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Introduction

Benford’s Law is that kind of very counter-intuitive law which never ceases to
astound. Actually some authors compared it with Newton’s Law of gravitation,
saying that it is more a simple observation of reality rather than a provable
mathematical result. Dealing with that kind of law is quite difficult, because
the scientist is then always somewhere between excessive cartesian doubt and
mystical faith. However the author tried to stay the most realistic possible in
his approach, without denying the reality of facts but without drawing any fast
conclusion.

Benford’s Law, after its discovery, was forgotten, or rather little studied,
because it had little application to real problems. Nowadays, however, it is
experiencing a regain of interest, certainly because of fraud detection and data
mining cutting-edge applications. In that context the project was not aimed at
those applications in the real world (some would say ‘in the market’), but rather
at the mathematical justifications of such applications.

The present report is a technical summary of some of the most interesting
papers that were published on Benford’s Law, plus a few experiments that the
(skeptical) author performed on real datasets. The mathematical part includes
nothing really new (except maybe section 2.2), as many of the theorems and
the proofs were only detailed by the author, who thus made them easily under-
standable. Some of the sections are not as complete as the author would wish
them to be, but all the major contributions are described.



Notations

The following notations and definitions will be used throughout this report:

e log(z) will denote the logarithm of z in base 10, while In(z) will denote
the natural logarithm of z (i.e. in base e), and log, () the logarithm of x
in base b.

e Pr(E) will denote the probability of the event E, and 15 will denote the
indicator function of E

e [a,b] is the closed real interval, [a,b) is the real interval closed in a and
open in b, and similarly for (a,b] and (a, b).

e If S is a set of numbers, k a real number, and n a positive integer, kS (or
k x S), S* and S mod n will denote respectively the sets {ks,s € S},
{s* s € S}, and {s mod n,s € S} .

e The cardinality of a countable set S will be denoted #S.

e The mantissa function in base b of a positive real number is defined as
follow:
Mb . RT = [1,b)
T = My

where my is the unique number in [1,b) such that = my x b" for some
n € Z.

e The mantissa function in base 10 will be denoted simply M.

e The k'" significant digit function in base b of a positive real number is
defined as follow:

Db . Rt - {0,...,b}
z = db

where {d} }, is the unique sequence s.t. d° € {1,...,b—1},d’ € {0,... ,b—
1}, and:

o0

MP(z) =) b0Vl

i=1

e As for the mantissa, the base 10 will be omitted when possible in the
notation of the significant digits.

e Unless stated otherwise, X will denote an arbitrary random variable, M
the random variable representing its mantissa in base 10 (M = M (X)),
and Dy, the random variable representing its k" significant digit in base
10 (Dy, = Dy(X)).
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Chapter 1

The discovery of Benford’s
law

This chapter is dedicated to the history of Benford’s law, which is a good exam-
ple of how discoveries are sometimes made, forgotten, and then found again...

1.1 1881: Newcomb’s article

Simon Newcomb (1835-1909) is thought to have been the first to discover the
phenomenon that would later be called Benford’s law, or at least the first who
published something about it. He was a highly honored American astronomer,
his most famous work regarding planetary theories and astronomical constant
derivation. His discovery of the departure of the moon from its predicted posi-
tion led to the investigation of variations in rate of rotation of the earth.

Figure 1.1: Simon Newcomb (1835-1909)



Simon Newcomb was not a mathematician in the strict sense of the term,
but not surprisingly by its counter-intuitive nature Benford’s law tends to at-
tract more attention from physicists or physics related scientists than from pure
mathematicians. In 1881, he published a two-pages long paper in the American
Journal of Mathematics (see [Newcombl]), and he would surely be surprised how
much the subject has been explored since then.

So what did Newcomb find?

That the ten digits do not occur with equal frequency must be evi-
dent to any one making much use of logarithmic tables, and noticing
how much faster the first ones wear out than the last ones.

According to his observations, the first pages in the logarithmic tables, i.e.
those showing the logarithms of numbers beginning with the lowest digits, were
more referred to than the last ones. His fellow scientists would thus be using
more numbers beginning with the digit 1 than expected... This may sound
strange at first sight, why should not the digits of such numbers be uniformly
distributed? However, it makes more sense when one thinks that the numbers
used by scientists are neither purely random, nor purely deterministic... In
general these numbers come from some physical constants, by some derivation or
some computation. Therefore Newcomb called them “natural number”, maybe
by default of a better name, whereas later Benford used the expression “outlaw
numbers” in quite the same meaning.

Using some heuristic arguments about numbers, including some that might
sound strange today (“As natural numbers occur in nature, they are to be
considered as the ratios of quantities.”), Newcomb concluded:

The law of probability of the occurrence of numbers is such that all
mantissae of their logarithms are equally likely.

This sentence implies (although not clearly, see 2.1.4) that the probabilty
that the first digit D; equals d is given by:

Pr(D, =d) =log <1 + é)

However, this sentence is a lot more general, as the distributions of all the
digits, and even that of the whole mantissa, can be derived. Newcomb did not
write explicitly these formulae, although it is certain that he was fully aware of
them, as he gave the following table of probability for the first two digits:



d [ Pr(D, = d) | Pr(D; = d)
0 - 0.1197
1| 03010 0.1139
2| 0.1761 0.1088
3| 0.1249 0.1043
4] 0.0969 0.1003
5 0.0792 0.0967
6| 0.0669 0.0934
7| 0.0580 0.0904
8| 0.0512 0.0876
9| 0.0458 0.0850

0.3

0.2

0.1

0.0

Figure 1.2: The distributions of the first and second digits as derived by New-

comb

It can thus be observed that the distribution of the second digit is less left
skewed than that of the first digit, and it is also more linear. Newcomb pointed
out this fact, and also that according to ‘his’ law the distribution of a digit
converges to the uniform as its position increases in the mantissa, i.e.:

In the case of the third figure the probability will be nearly the same
for each digit, and for the fourth and following ones the difference

T
1

T
2

3 4 5|:“j”:”]

will be inappreciable.




On the whole, Newcomb’s article has a kind of genius sense, but as often in
that kind of discovery it is not well explained at all. Moreover the discovery is
totally counter-intuitive, so actually he would probably have been considered as
a bit weird if his article had drawn any attention...

1.2 Benford’s experiment

Newcomb’s article was not well recognized at all, perhaps because of its appar-
ent lack of mathematical background. However, about half a century later, a
physicist at General Electric somehow ’rediscovered’ the phenomenon, and so
naturally the law took his name, unfortunately for his predecessor.

Like Newcomb before him, Frank Benford observed the difference of dirtiness
on the logarithm pages. He then tried to reproduce in a now famous experi-
ment what these tables were used for (see [Benford]). He collected some 20,229
observations of “natural” numbers, some coming from strict mathematical rules
like sqare roots of integers, others from physics like constants and measure-
ments, but also some from ‘weird’ datasets like the first 342 street addresses of
American Men of Science, every number from an issue of Readers Digest, etc...

He computed the frequencies of the first digit for each different dataset he
used, and also the average of all the datasets together. The results were sum-
marized in the following table:

Title 1 2 3 4 5 6 7 8 9 | Samples
Rivers, Area 31.0 | 164 | 10.7 | 11.3 | 7.2 | 86 | 55| 42| 5.1 335
Population 3391204 | 142 81 72 1624137 22 3259
Constants 413 | 144 | 48 86 | 10.6 | 5.8 | 1.0 |29 | 10.6 104
Newspaper items 30.0 | 18.0 | 12.0 | 10.0 | 8.0 | 6.0 | 6.0 | 5.0 | 5.0 100
Spec. Heat 240 | 184 | 16.2 | 146 | 106 | 4.1 | 3.2 | 4.8 | 4.1 1389
Pressure 296 | 183 | 128 | 98 | 83 | 64 | 5.7 | 44| 47 703
H.P. Lost 30.0 | 184|119 108 | 81 | 70|51 |51]| 3.6 690
Mol. Wgt. 26.7 | 25.2 | 154 | 10.8 | 6.7 | 5.1 | 4.1 | 2.8 | 3.2 1800
Drainage 2711239 | 138|126 | 82 | 5.0 | 50| 25| 1.9 159
Atomic Wgt. 472 | 187 | 5.5 4.4 66 | 4413344 55 91
nt n 2571203 97| 6.8 | 6.6 | 68|72 |80 89 5000
Design 26.8 | 148|143 | 75 | 83 |84 | 70| 73| 56 560
Digest 334 | 185|124 | 75 71 | 65| 55|49 4.2 308
Cost Data 324|188 | 10.1 | 10.1 | 9.8 | 5.5 | 4.7 | 5.5 | 3.1 741
X-Ray Volts 279 | 175|144 9.0 | 81 | 74 |51 | 58| 4.8 707
Am. League 3271176 | 126 | 98 | 74 |64 49|56 | 3.0 1458
Blackbody 31.0 | 173|141 | 87 | 6.6 | 7.0 | 52 | 47| 54 1165
Addresses 289192126 | 88 | 85 | 64|56 | 50| 50 342
nt,n? ... n! 253 116.0 | 12.0 | 100 | 85 | 88| 6.8 | 7.1 | 5.5 900
Death Rate 27.0 | 186 | 15.7 | 9.4 6.7 | 65| 72|48 | 4.1 418
Average 306 | 185 | 124 | 94 80 | 64 (51|49 | 47 1011
Probable Error (£) | 0.8 | 04 | 04 | 03 | 0.2 |02 |0.2| 02| 0.3
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Figure 1.3: Average of all frequencies in Benford’s experiment

Benford observed that the logarithmic law was better fitted by the more
random numbers in his experiment (“those outlaw numbers without known re-
lationships”), like the numbers taken from newspapers, the street adresses, and
the physical measurements (air presssure, black body radiation, etc...), than the
more deterministic ones, like the square roots of integers. However, what has to
be pointed out is that it is the average which has the best fit to the logarithmic
law.

1.3 Different attempts to explain Benford’s law

Benford himself tried to explain the phenomenon by investigating the set of
natural integers, in an attempt to prove that it comes naturally from our number
system. As a start, he tried to prove that the set of integers that have one as
first digit (i.e. {1,11,12,...100,101,...}) has a ‘probability’ of log 2 among the
integers. The problem that he encountered (and that many encountered after
him) is that this set has no asymptotic natural frequency, i.e. the limit:

1
limg#{iENMgnanddl(i):l}

does not exist.



If one tried to represent the behaviour of this sequence (extrapolating it
between integers), this would look like this:

0.8 1.0
I

0.6

frequency

0.2

T
1 10 100 1000 10000

Figure 1.4: Frequency of appearance of the first digit 1 in the set {1,...n}

So the limit does not exist, the sequence is oscillating on a logarithmic scale
between two extrema that are not even constant (even if it cannot be clearly seen
on figure 1.4), the minima decreasing towards % = 0.1111... and the maxima
towards % =0.5955....

