itself extracting the relevant information from the text of the rules,
instead of requiring users to provide it. In case of decision procedures we elimi-
nate the need for manually establishing the validity of a procedure and instead
use a computer system for post-processing proofs that come out of the procedure.

5 Logical Theories

MetaPRL logical theories (or simply logics) can contain the following kinds of
objects:

(A) Syntax definitions define the language of a logic.
(B) Inference rules define the primitive inferences of a logic. For instance, the

first-order logic contains rules like modus ponens in a sequent calculus.

Γ, A � A
axiom Γ � A⇒ B Γ � A

Γ � B
modus ponens

(C) Rewrites (described in Section 3.4) define computational and definitional
equivalences. For example, the type theory defines functions and applica-
tions with the equivalence (λx. b[x]) a←→ b[a].

(D) Theorems contain proofs of derived inference rules.
(E) Tactics provide theory-specific proof search automation.

In addition to the formal objects enumerated above, MetaPRL theories con-
tain display forms that describe how the formal syntax should be presented
to the user and how to export it to LATEX. Most theories also contain literate
comments that are used to generate the documentation for those theories.

An extensive documentation of MetaPRL theories (generated automatically
from the literate comments and updated on a regular basis) is available at [30].
3 Since first-order logic is undecidable, JProver will not terminate if the goal cannot

be proven and must be interrupted (typically by limiting the maximum proof search
depth).
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5.1 Hierarchical Theories Mechanism

MetaPRL does not assume any particular theory or logic and allows users to
formulate and use different logics and theories. In MetaPRL logical theories are
implemented as extensions of ML modules. Each theory is usually a sequence
of logical objects (such as rules and definitions) and ML code (such as tactic
implementations and resource code). The theories are object-oriented, in the
sense that a theory specifies a class that inherits rules and implementations
from other classes. All rules (including the derived rules — see Section 3.3) that
are valid in a superclass are valid in a subclass.

Such a modular mechanism has many advantages. It allows formulating a
new logic by composing pieces (theories) of an existing logic and adding extra
theories if necessary. For example, if a user wanted to create a theory based on
product types and some extra objects, she can take the product type module
from the NuPRL-style type theory implemented in MetaPRL and add other mod-
ules if necessary. A nice property of our implementation is that such a user would
automatically get not only all the primitive rules about the product types, but
also all the theorems about them and all the tactics and resource data (see Sec-
tion 4.1) needed to work with product types and all the display forms describing
how to pretty print product types.

See [27] for a detailed description of the MetaPRL logical framework.

5.2 NuPRL-Style Type Theory

Some of the most powerful and challenging logical theories implemented in the-
orem provers are various flavors of constructive type theory. MetaPRL is not an
exception — its most extensively developed and most frequently used theory is
a variation of the NuPRL intuitionistic type theory [18] (which in turn is based
on the Martin-Löf type theory [41]).

The MetaPRL implementation of the type theory differs from the NuPRL’s
one in several major aspects. The most obvious distinction is the extensive use
of computational rewrites (including derived ones), derived rules and resource
annotations as well as an extensive modularization of the theory.

Another big difference is MetaPRL’s approach to formalizing the notion of a
quotient type. In MetaPRL the traditional monolithic axiomatization of quotients
is replaced by a modular set of rules for a specially chosen set of primitive
operations (as described in [42] and [43, Chapter 5]). This modular formalization
of quotient types turns out to be much easier to use and free of many limitations
of the traditional monolithic formalization. As an illustration of the advantages
of the new approach, MetaPRL includes a theory that demonstrates how the
type of collections (that is known to be very hard to formalize using traditional
quotient types) can be naturally formalized using the new primitives.

MetaPRL also includes Kopylov’s theory of extensible dependent record
types [34]. Record types are an important tool for programming and are es-
sential in formalizing object-oriented calculi [1,19,26]. Dependent record types
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may be used to represent modules in programming languages with their specifi-
cations. Dependent record types are also used to represent algebraic structures.
In most of the previous approaches, the dependent record type was treated as
primitive. MetaPRL theory defines it using a new type constructor, dependent
intersection [34]. Dependent intersection is an intersection of two types, where
the second type may depend on elements of the first one. This type constructor
is built by analogy to the dependent product. It turns out that the concatenation
of dependent records is a dependent intersection. This observation allows us to
define the record type in a very simple way. Our record type has natural subtyp-
ing properties and we are able to extend record types. Dependent intersection
can also be used to define a set type. This means that dependent intersection
not only adds support for dependent records, it simplifies the theory at the same
time.

While NuPRL uses “trusted” decision procedures to implement some of its
arithmetical reasoning, MetaPRL has explicit axioms with corresponding decision
procedures being implemented as generic tactics (see Section 4.3).

In addition to the purely intuitionistic type theory, MetaPRL also has a the-
ory (implemented as a module extending the standard type theory) that allows
some limited form of classical reasoning [35]. While retaining most of the con-
structive properties, this theory allows expressing and proving a propositional
analog of Markov’s principle [40]. The MetaPRL and NuPRL groups continue to
use purely intuitionistic reasoning for most purposes, however this experimental
theory provides a promising alternative approach to managing computational
meaning of constructive proofs.

5.3 Constructive Set Theory

In [2,3], Aczel introduced Constructive Zermelo-Fraenkel set theory, CZF, and
formulated an embedding of CZF into the Martin-Löf’s type theory [41]. Based
on Aczel’s work, Hickey formally embedded CZF into the MetaPRL type theory
[29]. Since Aczel’s CZF theory is specified explicitly by a collection of axioms,
after sets and these axioms are encoded in MetaPRL’s CZF module, we can use
them directly without referring to the type theory.

