
Nearly Complete Binary Trees and Heaps 

DEFINITIONS:   
i) The depth of a node p in a binary tree is the length 

(number of edges) of the path from the root to p. 

ii) The height (or depth) of a binary tree is the maxi-
mum depth of any node, or −1 if the tree is empty. 

Any binary tree can have at most 2d nodes at depth d.  
(Easy proof by induction) 

DEFINITION:  A complete binary tree of height h is a binary 
tree which contains exactly 2d nodes at depth d, 0 ≤ d ≤ h. 

• In this tree, every node at depth less than h has two 
children.  The nodes at depth h are the leaves. 

• The relationship between n (the number of nodes) 
and h (the height) is given by  

n = 1 + 2 + 22 + ... + 2h−1 + 2h = 2h+1−1 

and 
  h = lg(n+1) −1.    

   



• Complete binary trees are perfectly balanced and have 
the maximum possible number of nodes, given their 
height 

• However, they exist only when n is one less than a 
power of 2. 

DEFINITION:  A nearly complete binary tree of height h is a 
binary tree of height h in which 
 a) There are 2d nodes at depth d for d = 1,2, ...,h−1, 
 b) The nodes at depth h are as far left as possible. 

• Condition (b) can be stated more rigorously, like this:  
If a node p at depth h−1 has a left child, then every 
node at depth h−1 to the left of p has 2 children.  If a 
node at depth h−1 has a right child, then it also has a 
left child.   

• The relationship between the height and number of 
nodes in a nearly complete binary tree is given by 

2h ≤ n ≤ 2h+1−1,  or    h = ⎣ lg(n)⎦. 

(This depends only on condition (a) in the definition.)



Examples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Not nearly complete: 
(a) fails. 

Not nearly complete: 
(b) fails. 

Nearly complete.



Say we label the nodes of a nearly complete binary tree by 
1, 2, 3, ..., n in order of increasing depth, and left-to-right at 
a given depth. 

 
 

Then, equating each node with its label, 
 i) left(k) = 2k,   if 2k ≤ n, 
 ii) right(k) = 2k+1, if 2k+1 ≤ n, 
 iii) parent(k) = ⎣k/2⎦   if k > 1. 

iv) k has one or more children if 2k ≤ n.  It has two 
children if any only if 2k+1 ≤ n. 

v) k is the left child of its parent if and only if k is 
even. 

Suppose each node in the tree contains an element from 
some set.  Denote the element in node p as element(p).



 
 
 
 
 
 
 
 
 
 

We don’t really need the tree structure (nodes with pointers 
to the two children, and possibly the parent).   
 
We can represent the tree implicitly by an array. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a J Q D B T Z G L C U A N F R H V I E W K M Y

The array contains all the information in the tree. 

• In the tree, if p is the node containing T (node 5), then 
parent(p) contains Q, left(p) contains U, and right(p) 
contains A.  (We examine the link fields in the node.) 

• In the array representation, we compute ⎣5/2⎦ = 2, 
2⋅5 = 10, and 2⋅5+1 == 11, and we find 
parent(a[5]] = a[2] = Q,  left(a[5]] = a[10] = U, and 
right(a[5]) = a[11] = A. 
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It is useful to think in terms of the tree, but all 
computation is actually performed with the array. 

DEFINITION:   A max-heap (or simply a heap) is a nearly 
complete binary tree in which each node contains an ele-
ment from a set S with a strict weak ordering, such that: 

For each node p except the root,   
element( parent(p)) >~ element(p). 

A min-heap is defined similarly except the heap 
condition is element( parent(p)) <~ element(p). 

Example of max-heap: 

  
 
 
 
 
 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

81 75 52 59 71 39 48 50 22 42 69 35 2 12 29 8 45 19 16 5 27 56

Heap condition 
at node p 
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Note in a max-heap: 

 i) The largest element is in the root. 
ii) The second largest element is in one of the 

children of the root, but the third largest element 
need not be in the other child. 

With a heap, we can perform at least these operations 
efficiently (time at worst Θ(lg(n)). 

 1) Insert a new element. 
 2) Find the largest element. 
 3) Remove the largest element. 
 
1) Insert a new element  (say insert 73, in the heap above) 

• There is only one place where we can insert a new 
node, and still have a nearly complete binary tree. 

• 



In general, if the old size of the heap is n, the new 
node becomes of child of node ⎣(n−1)/2⎦  —  a 
right child is n is even, and a left child if it is odd. 

• The only place the heap property can possibly fail is 
at the new node (node p). 

• We compare the element in node p (73) with the 
element in node parent(p) = q (69), and find that the 
heap property does fail at node p. 

• We correct the problem at p by exchanging the 
elements in nodes p (73) and q (69). 