There are various ways to define a limit of such a sequence, and several of
them lead to the desired log 2. In fact many of the writers that followed adopted
the same start as Benford, and different integration schemes were proven to
be consistent with Benford’s Law. Raimi has an excellent review of the ‘old’
litterature (see [Raimi] ).

But the problem is then always the same for those explanations:

e Firstly, the integration methods are not unique, and of course plenty of
them do not lead to Benford’s law.

e Secondly, the approach itself is a bit dubious, since it aims at proving that
the law is valid for the whole number system (so is completely universal),
and of course lots of data sets -even ’'natural’ ones- do mot confirm to
Benford’s law.

The first major breakthrough in that context was apparently made by Pinkham
(who however attributes the idea to Hamming), in 1961 (see [Pinkham]). This
very simple idea was: “if there’s a universal law in nature then it should appear



whatever units are used to count”. For example, if Benford’s law is observed in
a financial dataset expressed in dollars, then it should also appear in the same
dataset expressed in francs. The action of converting from one unit to another
is of course a scaling by a constant, and Pinkham not only discovered that the
logarithmic law is invariant by scaling, but also that it is the only law that
has such a property, which he naturally called scale-invariance (see 2.3.2 for the
proofs).

There were still some enormous problems in that reasoning, though. The
basic hypothesis was “if there’s a universal law”, and of course it is rather hard
or even impossible to admit. And also, on a more mathematical ground, it is
easy to see that there is no scale invariant probability measure on the Borels,
since then for example the probability of (0,1) would equal that of (0, s), for
every s, which is impossible if (0, 1) has a non zero probability. But the idea was
there, and with the many datasets that were then known to follow Benford’s
Law, the path was set for different -and maybe more rigorous- approaches...

1.4 Recent developments

After the 1980s, a period during which few articles were published about the
subject, the beginning of the 90s seems like a renewal for Benford’s Law. This is
perhaps due to the ‘discovery’ of a new important field of application, i.e. fraud
detection (see below, section 1.6) . One of the first key papers to be written on
the subject was Mark Nigrini’s thesis (supported in 1992 at the Department of
Accounting, University of Cincinatti).

In the 90s, one of the major contributions to the analysis of Benford’s Law
is certainly due to Theodore Hill, who set up a correct probability framework
for Benford’s Law, extended the idea of scale-invariance to base-invariance (why
should a ”universal law” be dependent of the base in which the numbers are
written?), and introduced a new way of considering Benford’s Law, as explained
below.

Beforehand, many of the previous works on Benford’s Law were somehow
quoting “mystical” reasons when explaining the existence of the law. Actually
many authors hypothesized a sort of behind-the-scene universal law, or which
is the same, a universal table of constants, and tried to conjecture from this
hypothesis.

However, as it was explained above in section 1.3, this cannot be proved at
all. A more natural approach, and indeed so natural that surprisingly nobody
explored it before Hill in 1995, is to think of data as being a mixture from
different distributions. Actually this approach seems to be relevant to Benford’s
experiment, where the data came from more than 20 various distributions. Hill
simply linked this idea with scale- and base-invariance to make a consistent -
but unfinished- explanation of Benford’s Law. Some of the later authors (see
[Leemis et al.]) have tried to complete it, but there is still a lot of work to do
in that domain. Section 2.3 tries to provide an insight of Hill’s mathematical
work on Benford’s Law.

10



1.5 Empirical evidence

Distinct from the theoretical attempts at explaining the law, there had always
been lots of publications about newly discovered Benford datasets. In fact
not surprisingly many of them were made by physicists or computer scientists.
Considering the number of datasets in the universe compared with the number
of people aware of Benford’s Law, there still must be a lot to find... However,
these datasets were often found by luck, so the chances of someone looking on
purpose for a new kind of Benford dataset succeeding are not necessarily high...

The following list, which does not include the ones found by Benford, does
not pretend to be complete, but tries to offer a view as broad as possible:

e Physical constants: The list of the most used constants in physics has
been found by several authors to offer a rather good fit to Benford’s Law
(see [Knuth] and [Burke & Kincanon] ). This is not a really convincing
example (in the author’s opinion), since in general there are too few of
them to draw a strong statistical conclusion.

e Physical measurements: Some physicists and engineers remarked that
the first digits of their own data had the logarithmic distribution. In
engineering for instance Becker found that the failure rates and the MT-
TFs (Mean Time To Failure), taken from classical tables, often satisfy
Benford’s Law (see [Becker]). In atomic physics, Buck, Merchant and
Perez observed that the first digits of both the predicted and the observed
values of 477 radioactive half-lives have the logarithmic distribution (see
[Buck et al.]).

e Scientific calculations: In case of long series of floating-point opera-
tions, the mantissae are known to follow a logarithmic distribution. Ac-
tually some specialists just wondered why it is not considered more of-
ten, given the very high frequency of appearance of the phenomenon (see
[Hamming] and [Knuth]).

e Financial and accounting data: Many Benford datasets have been
found in this domain. In accounting, Benford’s Law appears very often,
as “lists of items, such as accounts receivable or payable, inventory counts,
fixed asset acquisitions, daily sales, and disbursements, should follow Ben-
ford’s Law” (see [Nigrini & Mittermaier]). In finance, Ley for example
found that “the series of 1-day returns on the Dow-Jones Industrial Aver-
age Index (DJIA) and the Standard and Poor’s Index (S&P) reasonably
agrees with Benford’s Law” (see [Ley]).

e Populations: Census data is another important type of Benford datasets.
In an apparently unpublished study Nigrini and Wood found that the
populations of the 3141 U.S. counties in 1990 were a good fit to Benford’s
Law (see [Hilla]). In the present report some other demographic data are
considered (in chapter 3).

11



1.6 Applications

At the beginning not many applications were seen by scientists. Benford’s Law
was seen as a kind of mathematical nicety without any practical returns. Then
in the 70s and with the arrival of computers some applications were imagined,
and lately in the 90s a new important area of application was unveiled, as
described below. Hence now three major domains, each based on a different
kind of dataset, can be distinguished:

e Computer design: When designing a computer or writing routines, dis-
tributions of operands have to be considered. Coding real numbers re-
quires for example to decide with which number of bits the mantissa will
be described (this is linked with confidence intervals). A certain pattern
in the mantissa will lead to different choices, in order to optimize storage
and/or processing speed. Schatte, Knuth, and other various authors in
the 70s and 80s have thus investigated what they called the “logarithmic
computer” (see [Schatte], [Knuth] and [Hilla], and the papers referenced
there), but actually with the very fast improvement of technology that
occurs in computing equipment this seems a bit ‘old-fashioned’...

e Modelling: This application was apparently imagined by Varian in 1972
(see [Varian]). It is based on the following very simple idea: if a certain
set of values follows Benford’s Law, then models for the corresponding
predicted values should also follow Benford’s Law. Hill qualified this type
of application as “Benford-in-Benford-out” ([Hilla]). This includes (for
example) models for demographic growth, financial indexes, or any other
Benford dataset...

e Fraud detection: This is a very trendy application, linked with such
topics as data mining, expert systems, neural networks... Basically, it
comes from the observation that manipulated -or fraudulent- data do not
tend to confirm to Benford’s Law, whereas unmanipulated data do. Ben-
ford’s Law also helps to spot duplicate entries in databases, like double
payments, and is thus interesting for most companies. The first use of
Benford’s Law in that area was conducted by the District Attorney’s of-
fice in Brooklyn, New York, that charged (sucessfully) seven companies
for fraud using a computer programme made by Nigrini and implement-
ing Benford goodness-of-fit tests (this was announced in the Wall Street
Journal on July, 10th 1995). From then on use of Benford’s Law has
been widespread in the accounting world (4 of the “Big Five”, the most
famous U.S. accounting firms, use it), some computer packages have been
designed on it, and it has lead to a kind of fraud detection system called
“Digital Analysis”, that relies not only on Benford’s Law, but also on
other tests of digits. Some of the interesting papers on the subject are
[Nigrini & Mittermaier] and [Nigrini].

12



Chapter 2

Main mathematical results

2.1 The significant-digit law

The aim of this section is to define formally Benford’s law and to give some
basic results on the involved distributions.

2.1.1 The first digit distribution

Definition 2.1.1 The logarithmic (discrete) density function for the first digit
D is defined by:

Pr(D = d) = log <1 + %)

where d € {1,...,9}.

The corresponding distribution function follows easily:

Pr(D<d) = Y Pr(D=d)= ) log<1+%>

1<d'<d 1<d'<d

= ((1+3) (1) (1+2))

where d € {1,...,9}.

13



Remark 2.1.2 Pr(D < 9) = 1, so the probability density function defined in
definition 2.1.1 is well defined on {1,...,9}.

2.1.2 The joint distribution of digits and the k" digit dis-
tribution

Definition 2.1.3 The logarithmic joint distribution of the first significant digits
Dy, D, ... ,Dy (for every k € N*) is defined by:

K -1
Pr(Dy =di,... ,Die=dy) =log | 1+ (Z 10k‘idi>
i=1

where dy € {1,...,9}, and all other d; € {0,...,9}.

Example 2.1.4 The probability of any combination of digits can be very easily
found using this expression, e.g.

1 124
Pr(Dy=1,Ds=2.D3=3)=log (14 — | = log [ ——=
WDy =1,D,=2,D;s =3) °g< +123> °g<123>

The discrete density function for the k' digit D can be derived using defi-
nition 2.1.3:

PI‘(Dk = dk)

> Pr(Dy=dy,Dy=d;...,Dy =dy)

1<d1<9
0<do <9

0<dj_1<9
-1

b
= Z log [ 1+ (Z 10k_idi> (2)

1<d1 <9 i=1
0<do<9

0<dj_1<9

Remark 2.1.5 If the significant digits follow logarithmic laws, they are not

independent! For example, P(D1 = 1,Dy = 2) = log (%) = 0.035, whereas

P(Dy = 1) x P(Dy = 2) = log(2) x (log (13) +log (%) +---+1log (52)) =
0.033.
2.1.3 The mantissa distribution

Lemma 2.1.6 The logarithmic density in definition 2.1.3 can be generalized in
a continuous way for the mantissa M in the following form:

Pr(M < m) = log(m)

where m € [1,10).

14



Proof.

e First consider the case where m = dy, i.e. m has only one significant digit:
0ifd; <1 (Pr(M=1)=0 in a continuous case )
Pr(M <m)=
Pr(Dy <dy —1) =log(dy) =log(m) if 1 < dy <10

e Then suppose m = dids . .. dj, in decimal notation, i.e. m = Ele 10~G=Yq,,
with dy > 1,d> > 0,... ,dx >0

Pr(M <m) = Pr(D;<d—1) (3)
+PI‘(D1 = dl,DQ S d2 — ].)
4.

