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Previous work has demonstrated the existence of keyboard layouts capable of maintaining consistent fingerings across a parameterised family of tunings.
This paper describes the general principles underlying layouts that are invariant in both transposition and tuning. Straightforward computational methods for
determining appropriate bases for a regular temperament are given in terms of a row-reduced matrix for the temperament-mapping. A concrete description of
the range over which consistent fingering can be maintained is described by the valid tuning range. Measures of the resulting keyboard layouts allow direct
comparison of the ease with which various chordal and scalic patterns can be fingered as a function of the keyboard geometry. A number of concrete examples
illustrate the generality of the methods and their applicability to a wide variety of commas and temperaments, tuning continua, and keyboard layouts.
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1 Introduction

Some alternative keyboard designs have the property that any given interval is fingered the same in all keys. Recent
work [1,2] has shown by example that it is possible to have consistent fingering not only across all keys in a single
tuning, but also across a range of tunings. For example, a 12-edo (equal divisions of the octave) major chord, a
19-edo major chord, and a Pythagorean major chord might all be fingered in the same way. This paper explores the
scope of this idea by parameterising tunings usingregular temperamentswhich simplify Just Intonations (JI) into
systems that can be easily controlled and played.

As shown in Fig. 1, an underlying JI system is mapped to a set of generators of a reduced rank tuning system.
Sect. 2 describes this mapping in terms of the null space of a collection of commas. The resulting generators of the
reduced rank system are variable, and control the tuning of all notes at any given time. A privileged set of intervals
(such as the primary consonances) is used in Sect. 3 to calculate the range over which the generator may vary and
still retain consistent fingering. Sect. 4 describes a basis for the button-lattice which is chosen to spatially arrange
the intervals of the temperament for easy playability. Issues contributing to the playability of an instrument include
transpositional variance/invariance, the geometry of the swathe (discussed in Sect. 4), the presence of a monotonic
pitch axis (detailed in Sect. 6), and readily fingerable harmonic and melodic intervals (Sect. 7). A series of examples
in Sect. 5 shows how the ideas can be applied to a variety of tuning continua and a variety of keyboard geometries.

2 Tempering by commas

A p-dimensional tuning system can be tempered withn commas, providing a way to parameterise a family of
tunings in terms of a smaller number (typically one or two) of basis elements. Suppose a systemS is generated by
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Figure 1. From JI to regular temperament to layout.

p positive real generatorsg1, g2, . . . , gp, so that any elements ∈ S can be expressed uniquely as integer powers
of the gj , that is,s = gi11 g

i2
2 ∙ ∙ ∙ g

ip
p for ij ∈ Z. The value ofs can be interpreted as the frequency height of the

p-dimensional lattice elementz = (i1, i2, . . . ip) ∈ Zp. It is often easier to study such a system by taking the
logarithm; this turns powers into products, products into sums, and frequency height intopitch height(or cents). In
this notation, thetuning vectorg = (log(g1), log(g2), . . . , log(gp)) ∈ Rp maps each elementz ∈ Zp to

i1 log(g1) + i2 log(g2) + . . .+ ip log(gp) = 〈z, g〉 ∈ R.

The value〈z, g〉 is the pitch height ofz corresponding to the tuning vector.Temperingmeans to vary the precise
values of the tuning vector, replacingg with nearby valuesG = (log(G1), log(G2), . . . , log(Gp)) ∈ Rp. The
orthogonal complement

G⊥ = {x ∈ Rp|〈G, x〉 = 0}

is thep−1 dimensionalisotone hyperplaneof pitch height zero. Acommais an elementc ∈ Zp with 〈c,G〉 = 0 and
soG⊥

⋂
Zp is called thecomma lattice. A tuning continuumis a continuous family of tuning vectorsGγ ∈ Rp with

the property that there is a commonn-dimensional subspaceC ⊂ G⊥γ of the isotone hyperplanes for all members
of the family. (Particular members of the continuum may have more thann commas.) A tuning continuum is called
a regular temperamentwhen its tuning gives intervals that can be correctly recognised as approximations of small
integer (Just Intonation) ratios. A simple way to concretely characterise a tuning continuum is in terms of a basis
for C, that is, in terms ofn linearly independent commas. The commas can be viewed as a set of constraints that
reduce the system fromp to p− n dimensions.