In [51,52], Yu provided a machine-checked formalization of the basic abstract
algebra on the basis of MetaPRL’s CZF implementation. She started by specify-
ing the group axioms as a collection of inference rules, defining a logic for groups.
The formalization of all other concepts in abstract algebra, such as subgroups
and homomorphisms, is based on this group logic. She proved some theorems
of group theory constructively from these inference rules as well as the axioms
of CZF in MetaPRL, and provided an example of a formalization of a concrete
group, the Klein 4-group.

5.4 Other Theories

One of the goals in MetaPRL is to maintain a close connection between the formal
module system and the OCaml programming language. By making the formal
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system an extension of OCaml, we provide a path for adding formal reasoning
to applications that have been previously developed using standard software
engineering methodology. This eases the burden of programming in a formal
system because formal tools (for specification, verification, documentation, etc.)
need only be learned when the benefits of doing so are desired. The reason is
also pedantic: to learn how to program in a formal system, we can first learn
how to program informally and then augment our knowledge with a foundational
mathematical understanding. The final reason is a matter of bootstrapping: we
would like to use MetaPRL to reason about its own implementation but we need
an implementation first!

The MC theory is the first attempt at implementing a formal compiler [7].
Terms are used to formally represent the functional intermediate representa-
tion (FIR) [25] of the Mojave Compiler Collection (MCC) within MetaPRL, and
rewrites are used to give the operational semantics of the FIR. Several tactics
allow MetaPRL to transform FIR code through dead code elimination and inlin-
ing. Additional ML code informally translates the FIR between MCC’s internal
representation and the MetaPRL term language.

6 Logical Toolkit

The MetaPRL system provides a large array of efficient modules with well-defined
and very generic interfaces covering various aspects of formal reasoning. The ex-
ported functionality ranges from very low-level (term syntax, alpha-equality, uni-
fication, etc) to very high-level (generic proof automation procedures, an ability
to reason in various logical theories), and includes a very efficient term rewrit-
ing engine. This makes it very easy to use MetaPRL as a general programming
toolkit for applications requiring formal methods functionality.

One example of an application developed using MetaPRL as a programming
toolkit is the JProver (see Section 4.3) automated prover for first-order intuition-
istic and classical logics. Once JProver was implemented4, it itself became a part
of the MetaPRL toolkit. As described in [48], this allowed us to integrate JProver
into the MetaPRL implementation of the type theory and into the NuPRL sys-
tem. Later, Guan-Shieng Huang was able to integrate5 JProver into Coq proof
assistant [8] (without any help by the members of the PRL community).

Another example is the Phobos generic parser [21] that is powered by the
MetaPRL rewriting engine. Phobos is a part of a compiler [24] for a simple ML-
like language, where all program transformations (all the way from parsing to
x86 assembly language) are (semi-)formally specified and are executed through
the MetaPRL logical engine.

MetaPRL is also being used as a part of the Formal Digital Library (FDL)
project being developed at Cornell, Caltech and Wyoming. The first prototype

4 The main JProver developer did not have any previous experience with MetaPRL.
5 See http://coqcvs.inria.fr/cgi-bin/cvswebcoq.cgi/checkout/V7/contrib/jprover/README for

more information on Coq JProver integration.
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FDL has been built [4] and contains definitions, theorems, theories, proof meth-
ods, and articles about topics in computational mathematics and books assem-
bled from them. Currently it supports these objects created with the theorem
proving systems MetaPRL, NuPRL and PVS, with intent to include material from
other implemented logics such as Minlog, Coq, HOL, Isabelle, and Larch in due
course.

The MetaPRL logics that an FDL user is interested in are specified during the
build of MetaPRL. After the FDL is connected to MetaPRL, one can retrieve the
modules of those logics, and their contents. The data is transferred over TCP
sockets in the MathBus interchange format [53]. FDL sends MetaPRL commands
that specify what to import and how, and can contain additional evaluation
requests. Example commands include listing all modules, retrieving a particu-
lar proof in a module, calling the proof engine on a particular proof step, or
migrating an entire module, or logic.

For the purpose of the FDL, we typically migrate all the available data. Then,
the FDL can check the proofs by calling the MetaPRL proof engine and build the
appropriate certificates.

7 Related Work

In parallel with MetaPRL, Cornell PRL group also developed another descendant
of NuPRL-4 — NuPRL LPE [5]. These two projects are intended to compliment
each other. In particular, NuPRL LPE features a complex implementation of a
knowledge base that allows one to store logical objects with arbitrary relations
between them — such as, for example, the MetaPRL objects organized in a hi-
erarchy of theories (see Section 5.1). NuPRL LPE’s distributed nature allows one
to use different logical engines from NuPRL LPE — including the fast logical
engine (see Section 3.1) provided by MetaPRL. NuPRL LPE also provides a com-
plex GUI — a logical navigator, which compensates for the lack of an advanced
GUI in MetaPRL. NuPRL LPE is currently being used in UAV system protocol
verification and in work on practical reflection [9].

MetaPRL has much in common with the Isabelle generic theorem prover [45,
46]. The main differences are the logical foundations and the theory mechanism.
We have kept a Martin-Löf style logic, hence the need for computational rewrites.
Also, our module mechanism stresses relations between theories, allowing reuse
of proof automation.

Harrison’s HOL-Light [22] shares some common features with the MetaPRL
implementation. Harrison’s system is implemented in Caml-Light, and both sys-
tems require fewer computational resources than their predecessors.

For a more detailed overview of the work related to some of the individual
features of the MetaPRL system, please see the corresponding papers cited above
[7,21,24,27,28,29,31,34,35,42,43,44,48,51,52].
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Filliâtre, Eduardo Giménez, Hugo Herbelin, Gérard-Mohring, Amokrane Säıbi,
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