+Pr(Dy =dy,Dy =ds,... ,Dp_y =dp_1,Dp < dp — 1)

= PI'(Dl S d1 — ].)
+ Z Pr(D1 = dl,DQ = dIZ)
0<dy<da—1
+ Y Pr(Dy=dy,Dy=dy—1,...,Dy =dj)
0<d] <dp—1

log(dh)

|
log (14—~
> °g< * 10d1+d’2>

0<d)<dz—1
_+_ P

k-1 -1
+ > log |1+ (Zlokldﬁd;)
i=1

0<dj <dp—1

By analogy with the derivation of the first digit distribution (1), we find:

10d, +d i, 10Fid;
i=1 ¢

Sk 10k,

k
= log <Z 10(“>di>
=1

= log(m)

Pr(M < m)

15



e Now if one (or several) of the d; (j > 1) are null or if d; = 1, the result

above is still true.

Say m = dids . ..

dj_l 0dj+1 -

dy for example. Then there is no j* term

in the sum (3), and this leads to the following expression:

Pr(M <m) = log(di)+
] 1 1— Jj+1 +1—4
107 id; 107 d
+log 2 + 0+ log Z— +
E] 109—1- zd 2221 Oj—i-l—zdi
Ok id;
+ log 0’“ i,
1 1071, 1 - :
= log — X 10k=q,
<IOJ 2 Zf 104+1-ig, ~ 10k=i—1 ; )
k
1 1 1 -
= log (m X 1—02 X W X ; 10 ld;)
1 k
_ k—i
i=1
= log(m)

This can be easily extended to the case where several d; are null or if

di =1

Remark 2.1.7 In fact it is easier and more instructive to think the other way
round (i.e. to derive the distribution of the k" digit from the distribution of the

mantissa):

PI‘(D1 = dl,DQ = dz,...

This way of thinking
like in example 2.1.4.

7Dk

d)

log <

Pr(dy, + dy107 +
dy +dy 1071 +

log(dy + da1071 4+ ... +
—log(dy +d»1071 +
di +do 107+ ...+

A d 107 <M <
+ (dy, +1)107 1)
(dy, 4+ 1)107F+1)
o+ dklo_k+1)
(dy, +1)10*+1

log [ 1+ (Z 10F~d;

)

di +d10-1 + ...

5

+d;, 10~ k+1
k

i=1

is very general and can be used in a lot of situations,
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The following key definition of Benford’s law can now be stated:

Definition 2.1.8 A random variable X satisfies Benford’s law for the mantissa
if M = M(X) follows the logarithmic mantissa distribution.

A random variable X satisfies Benford’s law for the k" digit if Dy = Dy (X)
follows the logarithmic k" digit distribution.

2.1.4 Variate generation

It is very easy to generate random variables that follow Benford’s distributions.
Recall that the cumulative distribution for the mantissa M is:

Pr(M < m) = log(m)

for m € [1, 10).
So, by a straightforward inversion, a random variable M that follows Ben-
ford’s mantissa distribution can be generated by:

M « 10Y (4)

where U ~ U(0, 1).
As a consequence, a random variable D; that follows Benford’s first digit
distribution can be generated by:

Dy « |10Y]

The generation method (4) helps to explain Newcomb’s statement, which is
that the mantissae of the logarithms of numbers (which satisfy Ben-
ford’s law) are uniformly distributed (see section 1.1):

Let X be the random variable that represents the number whose logarithm
is searched for, M its mantissa, and S the integer random variable such that
10% < X < 105+t (S is the scale of X in base 10, i.e X = M x 10° ).

Hence: M = X x 1075 = 10'°8 X =5

So, according to the generation procedure (4), if log X — S ~ U(0,1), then
M follows Benford’s mantissa distribution (so X satisfies Benford’s law), and
conversely.

Remark 2.1.9 In fact, log X — S represents the result of the logarithm table,
i.e. the floating part of the logarithm (or equivalently the logarithm modulo 1),
so it is not exactly the mantissa of the logarithm as Newcomb stated (it was
clear in his mind, though, only the sentence is a bit ambiguous).

Remark 2.1.10 This suggests a systematic method to check whether a random
variable X satisfies Benford’s law or not:

X satisfies Benford’s law if and only if log X — |log X | ~ U(0, 1) or equivalently
if log X mod 1 ~4(0,1).
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2.1.5 Some distributions that exactly satisfy Benford’s law

A distribution is said to satisfy Benford’s law if its corresponding random vari-
able does. It is relatively easy to find such distributions; in fact many of them
seem to satisfy it.

For example, suppose we are looking for a distribution on [1,10) satisfying
Benford’s law for the first digit, say fx. Then for d € {1,...,9} we have:

Pr(Dy =d) =Pr(d < X <d+1) = [} fx()de = log (d+1)

So a natural way of constructing fx is to choose fx(z) = - ln 5+ In fact this
distribution can be found using (4), and it satisfies Benford’s law for the whole
mantissa, as it is that of a random variable X = 10V where U ~ U(0, 1) (the
corresponding cumulative distribution function Fx is: Fx(x) dt =
log z, and inverting it yields X = 10V )

This rather simple distribution is only useful to give a clue about how to find
other distributions that satisfy Benford’s law. If a distribution on [10%,10%) is

searched for, it is thus natural to think of that of 10Y, where U ~ U(a, b), which
is fx(x) = (b—a)lac Inio-

And indeed we find:

fl tlnlO

Pr(D;=d) = Pr(10°xd< X <10%x (d+1))
+Pr(10°T! x d < X < 10%"! x (d + 1))
+Pr(10° ' xd < X <10"! x (d+ 1))

_1 10g<10a (d+1)>

b— 102 x d

+log 107! x (d +1)
100t xd

g 10" x (d+1)
100t xd

- b_a x ((b—a)xlog<d:l‘1>>
)

Using the same idea, several other distributions were found satisfying Ben-
ford’s law. These distributions are of the form 10", with W a random variable
whose support is an interval between integers. Among these we can quote (see
[Leemis et al.]):

w if 0<w<1
l'fW(“’)_{2—w if 1<w<?2

(a triangular distribution on [0, 2] )

18



It can now be checked that Benford’s law is satisfied by deriving the cu-
mulative distribution function of Z = W — S, where S = |[W ] (c.f. remark
2.1.10). Conditioning by S gives, for all z € [0, 1]:

Fz(z) = Pr(S=0)xPr(W <z|S=0)
+Pr(S=1)xPr(W-1<2|S5=1)
= Pi(W<z,0<W<I)
+Pr(W <241, 1<W <2)
= Pr(W <2)+Prl1<W <z+1)

z z+1
= /wdw+/ (2 —w) dw
0 1

22 22
)

= Z

Hence Z ~ U[0,1], and according to remark 2.1.10, X = 10" satisfies
Benford’s law.

For(w) = 1—w? if -1<w<0
CIWIEL -1 i 0<w<1
(a non-symmetric distribution on [—1,1] )

It can be shown that X = 10" satisfies Benford’s law using the same
process as above:

Fz(z) = Pr(S=-1)xPr(W+4+1<z| —1<W <0)
+Pr(S=0)xPr(W <z|0<W <1)
= Pr(W <z—-1)+Pr(0 <W <2)
z—1 z
/ (l—wQ)dw+/(w—1)2dw
—1 0

3 3
= (—%+z2>+<%—z2+z>

= Zz

2.2 Convergence to the uniform distribution

The reason why Benford’s law is only useful for the first digits (often one or two
in practice) is that the distribution of the kt* digit tends to the uniform distri-
bution on {0,...,9} exponentially fast as k increases. Newcomb had already
remarked the phenomenon.

In fact, this property was proven through direct calculation by Diaconis (see

[Diaconis]), but there is a more general result that is due to Hill and that has
apparently not been published yet.
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Conjecture 2.2.1 Let X be any continuous random wvariable with bounded
piecewise smooth density function. Then the distribution of Dy (X) approaches
the uniform distribution as k goes to infinity.

Proof.

There is currently no formal proof for that proposition, but it is rather easy
to sketch an informal one.

Without loss of generality, suppose the base used for describing numbers is
2.

Take an interval, say [1,2], and draw an arbitrary bounded continuous func-
tion, say an exponential, on that interval. This function can then always be
normalized to define a probability density function.

In base 2, [1,2] is written [1.00,10.00]. Among all the real numbers in [1, 2],
those which have 0 as their second (binary) digit are between 1.00 and 1.10
(i.e 1 and 1.5 in decimal notation). Those which have 0 as their third (binary
digit) are between 1.00 and 1.01 (1 and 1.25) and between 1.10 and 1.11 (1.5
and 1.75), etc...

As the process goes to the infinite, it will split in half the complete integral,
and hence the probability of observing a 0 will be the same as observing a 1
(uniform distribution).

The set of figures 2.2 describes the process in image, with a simple (normal-
ized) exponential function between 1 and 2.

For any interval the behaviour will be esentially the same. [1,2] in base 2
was chosen for simplicity, but it will work for any interval, asymptotically the
interval will be divided in half.

For the decimal digits the behaviour will also be the same, except there will
be 10 subdvisions of the interval instead of 2.

Actually the hypotheses are certainly a bit too strong, as it should work for
any ”non-pathological” function (i.e. any usual probability density function).

The formal proof should probably use some results about fractals, or may
even have been published in that domain.

]

Remark 2.2.2 This result is useful because it tells that the farther the mantissa
is looked at, the less information it provides. This is in a sense very intuitive,
because if one had potentially to look to the infinity in the significant digits to
find a piece of information, then there would be no reliable probability calculus...

20



[ Digit0:0.378

15 (B Digii:o622

1.0 20

15
Second digit

[/ Digit0:0.438

1.00 1.25 1.50 1.75 2.00

Third digit

[/ Digit0: 0.496

157  |mmm Digit1:0.504 p
p
p
p
p
p
1.0 A
A
05 1
0.0 PR e e e e e =t

Seventh digit

Figure 2.1: Convergence to the uniform distribution
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And for the still skeptical ones, here are the computed probabilities that the
k" (binary) digit equals zero for 8 different distributions conditioned between
1 and 2:

0657 —— Unif(1,2)
— N(0.1)
— Exp(1)
| Cauchy(0,1)
060 —— Beta2(2,3)
—— Gamma(1.5,1.5)
— Weibull(2,2)
0.55 —— Chi-Square(5)
0.50
0.45 |
T T T T T
2 4 6 8 10
Digit

Figure 2.2: Distribution of binary digits of 8 distributions defined on [1, 2]

2.3 A mathematical explanation of Benford’s law:
Hill’s theorems

This section tries to give some insights on Hill’s work (see [Hilla], and also [Hillb],
[Hillc]), which seems to be currently one of the most convincing explanations of
the recurrence of Benford’s law in nature phenomenons.