   

• Now the only place the heap property can possibly 
fail is at node q. 
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• We compare the element in node q (73) with the 
element in node parent(q) = r  (71), and find that the 
heap property does fail at node q.  

• We correct the problem by exchanging the 
elements in nodes q and r. 

• Now the only place the heap property can 
possibly fail is at the parent of r (node s). 

• We compare the element in node r (73) with the 
element in node parent(r) = s  (75), and find that the 
heap property actually holds at node r. 

•  We are done. 

• In the worst case, we would have compared the new 
element with the elements in nodes q, r, s, and t. 
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• In general, the worst-case number of comparisons to 
insert a new element is the depth of the new node. 

• This is the height of a heap with n+1 elements, or 
⎣lg(n+1)⎦. 

• Thus: Cmax(n) = ⎣lg(n+1)⎦  ≈ lg(n), 
  Tmax(n) = Θ(lg(n)). 

• With the array representation, the algorithm to 
insert a new element is:  

// Insert a new element x into a heap of size n  
//  represented in an array A of size at least n+1.  
max-heap-insert( A, n, x) 
  n = n + 1; 
  A[n] = x; 
  while ( n > 1 and A[n] > A[ ⎣n/2⎦ ] )  
   swap( A[n], A[ ⎣n/2⎦ ] ); 
   n =  ⎣n/2⎦;  

 
2) Find the largest element 

• The largest element is in the root. 

• Simply return the element in the root (constant 
time) 



3) Remove the largest element 

• Let us remove the largest element from the heap  

• The element to be removed (77) is in the root.  
Removing it leaves the root empty. 

• The only node we can delete from the tree, and still 
have a nearly complete tree, is the last node (node 
p).   

• So we move the element in node p (32) to the root 
(node q), and remove node p from the tree. 

• We still have a nearly complete binary tree, and the 
heap property can fail only at the children of the 
root (nodes r and s). 

29

275221924

41

67 31

72

2 7 47

51

55

77

32

25

8

28 35

45

p

q



 

• Given a nearly complete binary tree, in which the 
heap property can fail only at the children of the 
root, we can make the tree into a heap using a 
procedure called max-heapify(). 

• Among the root and its two children (nodes q, r, s), 
we find the largest element.  (Two comparisons 
will suffice.) 

• In this case, the largest (72) occurs in node r. 

• If the largest of these three elements were to occur in 
the root (not the case here), we would be done. 

• If the largest occurs in a child of the root (as happens 
here, node r), we exchange the element in the root 
with the element in this child. 
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• In our case, we exchange 32 and 72. 

 

• This guarantees that the heap property holds at both 
children of the root, but may cause it to fail at the 
children of the node exchanged with the root (the 
children of node r, in our case). 

• We apply the same process recursively to the subtree 
rooted at r, i.e., invoke max-heapify() recursively. 

• The recursion terminates when we reach a leaf 
node, if not sooner. 

• The maximum number of calls to max-heapify() 
is  (height of heap)  =  ⎣lg(n)⎦ 

and the maximum number of comparisons is 
2 ⎣lg(n)⎦. 
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• With the array representation, we can write 
max-heapify() like this. 

// A is an array of size at least n, which we think of  
//   as a nearly complete binary tree.  In the subtree  
//   of A[1..n] rooted at A[i] , the heap property 
//   holds everywhere except possibly at the children 
//   of A[i].  This function makes the subtree of 
//    A[1..n] rooted at A[i] into a heap. 
max-heapify( A, i, n) 
 largest = i; 
 if ( 2i ≤ n and A[2i] > A[i] ) 
  largest = 2i; 
 if ( 2i+1 ≤ n and A[2i+1] > A[largest] ) 
  largest = 2i+1; 
 if ( largest ≠ i ) 
  swap( A[i], A[largest] ) 
  max-heapify( A, largest, n);  

• We can also write max-heapify() non-recursively 
like this:



 
max-heapify( A, i, n) 
 while ( 2i ≤ n )  
  largest = i; 
  if (A[2i] > A[i] ) 
   largest = 2i; 
  if ( 2i+1 ≤ n and A[2i+1] > A[largest] ) 
   largest = 2i+1; 
  if ( largest ≠ i ) 
   swap( A[i], A[largest] ) 
   i = largest;  
  else 
   i = n+1; 

Note:  In addition to operations (1), (2), (3), we can 
perform several other operations efficiently 
(Θ(lg(n)) time). 

• Increase or decrease the element in a known 
position. 

• Remove the element in a known position. 



However, we can not efficiently 

• Given x, decide if the heap contains an element 
equal to x. 

• Given k, find the kth largest element in the heap 
(unless k is 1, or at least is very close to 1). 

• Given x, remove x from the heap, if it is present. 

 

 