Let c1, c2, . . . , cn ∈ Zp ben linearly independent commas gathered into a matrixC ∈ Rnxp whosejth row iscj .
Since〈cj , G〉 = 0 for all j, this represents a linear system of equations

C (log(G1), log(G2), . . . , log(Gp))
T = 0

(wherexT is the transpose ofx) and the mapping can be characterised by the null spaceN (C). The correspond-
ing range space mappingR : Zp → Zn (defined by the transpose of some basis ofN (C)) maps any element
gi11 g

i2
2 ∙ ∙ ∙ g

ip
p ∈ S to

R (i1, i2, . . . , ip)
T .

Such characterisations of temperaments in terms of the null space of commas were first discussed on the Alternate
Tunings Mailing List [3] and a variety of special cases are considered in [4] and [5]. A basis for the temperament
mapping can often be found by reducingR to row echelon formR̂ which displays the same range space with
leading ‘1’s. Any such basis can be used to specify the tuning continuum.

EXAMPLE 2.1 (5-limit with the Syntonic Comma and Major Diesis)Consider the 5-limit primes defined by the
generators2, 3, 5, which are tempered to2 7→ G1, 3 7→ G2, and5 7→ G3 by thesyntonic commaG−41 G42G

−1
3 = 1

and themajor diesisG31G
4
2G
−4
3 = 1. ThenC =

(
−4 4 −1
3 4 −4

)
has null spaceN (C) = (12, 19, 28)T. ThusR =

(12, 19, 28), and a typical element2i13i25i3 is tempered toGi11 G
i2
2 G

i3
3 and then mapped through the comma to
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12i1 + 19i2 + 28i3. All three temperings can be written in terms of a single variableα asG1 = α12, G2 = α19,
andG3 = α28. If the choice is made to temperG1 to 2 (to leave the octave unchanged)α = 12

√
2 and the result

is 12-edo. IfG1 is tempered to apseudo-octavepe, α = 12
√
pe defines the tuning with 12 equal divisions of the

pseudo-octave [6, 7]. Any givenα defines a member (i.e. a particular tuning) within this 12-equal divisions of the
pseudo-octave tuning continuum.

EXAMPLE 2.2 (5-limit with the Syntonic Comma)Consider the5-limit primes defined by the generators2, 3, 5,
which are tempered to2 7→ G1, 3 7→ G2, and 5 7→ G3 by the syntonic commaG−41 G42G

−1
3 = 1. ThenC =

(−4, 4,−1) has null space spanned by the rows ofR =
(
1 1 0
−1 0 4

)
, and this may be row reduced to

R̂ =

(
1 0 −4
0 1 4

)

. (1)

A typical element(i1, i2, i3)
T is mapped to(i1 − 4i3, i2 + 4i3)

T. In this basis, the tempered generators can be
written in terms of two basis elementsα̂ and β̂ by inspection of the columns of̂R asG1 = α̂, G2 = β̂, and
G3 = α̂

−4β̂4. TemperingG1 to 2 (= α̂, leaving the octave unchanged) and lettingβ̂ vary gives a tuning continuum
that contains a variety of well known tunings:β̂ = 2

11

7 ≈ 2.9719 gives 7-edo,̂β = 2
19

12 ≈ 2.9966 gives 12-edo,
β̂ = 2

27

17 ≈ 3.0062 gives 17-edo,̂β = 2
8

5 ≈ 3.0314 gives5-edo, and other̂β give a variety of (nonequal) tunings
such as14 -comma and27 -comma meantone. IfG1 is tempered to a pseudo-octavepe = α̂, the various values of̂β
correspond to 7-equal division of the pseudo-octave, 12-equal divisions of the pseudo-octave, etc.

EXAMPLE 2.3 (5-limit with the Syntonic Comma)Consider the 5-limit primes defined by the generators2, 32 ,
5
4 , which are tempered to2 7→ H1, 32 7→ H2, and 54 7→ H3 by the syntonic commaH−21 H42H

−1
3 = 1. Then

C = (−2, 4, 1) has null space spanned by the rows of

R̂ =

(
1 0 −2
0 1 4

)

(2)

which is given in row reduced form. A typical element(i1, i2, i3)
T is mapped to(i1 − 2i3, i2 + 4i3)

T. In this basis,
the tempered generators can be written in terms of two basis elementsα̂ and β̂ by inspection of the columns of̂R
asH1 = α̂,H2 = β̂, andH3 = α̂−2β̂4. TemperingG1 to 2, β̂ covers the same gamut of tunings as in Example 2.2.
For instance, aŝβ increases, the continuum in Example 2.2 moves from 7, to 12, to 17, to 5-edo.