2.3.1 The proper probability space

Defining a proper probability space is one of the keys to understand and to
study Benford’s law. One of the problems that quickly appears when construct-
ing such a space is that the event space is not a ‘normal’ one, i.e. not the
set of Borels of R. For example, a single interval never contains all the real
numbers whose mantissae belong to a certain Borel set (think of [10,20): ev-
ery number in [10, 20) has its mantissa in [1,2), but of course every number in
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[1,2),[100,200),[1000,2000)... has also its mantissa in [1,2) ). In other words,
a probability cannot be assigned to a single interval if one only looks at the
corresponding set of mantissae.

However, following that example, it is rather easy to see that the set of real
numbers |Jo B x 10™ contains all the positive numbers whose mantissae
belong to B, where B is a Borel of [1,10). An observer who would only look at
mantissae could assign a probability to this set. So a natural definition of the
measurable space associated with a Benford-like experiment, where only positive
real numbers are sampled, is (R, M) where the event space M is defined in
the following way:

Definition 2.3.1 The event space M, called the mantissa algebra, is defined
by:

M:{ J Bx10” for allBorelBQ[l,lO)}

n=-—oo

The mantissa algebra M is of course a o-algebra, as a sub-o-field of the
Borels. The following lemma is useful to understand the structure of the man-
tissa algebra.

Lemma 2.3.2 The main properties of the mantissa algebra are the following:

1. Every non-empty set in M is infinite with accumulation points at 0 and
at 400 (i.e. in any set S in M it is always possible to find arbitrary large
and arbitrary small non-zero numbers)

2. M is closed under scalar multiplication (for all s > 0,5 € M = sS € M),

3. M is closed under integral roots, but not integral powers (for all m €

N, SeM=SY"eM),
4. M is self-similar in the sense that for allm e N, S € M = 10™S € M.

The properties 1, 2 and 4 are easy to understand, whereas property 3 needs
more attention. Here is the proof of property 3:

Proof.

First, proove that S= € M.

Let s € S . Then by definition 2.3.1:

dn € N and a Borel B C [1,10) s.t. s™ € B x 10"

So by the definition of a Borel set, 3a,b € [1,10) s.t. ax 10" < s™ < bx 10™.
Hence by the Euclidean division of n by m:

JgeN, ke{0,...,m—1}st. aw x 10w 11 < s < bw x 10w 14

Let

m—1
2 Tabobh ) < 10%
Bm_kUO[a b )><10 (5)
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B,, is clearly a Borel set of [1,10), and s € U;i_oo B, x 107, s0 Sm € M.
Now, consider the set S; of all real numbers whose first digit is a one:

Si=|J 2100
q=—o00
The set S? is the following:
o0
St = J [1,4)10%
g=—00

Thus S? does not belong to M, since for example it includes [1,4) but not
[10,40).

]

Now that the probability space is defined and that its properties are known,
the next step is to state some reasonable hypotheses and show that Benford’s
law comes from those hypotheses. Property 2 leads to the hypothesis of scale
invariance, whereas property 3 is a key to the weaker hypothesis of base invari-
ance, as it will be seen in next subsection.

2.3.2 Scale invariance

Scale invariance is one of the simplest hypothesis that comes when thinking of
the “universality” of Benford’s law. Suppose that there is a law that would
somehow appear in “natural” data sets whatever system of number is chosen.
The first thing that comes to mind is that it would be expected to be independent
of the unit system, i.e. rescaling all the numbers by a constant should not affect
the probability measure. This property is called scale invariance, and is formally
defined in the following way (recall that M is closed under scalar multiplication,
lemma 2.3.2, property 2):

Definition 2.3.3 A probability measure P on the mantissa algebra M is scale
invariant if

VseRYS eM,P(S) = P(sS)

The following theorem shows that scale invariance is a characterization of
Benford’s law, and thus makes it very peculiar.

Theorem 2.3.4 A probability measure P on (R, M) is scale invariant if and
if only P satisfies Benford’s law.

Proof.
Let P be a probability measure on (R*, M), and S, = {J,— ___[1,10*) x 10™

for an arbitary a € [0,1) (a probability measure on M is entirely defined by its
values on such sets).
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Let P and P be the probability measures defined respectively on the mea-
surable spaces ([0, 1), B[0,1]) and ([1,10), B[1,10]) by:

Vael0,1), P[0,a) = P[1,10%) = P(S,) (6)

This relation defines actually a useful 1:1 correspondence between the re-
spective measurable spaces of P, P,and P.

Now for the proof itself. In the measurable space (RT, M), P satisfies Ben-
ford’s law if and if only P(S,) = a for all a € [0,1) (so according to (6) if only
P is the uniform distribution on [0, 1], and if only P[1,10%) =a, Ya € [0,1) ).

Now suppose P satisfies Benford’s law, and prove that for all s € R:

P(sS,) = P ( [j [s,s x 10%) x 10")

n=—oo

= P(Sa)

Without loss of generality, s can be restrained to [1, 10[ (else take s mod 10).
Two cases are now to be distinguished:

o If s x10* <10 :
P(sS,) = P[s,sx10%

= P[l,s x10%) — P[l,s)
= log(s x 10%) — log(s)

= P(Sa)

e If s x 10* > 10 : (since s < 10, s x 10* is in [10,100) )

P(sS,) = P][s,10)+ P ([10,5s x 10®) mod 10)
N s x 10®
= (1-log(s))+ P [1, 10 >

1 a
= 1—log(s) + log (s ><100 )

= 1—log(s)+log(s) +a—1

I
S

= P(Sa)

Conversely, suppose P is scale invariant, i.e. P(S,) = P(sS,) for all s € R
and a € [0,1), and show that P satisfies Benford’s law, i.e. P(S,) = a.
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Let a be an arbitary irrational in R. Then P(S,) = P(10%S,), for all a in
[0,1). Without loss of generality, it can be supposed that 10% € [1,10) (else
take 10 mod 10).

The isomorphism defined in (6) then implies that:

P[1,10%) = P ([10%,10°**) mod 10), Va € [0,1)

[ Here the notation [a,b) mod 10 means [a,b) if b < 10, or [a,10) U [1,b/10)
if b € [10,100) ]
And, as a consequence:

P[0,a) = P (Jo,a+ ) mod 1), Va € [0,1)

[ With the equivalent notation. |

This last equality means that P is invariant by an irrational rotation on the
unit circle. It has long been known that the unique distribution on [0,1) that
has such a property is the uniform (see for example [Weyl]), and consequently
P satisfies Benford’s law.

|

Remark 2.3.5 This proof shows that the definition of scale invariance pre-
sented here in definition 2.3.3 is a bit too strong. In fact the strong scale in-
variance hypothesis can be reduced to the hypothesis of scale invariance by an
arbitary number that is not a rational power of the base (here a is irrational,
and the proof only uses scale invariance by 10%).

2.3.3 Base invariance

Base invariance is a more subtle hypothesis that also leads to Benford’s law. If
a certain law should appear in observing some “natural” datasets in base 10,
then the idea is that this law should also appear if another base was used. Here
the definition of the mantissa algebra M that was used before is going to be
generalized to other bases, and the notation M; will denote the mantissa algebra
in an arbitrary base b (thus M9 = M). All the properties, definitions, and
theorems are essentially the same, except that b replaces 10 (for example
log, replaces log in the probability distributions).

Now the following definition of base invariance can be presented (recall that
M, is closed under integral roots, lemma 2.3.2, property 3):

Definition 2.3.6 A probability measure P on (R*, My) is base invariant if
Vm eNY S e M,,P(S) = P(S™)

Understanding why this definition is relevant to base invariance is not very
easy at first sight. To motivate it, consider:

S= | o) x b

g=—00
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where z,y € [0,1) (any left-closed interval of [1,b) can be represented in the
form [b®,bY))

Use expression (5) in the proof of property 3 in lemma 2.3.2 (replace 10 by
b):

Sm = [j B,, x b1

g=—0o0

U (mUl[b%,b%)b ) x b

g=—00

3=

Now replace b in the expression above by b™:

00 m—1
S% » _ » U (U [bx’by) bk> x pme

g=—00 \ k=0

00 m—1

» _ » U ( U [bw’ by) bmq+k>
g=—0o0 \ k=0

» _ » U [bz, by) pn

n=—oo

» :77 S

So, if a probability measure is ‘base invariant’, it should be invariant at least
for the powers of the initial base, and so the probability of S should equal that
of Sm. Hence the definition is somehow weak, since it only accounts for the
base that are powers of the initial base, but the following theorem 2.3.7 will
show that it is sufficient for any base.

Now, let P, denote the logarithmic probability measure on (R*, M), i.e.:

oo

Vte[l,b),Pb< U .1 b”) = log, ()

n=—oo

Let also Ay denote the Dirac delta measure of the set S; = (J, {1} x b™.
More precisely, Ay is defined for all S € My by Aq(S) =1if S D Sy and 0
otherwise (this definition is valid because S; has no nonempty M,;-measurable
subset).

The following theorem links base invariance with those probability measures,

and thus with Benford’s law:
Theorem 2.3.7 A probability measure P on (R, My) is base invariant if there

exists g € [0,1] s.t.
P=1-q)P+qA
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Corollary 2.3.8 The unique base-invariant and atomless probability measure
on (R, My) is Py.

Before proving that theorem, a few lemmae must first be stated.
Definition 2.3.9 A measure p on (2, F) is invariant under the measure map-

ping T : Q@ — Q if
W(E) = p(T~1(E)), VE € F

Now let n be an arbitrary positive integer, and consider the Borel measurable
space on [0,1) and the mapping T,, defined on [0,1) by T}, () = nz mod 1.

Lemma 2.3.10 A probability measure P on ([0,1),B[0,1]) is invariant under

T, if and only if
n—1
_ —|k k+a
Pl0,a)=) P [E’ - )
k=0

Proof.
It is here sufficient to show that:

(U [H5) o

k=0

o First, take z € |J—, [£, £t9).

=3k e€{0,...,n—1}st. k' <nz <k +a
= nz mod 1 € [0, a)

e Conversely, take y € [0, a).
=>VkeN Iz’ €lk,k+a)st. ' =k+y
=>VkeN dz e [%,k;’;a) st. nx =k+y (or y=nz mod 1)

Now for x has to be restrained to [0, 1), k¥ must be in {0,... ,n — 1}.
=>Vke{0,...,n—1}, Iz e [£ ) 5t y=nz mod 1

n

]
Now a second lemma can be stated. Let A denote the Lebesgue measure on

[0,1), and Jp the Dirac probability measure at 0.

Lemma 2.3.11 A Borel probability measure P on [0,1) is invariant under T),

if and only if .
P =qd+ (1 —-q)A

for some q € [0,1].
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Proof.
First, let P = ¢do + (1 — ¢) A for some ¢ € [0, 1].
Then for all a € [0,1):

n—1 n—1
— [k kE+a kE k+a
k=0 k=0
n—la
= Q+(1—Q)ZE
k=0

= ¢+(1—-qa
= P[0,a)

Conversely, suppose P is an arbitary probability measure on [0, 1) invariant
under Tj,.

