Nearly Complete Binary Trees and Heaps

DEFINITIONS:

1) Thedepth of anode p in abinary treeisthe length
(number of edges) of the path from the root to p.

1) Theheight (or depth) of abinary tree is the maxi-
mum depth of any node, or —1 if the tree is empty.

Any binary tree can have at most 2% nodes at depth d.
(Easy proof by induction)

DEFINITION: A complete binary tree of height h isabinary
tree which contains exactly 2° nodes at depth d, 0 < d < h.

e Inthistree, every node at depth less than h has two
children. The nodes at depth h are the leaves.

e The relationship between n (the number of nodes)
and h (the height) is given by

nN=1+2+2°+ .. +2M1+2"=om_1

and
h=Ilg(n+1) —1.

e Complete binary trees are perfectly balanced and have
the maximum possible number of nodes, given their
height

e However, they exist only when nisonelessthan a
power of 2.

DEFINITION: A nearly complete binary tree of height hisa
binary tree of height hiin which

a) Thereare2’nodesat depthdford=1,2,...,h-1,
b) The nodes at depth h are as far left as possible.

e Condition (b) can be stated more rigoroudly, like this:

If anode p at depth h—1 has aleft child, then every
node at depth h—1 to the left of p has 2 children. If a
node at depth h—1 has aright child, then it also hasa
left child.

e The relationship between the height and number of
nodes in a nearly complete binary tree is given by

M<n<2™_1 or h=|lIgn)l.
(This depends only on condition (a) in the definition.)

Examples: ' Not nearly complete:
(a) fails.

QOO0000
' Z\tlbc;‘rfzielz.r'ly complete:
O C

' Nearly complete.

Say we label the nodes of a nearly complete binary tree by
1, 2, 3, ..., nin order of increasing depth, and left-to-right at

agiven depth.

(i
8 9 10 11 12 13 14 15

17 18 19 20 21 22

Then, equating each node with its |abel,
1) left(k) = 2k, If 2k < n,
1) right(k) = 2k+1, if 2k+1<n,
i) parent(k) =Lk/2] if k>1.
IV) k hasoneor morechildren if 2k < n. It hastwo
children if any only if 2k+1 < n.

V) Kkistheleft child of itsparent if and only if kis
even.

Suppose each node in the tree contains an element from
some set. Denote the element in node p as element(p).

1
o
2
O)
4 O 6
o 9 © e
8 9 10 11 12 13 14 15
ROBONICIN ® ® ¢
17 18 19 20 21 22

We don't really need the tree structure (nodes with pointers
to the two children, and possibly the parent).

We can represent the tree implicitly by an array.

1 2 3 45 6 7 8 9 101112 13 14 1516 17 18 19 20 21 22
alJ|Q|D|B|T|Z|G|L|C|U[A|IN|F|R|H|V|I|E|W|KIM]Y

The array contains all the information in the tree.

e Inthetreg, if pisthe node containing T (node 5), then
parent(p) contains Q, left(p) contains U, and right(p)
containsA. (We examinethelink fields in the node.)

e In the array representation, we compute| 5/2 = 2,
2-5=10,and 2-5+1 ==11, and we find
parent(a[5]] =a[2] =Q, left(a[5]] =a[10] = U, and
right(a[5]) = a[11] =

It isuseful to think in terms of the tree, but all
computation is actually performed with the array.

DEFINITION: A max-heap (or ssmply aheap) isanearly
complete binary tree in which each node contains an ele-
ment from a set Swith a strict weak ordering, such that:

For each node p except the root, Heap condition
element(parent(p)) = element(p). at nhode p

A min-heap is defined ssmilarly except the heap
condition is eement(parent(p)) < e ement(p).

Example of max-heap:

(L
(s (%2
(% (1, (% O
® @ @ ® ® @ ©@ @

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
81(75|52|59(71(39|48|50(22|42|69|35| 2 |12|29| 8 (45|19]|16| 5 (27|56

Note in a max-heap:
1) Thelargest element isin the root.

1) The second largest element isin one of the
children of the root, but the third largest element
need not be in the other child.

With a heap, we can perform at |east these operations
efficiently (time at worst ®(lg(n)).

1) Insert anew element.
2) Findthelargest e ement.
3) Remove the largest element.

1) Insertanew element (say insart 73, inthe heap above)

e Thereisonly one place where we can insert a new
node, and still have a nearly complete binary tree.

. (L
(s (%2
(%, (1, (3% (%,
@ @ @ ® 6 0 @ &

P
B ®W©)w®E @ eE®

In generdl, if the old size of the heap is n, the new

node becomes of child of node| (n-1)/2] — a
right child isniseven, and aleft child if it is odd.

e The only place the heap property can possibly fail is
at the new node (node p).

e \We compare the element in node p (73) with the
element in node parent(p) = q (69), and find that the
heap property doesfail at node p.

e \We correct the problem at p by exchanging the
elementsin nodes p (73) and q (69).