Recall that a probability measure on [0,1) is uniquely determined by its
Fourier coefficients:

1
On = / e2™e dP(x) ,n € N
0

The invariance of P under T, implies that its Fourier coefficients ¢, are
constant, for all n € N.
To see this, use the change of variable ' = T},(x) = nz mod 1, and then

e )
remark that e?i™ = g2inne.

1
¢n — /e2i7rnzd?(m)
0

1
— / e2i7rz'dﬁ(T7:l(ml))
0

1

/ ™ qP (') ( since P(E) = P(T7Y(E)) for all E in B[0,1) )
0

= ¢, forall n.

Thus let ¢, = ¢, with ¢ € C (a priori).
Now, to show that ¢ is in fact a real number in [0, 1), consider:

1 N
U = [ Jim {% ) } dP(x)

That equality comes from the fact that, given a complex number a with
la] <1 (here choose a = €*™*), 4 Egil a” = 0as N = oo, except if a = 1 in
which case it is equal to 1 for all V.

Now use the bounded convergence theorem (since ‘% Zgil e?imne| < 1) :
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N—ooo N

N
P0}) = lim ~3 4

= q (since the ¢, are constant and equal to q )

Hence q is a probability, and it is in [0,1).
Now, derive the Fourier coefficients ¢, for gdo + (1 — ¢)A:

1
Qsln = ¢x eQiﬂnO + (1 _ q)/ e2i7rnzd1,
0
= g
= ¢, foralln.

As the Fourier coefficients of a measure determine it uniquely,

P =g+ (1—q)X

[

Now the proof of the main theorem of base invariance can be easily stated.
Proof of theorem 2.3.7.

First show that P, and A; are base invariant.

For A; this is quite obvious, since the digit 1 is written 1 in any base...
Now for Py, let x,y be arbitrary numbers in [0,1) and S = U;ifoo[bm, bY) be:

Pb< fj <Dl[b%,b%)b%> qu>

g=—00 \ k=0
(using again the proof of property 3 in lemma 2.3.2)

- Sa (U o) )

s

©
I
[

Hence P, and A; are base invariant, and so is their mixture ¢A; + (1 —q) Pp.
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Conversely, suppose P is base invariant on (R, My).
Let S = J° 1,b%) b7, for some a € [0,1), and use the expression of S
to get:

a=—ool

P(s ( G mul [b%,65) b >

g=—00 k=0
Hence, by the measure isomorphism (6), the equality P(S) = P(S%) implies:

P[1,b) =P (mJ [bm b’it“)>

k=0

And consequently:

2_: [k k +a>
This last equality means by lemmae 2.3.10 and 2.3.11 that there exists ¢ €
[0,1) such that P = gdo + (1 —q)A. o
Now it can be easily seen that A; = g and P, = .

Hence there exists ¢ € [0,1] such that P = gA; + (1 — q)F.
[

Remark 2.3.12 The proof of theorem 2.3.7 explains why the hypothesis “P(S) =
P(S%)” is sufficient for invariance in any base (a priori it only implies invari-

ance for powers of the initial base). This condition is in fact sufficient to imply

that the probability P is g6 + (1 — q)\, for some q in [0,1], which in turn im-

plies that P = qA1 + (1 — ¢) Py in (R, M), whatever the base b is. Hence P is

invariant for any base.

Remark 2.3.13 An immediate corollary to theorems 2.3.7 and 2.3.4 is that
scale invariance implies base invariance, but not conversely. For example, Ay
18 base invariant but not scale invariant.

2.3.4 Random distributions

This section is a summary of [Hilla], where an interesting and modern point of
view about Benford’s Law is developed.

As was explained in section 1.4, the basic idea of this explanation of Ben-
ford’s Law is to randomize the distributions themselves. Actually, Benford’s
experiment is like a collection of random samples from random distributions.

The concept of random distributions has already been studied by several
authors, see [Hilla] and the papers referenced there for a complete view. Here
only the useful definitions and results in the context will be presented.
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Definition 2.3.14 A (real Borel) random probability measure (r.p.m) M
is a random variable [on an underlying probability space (0, F,P), the space of
distributions | that takes value which are Borel probability measures on R and
which is regular in the sense that for each Borel set B C R, M(B) is a random
variable.

Definition 2.3.15 The expected distribution measure of a r.p.m M is the
probability measure EM on the Borel measurable space (R, B(R)) defined by:

(EM)(B) = E(M(B)) for all Borel B C R
where E denotes the expectation with respect to P.

The definitions 2.3.14 and 2.3.15 may be a bit abstract, but the underlying
process is really simple to understand: the expected distribution of a r.p.m. is
a mixture of distributions with respect to a certain probability measure P. For
example, if the space of distributions is discrete, consisting of n distributions
with densities fi, fo, ... fn, and the probability P is uniform on that space, then
the expected distribution of the r.p.m. has simply the density % S fie

Now, in order to model Benford’s experiment, the concept of M-random
k-sample is needed.

Definition 2.3.16 For an r.p.m. M and positive integer k, a sequence of M-
random k-samples is a sequence of random variables X1, Xo,... on (Q,F,P)
so that for some i.i.d. sequences M, My, ... of r.p.m.’s with the same distribu-
tion as M and for each j =1,2,...,

giwven M = P, the random variables X (;_1)py1,-..,Xjr are i.i.d. with p.d.f. P
and
X(j—1)k+1,--- > Xjr are independent of M; and X(;i_1)rq1, ... , Xir for all i # j.

Again definition 2.3.16 may appear as obscure, but the definition is in fact
really simple. A sequence of M-random k-samples is concretely a collection of
(independent) samples of size k, each sample coming from a distribution “drawn
at random and independently” using the r.p.m. M. Hence Benford’s experiment
is actually a sequence of M-random k-samples, although the r.p.m. used cannot
be clearly defined.

However, the following lemma allows to go on in the analysis, even if the
r.p.m. is not completely known:

Lemma 2.3.17 Let M be a r.p.m., and let X,1,X5,... be a sequence of M-
random k-samples for some k. Then for any Borel B,

1L
Jim_ 2_; lx,es = EM(B)
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Lemma 2.3.17 means that, even though the X; are not strictly i.i.d, the ob-
served frequency of an event in a sequence of M-random k-samples still converges
to a probability, and this probability is the measure of that event according to
the expected distribution of M. So in one word to know the frequency of an
event only requires to know the expected distribution.

A detailed explanation of why the X; are not i.i.d, and also the proof of
lemma 2.3.17, can be found in [Hilla].

Now the background is set for the next result, which is a ‘short’ version of
Hill’s theorem.

Theorem 2.3.18 (Log-limit law for significant digits) Let M be an r.p.m.
on (RY, M). The following are equivalent:

1. EM is scale-invariant;
2. EM is base-invariant and atomless on (RT, M);
3. EM (U, _,.[1,t) 10™) = log(t) for all t € [1,10);

4. for every sequence of M-random k-sample X1,X5 ...,

N R
nlggo - Z Lar(xiyen,e = log(t) for all t € [1,10)
i=1

Proof. The proof is immediate:

(1) & (3) by theorem 2.3.4.

(2) & (3) by corollary 2.3.8 of theorem 2.3.7.
(3)

]

3) & (4) by lemma 2.3.17.

This theorem explains why Benford’s Law may appear in such an experi-
ment as Benford did. Observing Benford’s Law does not require that individual
realization of M are scale- or base-invariant, only on average has it to be. In
Benford’s experiment some of the distributions were apparently far from satisfy-
ing Benford’s Law (certain mathematical sequences for instance), but combining
them with others seems to have created a scale- and/or base-invariant average
distribution.

In a sequence of M-random k-samples, only the expected distribution plays
a role in frequency calculations, so inferring on that distribution allows one to
draw conclusions on frequencies. Thus the average distribution EM is a sort
of practical tool, and all the questions about the complete “behind-the-scene”
space of distributions are avoided. In that context the space of distributions is a
bit like the formerly used “universal table of constants”... Hence in a sense the
problem remains open, even if it can’t be denied that Hill’s approach explains
why

there are many (natural) sampling procedures which lead to the log
distribution.
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Remark 2.3.19 Theorem 2.3.18 can be extended to cases where the size of the
samples k is not fized (random for example)

2.4 An invariant-sum characterization

This section aims at exploring another characterization of Benford’s law, which
was first observed by Nigrini and later proved by Allaart, see [Allaart].

2.4.1 Sum-invariance

In his Ph.D. thesis (1992), Nigrini observed that tables of unmanipulated ac-
counting data closely satisfy Benford’s Law, and that in such lists of data,

The sum of all entries with leading digit d is constant for various d.

Here the word “entries” means “mantissae”. Of course if the numbers them-
selves were summed, the sum would not be constant, as for example a peculiar
large number would dominate in a sum.

In fact it makes sense when one looks at the distribution. For instance in a
sample of integers that follows a first-digit logarithmic law, there are lots of 1,
a bit less of 2, ... and so on until 9. So the sum of 1s should be “roughly” (i.e.
in expectation) equal to that of 2s, to that of 3s, etc...

Now what was said for the first digit was also observed for the two leading
digits, the three leading digits, etc... For example the sum of all the entries
that begin with 1.234 is equal (in expectation) to the sum of all the entries that
begin with 7.453... (note that the considered number of significant digits has to
be the same, here 4 for example). So intuitively a distribution can be qualified
as sum-invariant if for any natural number k (fixed), the expected sum of the
mantissae of all entries starting with a certain k-tuple of significant digits is the
same as that for any other k-tuple.

2.4.2 Equivalence between sum-invariance and logarith-
mic law

Allaart has shown that the sum-invariance property is a characterization of the
logarithmic law, as no other law has that property. First a few notations have
to be given:

Given k € N, d; € {1,2,...,9} and da,ds,...d;, € {0,1,...,9}:

e let A(dy,ds, .. .dy) be the set of real numbers whose first significant digits
are dy,ds,...dy.

e let A(dy,ds,...dy) be the set of real numbers in [1,10) whose first signif-
icant digits are dy,ds, .. .dy.
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Given a probability measure P on (RT, B(R)), define Py on ([1,10),B([1,10))
as the corresponding mantissa probability measure, i.e.:

o0

PM[l,t):P< U [1,t) 10”), Yt e [1,10)

n=—oo

( Py is in fact the same as what was called P in section 2.3 )

It has now to be remarked that in the so called sum-invariance property the
summation is not necessary, only the expectation is. The summation as Nigrini
did is in fact a way to simulate the average. Take X an arbitrary random
variable that comes from a sum-invariant distribution, and let £ € N. What is
really meant by sum-invariance is that the (conditional) expectation of M (X)
given that M(X) begins with di,ds,... ,d is the same whatever the k-tuple
(di,da,...,dy) is. Hence a formal definition of sum-invariance can be given as
follow:

Definition 2.4.1 A probability measure P on (Rt ,B(RT)) is sum-invariant
if, for any random variable X with distribution P, and for any fized k €
N, the expectations E[M(X)1a,,... a,)(X)] are constant whatever the k-tuple
(dl,dg,... ,dk) 18 (UJZth d, € {1,2, ,9} and dg,d3,...dk S {0,1, ,9})

Now the main theorem can be stated:

Theorem 2.4.2 A probability measure P on (RT,B(R")) is sum-invariant if
and only if Py[1,t) = log(t).

Proof.
First observe that, for all digits dy,ds, . ..dy:
EIM(X)14gdy,...a0) (X)) = E[M(X)1504, . 4)(X)] = /A(d , )fﬂdPM(SE)
1y--- 0k

(7)

Then remark that all the sets A(dy,...,d;) are in fact intervals, have the
same length, say A(A) ( here A denotes the Lebesque measure on [1,10) ), and
form a partition of [1,10).

Suppose sum-invariance, i.e. the expectations in (7) are constant (denote

their value [,  dPy(z)), and sum them over all sets A(dy, ... ,d):
10
Z [ x dPy(z) = / x dPy ()
1<d; <9 A(d1,7dk) 1
0<dn<9
ogé.k'g%)

10
ﬁ%/{QdeM(w):/l x dPy ()
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(since the expectations are constant and that there are ﬁ partitioning in-
tervals of length A(A) in [1,10) )

_A4) 10
N /A v dPy(a) = 2 /1 z Py (z) (8)

Conversely, if the equality (8) is valid for all sets A of the form A(dy, ... ,dy),
then P is obviously sum-invariant since then the expectations in (7) are constant.

Hence the equality (8) is a necessary and sufficient condition for sum-invariance.

Now suppose Py, is the logarithmic law (dPM(a:) = Ihll—loda:), and substitute
in both sides of (8):

1
and: ) 1o A)
AMA AA 9
9 /1 vdPu(r) = =g~ X 195

So the equality (8) is verified.

Conversely, suppose that (8) holds for all A of the form A(dy, ... ,dg). Every
interval of [1,10) can be represented as a countable union of such sets, so by
summing the integrals, (8) holds for every interval.

Both sides of (8) can define a probability measure of the set A, and those
measures are thus equal on the set of intervals of [1,10). By Caratheodory’s
extension theorem, this is enough to ensure their complete equality on the set
of Borels of [1,10).

Hence = dPy/(z) is proportional to dz, and so dPy(z) is proportional to

1
~dzx.

By normalizing over [1,10) it follows that dPy (z) = —irgdw, i.e. Py is the
logarithmic law.

[

2.5 Other invariances

This section briefly presents some other interesting properties of Benford’s Law,
which may explain why it occurs so frequently, especially in computing arith-
metics.

2.5.1 Inverse

If X satisfies Benford’s Law, quite a few basic functions of X were found to sat-
isfy Benford’s Law as well. Maybe the most simple is the inverse (this property
is taken from [Adhikari & Sarkar]).

Proposition 2.5.1 If X is a random variable such that M(X) follows the log-
arithmic law, then M (X ~Y) also follows the logarithmic law.
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Proof. For all ¢ € [1,10):

Pr(M(X™1) € [1,1))

Pr (X—le D [1,2) 10”)

n=—oo

= Pr<Xe G [%1) 10”)

n=—oo

= b0 [2.0))
(1)

= log(t)

2.5.2 Multiplication and division

This part is inspired from [Hamming]. Because the exponents do not play a role
in the mantissa of the product of two real numbers, it is rather easy to derive
an expression of its distribution.

Proposition 2.5.2 Let X,Y be two random variables, and let f, g and h be the
respective densities of My(X), My(Y), and My(XY'). Then, for all z € [1,b):

wo= [ o) s [ 2g(L) s a )

z

Proof. Let F', G, and H be the respective probability distribution functions
of My(X), My(Y), and My(XY).

Now let  and y be two real numbers. Without loss of generality, suppose
z,y in [1,b). The mantissa of zy is then given by:

zyif1<zy<b
My(zy) =
Eifb<zy<b?

Hence for all z € [1,b),
Ty < 2

Mp(zy) <z <—= or
P <zandb<wy

8|l O
=

IA IN

@ 8 @

IA

8 [&

37



y=bz/x

Figure 2.3: My(zy) < z

Divide the shaded region into three and integrate:
1) = [ [ e ae s [ [ e aes [ f * f@aty) dyi
[ |6(5)-cw+owm 6 (2)] s o m

o[ lo(%)-e ()] o

Differentiate with respect to z:

Mo = f(2) [G(l) G +Gb) -G (g) GO +G (9)}

+/1zig(§)f(x)dm+/2bgg<b—;>f(ﬂf)dﬂf
= [ st [ Lo (%) swa

z
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Invariance by multiplication is a quite amazing property. In fact it is true
for multiplication by any (continuous) random variable:

Proposition 2.5.3 Let Y be a random variable that satisfies Benford’s Law.
Let X be an arbitrary random variable with a continuous density. Then XY
satisfies Benford’s Law.

Proof. With the same notations as in proposition 2.5.2, let g(y) = ﬁ in
(9) (i-e. Y satisfies Benford’s Law):
1 b
h = - d — d
(2) /1 :rzlnbf(m) a:-{—/z x bzlnbf(x) ¢

1 b

= d

zlnb /1 f(a) da

1 . . ,

= b (i.e. XY satisfies Benford’s Law) (10)

]
An immediate corollary of propositions 2.5.1 and 2.5.3 is that invariance is
also true for division:

Proposition 2.5.4 Let Y be a (nonzero) random variable that satisfies Ben-
ford’s Law. Let X be an arbitrary (nonzero) random variable with a continuous
density. Then % and % satisfy Benford’s Law.

These results (propositions 2.5.3 and 2.5.4) guarantee that, in the case of
a long series of multiplication and/or divisions, if one of the operand happens
by any mean to satisfy Benford’s Law, then the whole following sequence of
numbers will satisfy Benford’s Law. The only drawback of this is that one
operand has to satisfy “exactly” Benford’s Law.

2.5.3 Convergence

Besides the results presented in section 2.5.2, Hamming found there is an even
more amazing result about multiplication, which explains why in long compu-
tations Benford’s Law might appear “out of nowhere”. In fact a product of
random variables happens to be “closer” (in the following sense) to Benford’s
Law than its operands.

Definition 2.5.5 Define the (relative) distance of density f to Benford’s Law

by:
f(z) = r(2)
r(z)

1

where r(z) = -

Now for the announced (very simple) result:
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Proposition 2.5.6 [With the same notations as in proposition 2.5.2]
D(h) < min(D(f), D(g))

Proof.
Equation (10) says that, for any density f:

r(z):/:%r(g) f(a:)d:n—l—/bgr(%) f(z) dz

z

[Note that this can be found directly by a change of variable]
Now substract this from expression (9), and divide by r(2):

) | 100G G),,
e (2 - ()

+/Z . 02) 2 dx
R PO ELEN

Since f(z) > 0 on [1,b),

‘h(Z) —r(2)
r(z)

A
)
S

Therefore D(h) < D(g), and since f and g are clearly interchangeable,
D(h) < min(D(f), D(g)).

Of course this doesn’t mean there is an actual convergence, since for example
if f is the Dirac function 0; then D(h) = D(g). But in many practical cases
the inequality will be strict so the convergence will happen (see for instance
[Schatte] in which various cases are reviewed, and see also the case of a product
of uniforms below).

]

Remark 2.5.7 The result 2.5.6 is also true for division, but proving it requires
an expression of the density of the mantissa of a ratio -not difficult but a bit
long- (c.f. [Hamming] again).

Adhikari and Sarkar have found that, if U;,i € N are uniform independent
random variables, asymptotically the sequences U, Us ... U,, and U* satisfy Ben-
ford’s Law. This is of course related to the result 2.5.6, which is however more
general.
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Actually, it is possible to get an exact expression of the distance of a prod-
uct U1U; ... U, to Benford’s Law, according to the number of operands n. In
[Hamming] the following results are presented:

Number Distance
of operands | to Benford’s Law
1 1.558
2 0.3454
3 0.0980
4 0.0289

This shows that convergence, in the case of a product of uniforms, takes
place rather quickly...

2.5.4 Addition and subtraction

The principle of invariance described in 2.5.2 also exists for addition, but it is
not as straigthforward. In fact there is no easy formula for the mantissa of a
sum, as the exponents of the operands also play a big part in the result.

Hamming has proved that, under certain suppositions, addition leaves Ben-
ford’s Law invariant (see [Hamming]). Moreover some authors have shown that
the distribution of a sum of random variables converges to Benford’s Law, in
a certain sense (H, and Riesz means, see [Schatte] and the papers referenced
there). Of course there are lots of summability methods, and everything can be
meant by “a certain sense”, so this part alone would require a very long study...

Even if invariance by addition leaves the author a bit unconvinced, it was
found that sometimes empirically it works quite well (see section 3.1.2).

2.6 Sequences and Benford’s law

Since Benford used mathematical sequences in his experiment, and also since he
tried to prove his law on the natural sequence of integers, many authors were
interested in investigating Benford’s Law for sequences.

2.6.1 Definition and useful theorems

In what follows the base considered is 10 for simplicity, but as always everything
can be easily extended to any base. For sequences Benford’s Law has a peculiar
expression, i.e. the definition of Benford sequences:

Definition 2.6.1 A real sequence {a,}nen s called a Benford sequence if:

N
. 1
1\}51100# {N z_:llM(“n)<t} = logt
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Remark 2.6.2 The definition 2.6.1 is a classical one, it only means that the
limiting frequency tends to a logarithmic law. That is why such sequences are
sometimes called “strong” Benford sequences. Other definitions have been given
(see for example [Raimi]), and they lead to “weak” Benford sequences. But
again many such definitions can exist, so they will not be considered here.

Benford sequences are closely related to the famous uniformly distributed
modulo 1 sequences, first studied by Hermann Weil in 1916 (see [Weyl]). All the
known results about these sequences are summed up in [Kuipers & Niederreiter].

The following theorem (see for example [Diaconis]) makes the relation ex-
plicit:

Theorem 2.6.3 The real sequence {a,}nen is a Benford sequence if and only
if the sequence {log(an)}nen is uniformly distributed modulo 1.

Proof. The proof given here is a short (and maybe not so rigorous) one, see
again [Diaconis] for a detailed one.

If {log(ay,)} is uniformly distributed modulo 1, this sequence can be consid-
ered as a sample from a uniform distribution. According to the variate genera-
tion procedure (section 2.1.4, and remark 2.1.10), the sequence {a, } can thus be
considered as a sample from a distribution that satisfies Benford’s Law. Because
of the frequency-oriented definition 2.6.1, {a,,} is hence a Benford sequence (and
conversely).