@)
= @
B O OSERO
® @ @ ® ® O @
B®®® 6@ E®)

e Now the only place the heap property can possibly
fall isat nodeq.

e \We compare the element in node q (73) with the
element in node parent(g) =r (71), and find that the
heap property doesfail at node q.

e \We correct the problem by exchanging the
elementsinnodesqandr.

t
O (%2
(%, @ (3% O
g
® @ @ W ® 0 @ @
P
OIOIOIOIOIGION0)

e Now the only place the heap property can
possibly fail is at the parent of r (node s).

e \We compare the element in node r (73) with the
element in node parent(r) = s (75), and find that the
heap property actually holds at noder.

e Wearedone.

¢ Intheworst case, we would have compared the new
element with theelementsin nodesq, r, s, and t.

e |n generd, the worst-case number of comparisonsto
Insert anew element is the depth of the new node.

e Thisisthe height of a heap with n+1 elements, or
LIg(n+1) .

e Thus. Cra(n) =Llg(n+1)] ~ Ig(n),
Tmax(N) = ©(Ig(N)).

e With the array representation, the algorithm to
Insert anew element is:

I/ Insert a new element x into a heap of sizen
Il represented in an array A of size at least n+ 1.
max-heap-insert(A, n, X)
n=n+1;
A[Nn] = x;
while(n>1and A[n] > A[|n/2]])
swap(A[n], A[Ln/2]]);
n= Ln/2];

2) Findthelargest element

e Thelargest element isin the root.

e Simply return the e ement in the root (constant
time)

3) Removethe largest element
e et usremove the largest element from the heap
CI

P
OIOIOIIOINC

e The element to be removed (77) isin the root.
Removing it leaves the root empty.

e The only node we can delete from the tree, and still
have anearly complete tree, is the last node (node

p).

e SO we move the element in node p (32) to the root
(node), and remove node p from the tree.

e \We gtill have anearly complete binary tree, and the
heap property can fail only at the children of the
root (nodesr and s).

q

e Given anearly complete binary tree, in which the
heap property can fail only at the children of the
root, we can make the tree into a heap using a
procedure called max-heapify().

e Among the root and itstwo children (nodesq, r,),
we find the largest element. (Two comparisons
will suffice.)

e Inthiscase, thelargest (72) occursinnoder.

e If thelargest of these three elements were to occur in
the root (not the case here), we would be done.

e If thelargest occursin achild of the root (as happens
here, node r), we exchange the element in the root
with the element in this child.

e |nour case, we exchange 32 and 72.
(72
S
r B heap property > @
must hold here
but could
@ * fail here @ @ @

e This guarantees that the heap property holds at both
children of the root, but may cause it to fail at the
children of the node exchanged with the root (the
children of noder, in our case).

e \We apply the same process recursively to the subtree
rooted at r, i.e., invoke max-heapify() recursively.

e Therecursion terminates when we reach aleaf
node, if not sooner.

e The maximum number of callsto max-heapify()
'S° (height of heap) = Lig(n)]

and the maximum number of comparisonsis

2l Ig(n)..

e With the array representation, we can write
max-heapify() like this.

/[Aisan array of size at least n, which we think of
/[asanearly complete binary tree. In the subtree
/[of A[1..n] rooted at A[i] , the heap property

/[holds everywhere except possibly at the children
/[of Ali]. Thisfunction makes the subtree of

/[A[1..n] rooted at A[i] into a heap.

max-heapify(A, i, n)

largest =1i;

If (21 <nand A[2] >A[i])
largest = 2i;

If (2I+1<nand A[2i+1] > A[largest])
largest = 21 +1;

If (largest=1)
swap(A[i], A[largest])
max-heapify(A, largest, n);

e \We can also write max-heapify() non-recursively
like this:

max-heapify(A, i, n)
while (2i <n)
largest =1i;
if (A[2i] > A[l])
largest = 2i;
If (2I+1<nand A[2i+1] > A[largest])
largest = 21 +1;
If (largest=1)
swap(Afi], A[largest])
| = largest;
else
| = n+1;

Note: In addition to operations (1), (2), (3), we can
perform severa other operations efficiently

(©(Ig(n)) time).

e Increase or decrease the element in a known
position.

e Remove the element in a known position.

However, we can not efficiently

e Given x, decide if the heap contains an element
equal to x.

e Givenk, find the k™ largest element in the heap
(unlesskisl, or at least isvery closeto 1).

e Given X, remove X from the heap, if it is present.