]

Now the following useful theorems about uniformly distributed sequences
(modulo 1) have to be presented (see chapters 1 and 2 of [Kuipers & Niederreiter]
for the proofs):

Theorem 2.6.4 If {z,} is uniformly distributed modulo 1, and {y,} is such
that im(z, —y,) = a € R is constant, then {y,} is uniformly distributed modulo
1.

Theorem 2.6.5 (Weyl’s criterion) {xz,} is uniformly distributed modulo 1
if and only if, for all h € N*,

1 N
lim — E e?imhen —
N—oo N 1

=

Theorem 2.6.6 (Van der Corput’s estimate for trigonometric sums) Let
a,b€7Z,a <b, and f a function twice differentiable on [a,b] with f"(z) > p >0
or f'(z) < —p <0 for z € [a,b]. Then

b
Z e2i7rf(n)
n=a

Theorem 2.6.7 (Fejer’s theorem) If {f(n)} is uniformly distributed modulo
1, then

< (@) - F'®) +2) (% +3) (1)

limsup n|f(n+1) — f(n)] =
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2.6.2 Geometric sequences

Proposition 2.6.8 A geometric sequence {a"} is a Benford sequence if and
only if log(a) is irrational.

Proof. By theorem 2.6.3, {a"} is a Benford sequence if and only if {nlog(a)}
is uniformly distributed mod 1. It has long been known that the only sequences
of the form {na} that are uniformly distributed modulo 1 are those for which
«a is irrational (see [Weyl] again).

|

Example 2.6.9 Of course this case regroups lots of classical sequences, among
which the basic {2"}... This only can explain many observations of Benford’s
Law in nature.

2.6.3 {n!} and {n"}

The two sequences {n!} and {n"} are Benford sequences. They are included
here to show some examples of the joint use of Weyl’s fundamental criterion
(theorem 2.6.5) and Van der Corput’s estimate (theorem 2.6.6).

e For {n™} this is quite straightforward:
Let he Z*, N e N*,and put a =1, b= N, and f(n) = hnlog(n) in (11).

f'(n) = hlog(n)+h
oy = 2 (==
n n
N
1 2iwhnlog(n) 1 N
il < _
=~ ;e < (hllog(N) +2) | 4 0 +3

~ ol
N2

- 0 as N -

Hence by Weyl’s criterion {nlog(n)} is uniformly distributed mod 1, and
by theorem 2.6.3 {n"} is a Benford sequence.

e For {n!} this is a bit more difficult:

First recall Stirling’s formula:
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Thus the sequence

log(n!) — ((n + %) log(n) — ﬁ@

tends to a constant as n — oo, and by theorems 2.6.4 it is hence sufficient
to show that {(n+ %)log(n) + kn} is uniformly distributed modulo 1

(Where k= —m constant).
Soleth € Z*, N € N* andputa=1,b= N,and f(n) = h(n—l— %)log(n)+
hkn in (11).
, h
f'lin) = hlog(n)+h+% + hk

h h 1 1
fln) = P <:>P:|h|<ﬁ—w>>

h‘ <%_1>+2> (%7%’))

1 N

1 inf(n)
N > e

n=1

=

< (e +|

~ o)
Nz

— 0 as N = o

0o |

Finally the use of Weyl’s criterion and theorem 2.6.3 completes the proof.

2.6.4 Other sequences

Here some non-Benford sequences will be presented. In proving that a sequence
is not Benford, theorem 2.6.7 is very useful, or rather its following immediate
corollary (use theorem 2.6.3 and f(n) = In(ay)):

Corollary 2.6.10 If {a,} is a Benford sequence, then nln (az—jl) — 00.

Using that corollary, {n’}, {bn} and {log,n} can be easily proved not to be
Benford, whatever b is.

e For {n’}: nln ((”:—,})b) =nbln (1 + %) b

e For {bn}: nln (M) =nln(1+1) -1

bn

nf nEL
. 1*‘01"{logbn}:nln(w):mn(prl (= )>~L—>o

log, n Inn Inn

And, finally, to be complete, several other sequences were found to be Ben-
ford, like {(})} (see [Diaconis]), the Lucas and Fibonacci sequences, and other
recursively defined sequences (see [Schatte] and the papers referenced there)...
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Part 11

Experiments on Benford’s
Law
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Chapter 3

Real datasets and Benford’s
Law

3.1 U.S. counties and towns

This section presents results about some demographic data coming from the
U.S. Census Bureau (www.census.gov).

3.1.1 Populations of the U.S. counties

In 1995 Nigrini and Wood found that the 1990 census populations of the 3141
counties in the United States followed Benford’s law (see [Hilla]). They also
found that it was true for the predicted values for 1991 and 1992.

10 years after, in 2000, another census was organized in the U.S., so the idea
of checking Benford’s Law on that available data was quite tantalizing. If it was
true, then the “Benford-in-Benford-out” test (see section 1.6) would effectively
be useful in building models for population growth.

Figures 3.1 and 3.2 present histograms of the first digit for both 2000 and
1990.

Apparently, both first digits are very ‘close’ to Benford’s Law. Quantifying
the distance is however a bit tricky, as in samples of such size the Chi-square
test always rejects the null hypothesis for reasonable confidence levels.

Recall that the Chi-square statistic s is defined by:

n L 5.)\2
S:NXZ(fl ez)
€q
i=1

where N is the sample size, n is the number of classes, and f;, e; are respectively
the observed and expected proportions for the class 3.

In the Chi-square test, the null hypothesis is “the sample comes from the
distribution with p.d.f. {f;}i=1..»”, so the null hypothesis is rejected if s is large.
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Recall also that under the null hypothesis S ~ x2_,. Thus the p-value for the
test is 1 — F,,_1(s), where F},_ is the c.d.f. of x2_;.

However if N is large, s will tend to be large, and even if there are many
entries, the sample may not be able to approach enough the expected law to
decrease s. This can be seen as a limit of the Neyman-Pearson theory, see [Ley]
for instance and the papers referenced there.

That is why, here and throughout, both the normal Chi-square and the dis-
tance >.i (f; — €;)* (with the same notations as in the Chi-square) will be
shown. The analysis then requires more ‘common sense’ than strict mathe-
matical calculations. The author finds that the decimal order of the distance
provides a good idea of how Benford’s Law is fit by a dataset. In particular, for
the first digit in base 10, a distance of the order of 10~* can be considered as a
medium value for conformity: it means that on average |f; — ;| is in the order
of between 1072 and 1072 (i.e. the absolute difference between the observed
frequency and the predicted probability is on average between 1% and 0.1%) .
The Chi-square and the p-value must be considered with a lot of tolerance.

For the first digit of the 3141 U.S. counties the results are the following:

Year | Chi-square | Distance | p-value |
1990 15.2 6.2 107* 5%
2000 10.0 3.010°* 26%

Now what could be the explanation of such a phenomenon?

There might be a very simple answer. In fact it makes sense to suppose that
the population of a given county is a geometric sequence with respect to time,
since its growth rate is roughly constant. Hence it follows Benford’s Law (see
section 2.6.2) over time. And now if one takes lots of counties at one instant
(like in a survey), there should be counties at every “stage” of time. In the
language of time series, the process of surveying seems to keep Benford’s Law
invariant from time distribution to ensemble distribution.
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Figure 3.1: Population of the 3141 U.S. counties in 2000
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Figure 3.2: Population of the 3141 U.S. counties in 1990
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3.1.2 Absolute and relative changes

The absolute change is the net change of populations in the U.S. counties be-
tween 1990 and 2000. The change is taken as an absolute value since some
counties have lost inhabitants.

The relative change is simply the change in percentage, once again in absolute
value.

Figure 3.3 and 3.4 show that absolute change is quite close from Benford’s
Law, whereas relative change is not really. What somehow confirms this obser-
vation are the Chi-square results:

Type Chi-square | Distance | p-value
Absolute 9.6 281071 | 30%
Relative 66.9 3.010°3 0%

An explanation of Benford’s Law is here a bit obscure. Absolute change can
be seen as a realization of X —Y, where both X and Y satisfy Benford’s Law...
Therefore it allows to think that invariance by substraction (and by addition)
is ‘sometimes’ true.

Relative change raises another problem. It can be seen as a realization of
X;Y, so by multiplication invariance (see section 2.5.2), it would normally be
a good fit to Benford’s Law. But there the limit of observation by ‘common
sense’ is reached, i.e. the question “is the fit on figure 3.4 good or not?” cannot
be precisely answered.
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Figure 3.3: Absolute change in the population of the U.S. counties between 1990
and 2000
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Figure 3.4: Relative change in the population of the U.S. counties between 1990
and 2000
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3.1.3 Populations of the U.S. towns

Figure 3.5 shows that populations of the U.S. small towns taken from the 2000
census are very close to Benford’s Law, more in a sense than the counties. The
reason is certainly that the dataset is much larger, and hence an asymptotical
character of Benford’s Law takes place. Here of course the Chi-square and the
p-value are however penalized a lot by the sample size (25150).

Chi-square | Distance | p-value
Towns 15.1 9.110°° 6%

0.3
/3 US Towns
I Benford
0.2
0.1
0.0
1 2 3 4 5 6 7 8 9

Figure 3.5: Population of 25150 U.S. towns in 2000

3.2 French departements and regions

The populations of French departements and regions (different kind of admin-
istrative subdvisions) are here checked for conformity to Benford’s Law. The
data are taken from INSEE (www.insee.fr).

3.2.1 Departements

A departement is a small administrative subdivision of France (an area of ap-
proximatively five thousand square kilometers), and there are 99 of them in
total (including overseas territories).
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Figure 3.6 and the Chi-square results below lead to the same conclusion: it
cannot be supposed that the populations of French departements follow Ben-
ford’s Law. In fact, the dataset is not large enough to see Benford’s Law clearly
appear. Such a dataset is subject to too much variance; if for example the pop-
ulations had been taken each year through the whole century, then Benford’s
Law would probably have been observed.

Year | Chi-square | Distance | p-value
1990 15.4 79103 25%
1999 10.2 1.310°2 5%

0.3 7
[/ French departements
I Benford
0.2
0.1 7
0.0
1 2 3 4 5 6 7 8 9

Figure 3.6: Population of the 99 French departements in 1999

3.2.2 Regions

A region is a bigger administrative subdivision of France (typically a region
would include 4 departements), and there are 26 of them.

The conclusion is essentially the same as for the departements, since the
dataset is even smaller. It has to be noted that for both the departements and
the regions the Chi-square test seems to be significant.

Year | Chi-square | Distance | p-value |
1990 8.1 3.7 1072 42%
1999 7.7 3.5 1072 47%
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Figure 3.7: Population of the 26 French regions in 1999

3.3 Ensimag address book

In his 1938 experiment, Benford used the street addresses of 342 scientists taken
from American Men of Science. And the fit to the logarithmic law was very
close, one of the best indeed. Since then, it is maybe the dataset that was the
most talked about in conferences. Why should such a dataset follow Benford’s
Law? There is no rigorous answer, the only satisfactory one is perhaps that
“there are more short streets than long ones”... Of course it is completely
useless, so (justifiably) not much research has been done on that subject.

The author was very skeptical about this (like about Benford’s Law in gen-
eral, by the way), and wanted to show that Benford had ‘luck’ in his experiment.
The street addresses of 515 Ensimag students were thus analyzed... Both the
histogram (figure 3.8) and the Chi-square results are quite amazing...

Chi-square | Distance | p-value
Adresses 6.4 9.1107* | 60%

Remark 3.3.1 The data are precisely the home addresses -in other words the
parents’ addresses-. These were chosen since for some obscure reason students
tend to live together, and hence the dataset of the students’ own addresses in-
cludes many duplicated entries...
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Figure 3.8: Street addresses of 515 Ensimag students in 2000-2001
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Chapter 4

Check of invariances and
fraud detection

4.1 The dataset used

Some invariances in Benford’s Law are so amazing that they deserve to be
checked empirically. In this section the dataset used to check those invariances
is introduced.

4.1.1 Benford property

The dataset used, which here and throughout will be called D, is a real dataset
of 19708 entries, and consists of a mixture of counties and towns taken from the
2000 U.S. Census. The fact that it is a real dataset is not here important in
itself; in the current context it is considered as a large Benford dataset with a
bit of ‘natural’ noise (which is better to use than a perfect Benford dataset).

However, the conformity of D to Benford’s Law has first to be checked.
Figures 4.1 and 4.2 show histograms for the first and second digits of D. The
next table confirms what can be observed, i.e. that the first digit has a excellent
fit, whereas the second has a medium one.

Digit | Chi-square | Distance | p-value
First 6.1 3.5107° 64%
Second 48.7 2.5107* 0%

35



0.3 7

0.2 7

0.1

0.0

0.12

0.10

0.08

0.06

0.04

0.02

0.00

[/ Dataset D
Benford

Figure 4.1: First digit in D
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Figure 4.2: Second digit in D
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4.1.2 Fraud detection

Benford’s Law is used by accountants to detect fraud and/or duplicated data.
It is a partially negative rule, like many other rules, i.e. if Benford’s Law is not
satisfied, then it is probable that the dataset was manipulated (so further de-
tailed tests are necessary), but conversely a good Benford dataset could possibly
be fraudulent.

Actually this is the case of the dataset D. It was obtained by mistake, mixing
some of the populations of towns and counties. What makes it ‘fraudulent’ is
that some of the entries are sums of others (a county is divided into several
towns). Hence some of the data in D are heavily duplicated, not in the normal
sense but in the sense that they are split into sums. Not only did Benford’s
Law not help to spot that kind of duplication (which is logical), but also one
can certainly say that it made the fit better.

Another experiment was then performed, to see how relevant Benford’s Law
can be in fraud detection. The original dataset was contaminated by a sample
from a normal distribution with the same mean and the same variance. The
data were replaced at random in D by the fraudulent ones, so that the size of
the dataset was kept constant. This was taken as a model for a clever fraud,
but there are numerous other methods one can think about.

Figure 4.3 shows the evolution of the distance from Benford’s Law, according
to the size of the fraudulent sample (presented here as a percentage of the size
of the whole dataset). The range of contamination was chosen to be 0-10%, in
order to be realistic.

Several remarks have to be done:

e An exponential curve was found (graphically) to be a very good fit, which
means that the distance to Benford’s Law increases exponentially as the
dataset is more contaminated. This makes this simple distance a possible
tool in fraud detection, but all the problem will then be to design a correct
warning level.

e The variance in the distance is large, especially for high levels of contam-
ination, so this warning level may not be accurate at all. For instance, a
same distance value was approximatively found for a level of 3.5% and for
a level of 8.5%. Separating natural noise from actual fraud might thus be
really tricky.

e The decimal order of the distance itself somehow contradicts what was
said in section 3.1.1, i.e. that 10~* was a medium value for conformity...
Here an order of 10~% seems to be quite bad, since it corresponds to a
contamination level of 10%. This kind of analysis helps to quantify what
should be expected from the distance.

Of course everything that was done here is based on a demographic dataset
that nobody (or nearly...) would have the interest to fraud. And the kind of
fraud used is only an example, in many cases simple duplications are performed.
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Figure 4.3: Detection of fraudulent data in D

4.2 Scale- and base-invariance

Scale- and base-invariance are some of the most important invariances in Ben-
ford’s Law. In this section they will be extensively tested on D.

4.2.1 Scale invariance

The dataset D was multiplied by 91 constants regularly spaced between 1 and
10 (hence with a step of 0.1). Figure 4.4 shows the distance to Benford’s Law
for the first digit of each of the scaled datasets.

What has to be remarked is that the distance varies discontinuously, with
an average of 6.4 107> and a variance of 5.6 10719, Scale-invariance is roughly
observed, since the decimal order of thr distance doesn’t exceed 10~ in the
worst case. The scale of the original dataset D (i.e. 1) is luckily one of the best
scales.
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Figure 4.4: Scale-invariance

4.2.2 Base invariance

The dataset D was expressed in 8 different bases, from 3 to 10. Bases greater
than 10 were not investigated because it would have required a much more
complicated computer routine. Base 2 was not either, as in base 2 the first digit
is always 1. The next table shows the Chi-square, the distance, and the p-value
for the first digits of each of the converted datasets. Here the Chi-squares and
the distances do not have the same meaning according to the base (in base b
there are b—1 classes for the first digit, so they tend to be naturally lower in the
low bases). Taking that into account, the average distance |f; — e;| on all the
bases and all the classes was found to be of the order of 1072, so base invariance
is verified.

Here the Chi-squares seem not to be significant. In base 3 the excellent fit
is probably due to the fact that there are only two classes. The p-values are
very bad as usual, but if the distances are considered, overall base-invariance is
quite well verified.
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4.3 Inverse and multiplication

Base | Chi-square | Distance | p-value
3 0.1 2.710° 74 %
4 5.7 7.1107° 6 %
5 13.4 14107 | 0%
6 13.9 1.31074 1%
7 14.1 11107 | 1%
8 20.4 1.910* 0%
9 12.9 8.1107° 8 %
10 6.1 3.510°° 64 %

Inverse and multiplication invariances are another kind of invariances, which
explain the appearance of Benford’s Law in long series of calculations.

4.3.1 Inverse

Figure 4.5 shows the histogram for the first digit of the inverse of D, and the next
table gathers the Chi-square and distance results. According to the distance,
inverse invariance is well verified.

Digit | Chi-square | Distance | p-value |
Inverse 12.6 691077 | 13% |
0.3 7
C— Inverse(D)
@ Benford
0.2
0.1
0.0

Figure 4.5: Inverse of D
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4.3.2 Multiplication

Figures 4.6, 4.7 and 4.8 show histograms for the first digit of the product of
D by a sample (of size 19708) from three usual distributions (uniform, normal,
and exponential). As proved in section 2.5.2, multiplication invariance (by any
distribution, which is somehow a very amazing property) is actually observed
for the few chosen distributions.

Digit Chi-square | Distance | p-value
Uniform 10.0 4.6 107° 26%
Normal 8.2 5.7 107° 41%
Exponential 7.0 5.810°° 54%
0.3 7
T— D*Unif
I Benford
0.2 7
0.1
0.0

Figure 4.6: Multiplication by a sample from a uniform distribution on [0, 1]
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Figure 4.7: Multiplication by a sample from a normal distribution N (0, 1)

0.3
/3 D*Norm
I Benford
0.2 7
0.1 7
0.0

Figure 4.8: Multiplication by a sample from an exponential distribution Ezp(1)
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Conclusion

Benford’s Law history, which is quite fascinating, is a good example of how
scientists evolve in their approaches. First, the property was investigated on
the whole set of integers; then, invariances were found and used to hypothesize
Benford’s Law; and eventually the idea of randomized distributions was intro-
duced. Benford’s Law history is full of controversies, mistakes, and discussions,
and there is still a lot to write...

A summary of the mathematical properties described in the present report
could be:

1.

Real numbers satisfy Benford’s Law if their logarithms are uniformly dis-
tributed modulo 1 (section 2.1.4);

For any ‘non-pathological’ distribution, the significant digits at the infinite
tend to be uniformly distributed (section 2.2);

The logarithmic distribution is the only scale-invariant distribution (sec-
tion 2.3.2);

. The logarithmic distribution is the only atomless base-invariant distribu-

tion (section 2.3.3);

In observing samples from multiple distributions, supposing that the aver-
age distribution is scale- or base-invariant (and atomless) is sufficient for
Benford’s Law to appear (section 2.3.4);

The logarithmic distribution is the only sum-invariant distribution (section
2.4);

The logarithmic distribution is invariant under inversion and multiplica-
tion by any distribution (section 2.5);

A sequence of products of random variables is very likely to converge to
Benford’s Law (section 2.5.3);

Geometrical sequences are in general logarithmically distributed, along
with other sequences (section 2.6).

The underlying question was, among these properties, which can explain the
appearance of Benford’s Law in so many datasets. A possible partial answer is:

e Property 9 for particular datasets like populations or financial indexes;

e Property 8 for datasets coming from long series of computations;

e Property 5 for datasets consisting of mixtures of other datasets.
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In the process of checking the existence of Benford’s Law, some datasets were
found to follow the logarithmic law very closely. Some of the best fits were the
populations of the U.S. towns and the Ensimag address book. The problem of
quantifying the goodness-of-fit was raised: Benford’s Law only appear clearly
enough in large datasets, where the Chi-square statistic is of little use. Another
statistic, a simple distance to Benford’s Law, was found to be more useful in
those cases, but again it seems to lack accuracy and is highly dependent on the
dataset. Fraud detection was then somehow criticized, owing to the fact that in
such datasets noise and fraudulent data will be hard to distinguish.

In the case of Benford’s Law, invariances are so amazing in general that the
author found they were needed to be checked. Overall the few chosen were ver-
ified, by the distance used. Maybe a further extension could be to check these
invariances on other classical distributions and see if some can be applied to
them (for instance the property of convergence to the uniform was first thought
to be only applicable to digits following a logarithmic distribution, but in fact
it was found to be a much more general property...).

There could be two other direct sequels to the project:
e Writing a formal proof for Hill’s conjecture 2.2.1,

e Designing an accurate testing method for conformity of large datasets to
Benford’s Law.

Investigating other distributions for digits could also be interesting. The
logarithmic distribution should not be the only useful one... Actually some
skeptical reader could say that, given any usual distribution for digits, there
would certainly be plenty of confirming datasets to be found. Some distributions
of digits are more interesting or more widespread than others, though, and
Benford’s Law seems to be one of the best in those domains.
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