EXAMPLE 2.4 (5-limit with Two Commas)Consider the5-limit primes defined by the generators2, 3, 5, tempered
to 2 7→ G1, 3 7→ G2, and5 7→ G3 by any two of the following commas:

Name Comma Vector Representation
the syntonic commaG−41 G42G

−1
3 = 1 (−4, 4, −1)

the parakleisma G81G
14
2 G

−13
3 = 1 (8, 14, −13)

the kleisma G−61 G−52 G63 = 1 (−6, −5, 6)
the small diesis G−101 G−12 G53 = 1 (−10, −1, 5)

ThenC is a 2x3 matrix composed of any two of the vectors above. All pairs have the same null spaceN (C) =
(19, 30, 44)T which is mapped through the comma to19i1 + 30i2 + 44i3. The temperings can be written in terms
of a single variableα asG1 = α19,G2 = α30, andG3 = α44. If the choice is made to temperG1 to 2 (to leave the
octave unchanged) thenα = 19

√
2 and the result is 19-edo. Similarly, temperingG1 to a pseudo-octavepe defines

the tuning continuum with 19-equal divisions of the pseudo-octave.

EXAMPLE 2.5 (11-limit) Consider the11-limit primes defined by the generators2, 3, 5, 7, 11, which are tempered
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to 2 7→ G1, 3 7→ G2, 5 7→ G3, 7 7→ G4, and11 7→ G5. Using the three commas

G−71 G−12 G13G
1
4G
1
5 = 1

G11G
2
2G
−3
3 G14 = 1

G−41 G42G
1
3 = 1

reduces this to a rank 2 regular tuning system. The matrixC =
(−7 −1 1 1 1
1 2 −3 1 0
−4 4 1 0 0

)
has null spaceN (C) =

( 13 24 44 71 010 13 12 0 71 )
T
. The row reduced form ofR is R̂ =

(
1 0 −4 −13 24
0 1 4 10 −13

)
, which implies the basisG1 = α̂,G2 = β̂,

G3 = α̂
−4β̂4,G4 = α̂−13β̂10, andG5 = α̂24β̂−13.

Examples 2.2, 2.3, and 2.5 define two-parameter mappings calledα-reducedβ-chains, which are generated by
stacking integer powers ofβ and thenreducing(dividing or multiplying byα) so that every term lies between 1 and
α. For anyi ∈ Z, this isβiα−bi logα(β)c wherebxc represents the largest integer less than or equal tox. α-reduced
β-chains define scales that repeat at intervals ofα; α = 2, representing repetition at the octave, is the most common
value. For a chain to repeat at the octave,2

1

r 7→ α for somer ∈ Z. Similarly, for a chain to repeat at another interval

of equivalencepe (such as a ‘stretched octave’pe = 2.01, the ‘tritave’pe = 3, or the ‘pentave’pe = 5), p
1

r
e 7→ α. If

αm = βn for some coprime integersm andn, the chain hasn distinct notes in[1, α). If α andβ are not rationally
related, there are an infinite number of notes dense in[1, α). Any arbitrary segment of anα-reducedβ-chain can
be used to form a scale, and the number of notes it contains is called itscardinality. For a given tuning ofα and
β, certain cardinalities areMOS scales, which have a number of musically advantageous properties (whenα = 2,
MOS scales are conceptually equivalent towell-formedscales) [8–10].

3 Valid tuning range for consistent fingering

A p-dimensional tuning system tempered byn commas parameterises ap−n dimensional family of tunings. When
such a tuning system is laid out onto a keyboard, two desirable properties aretranspositional invariance(where
intervals are fingered the same in all keys) andtuning invariance(where intervals are fingered the same throughout
all members of a tuning continuum). As shown in [1], these together require the keyboard to have dimensionp−n.
This section generalises these ideas by formally definingconsistent fingering of a set of intervalsover thevalid
tuning rangewhere the fingering of intervals on the keyboard remains the same.

Any interval s ∈ S can be written in terms of thep generators ass = gi11 g
i2
2 ∙ ∙ ∙ g

ip
p whereij ∈ Z, or more

concisely as the vectors = (i1, i2, ∙ ∙ ∙ ip). As in Sect. 2, a set ofn commas defines the temperament mappingR.
Consider aprivilegedset of intervals

1 = s0 < s1 < s2 < . . . < sQ, (3)

which can also be represented as the vectorss0, s1, . . . , sQ. Given any set of generatorsα1, α2, . . . , αp−n for the
reduced rank tuning system, each intervalsi is tempered toRsi = α

j1
1 α

j2
2 . . . α

jp−n
p−n wherejk ∈ Z. Without loss of

generality, theαk may be assumed greater than or equal to unity (since a candidate generatorαk < 1 with exponent
jk is equivalent to the generatorα−1k > 1 with exponent−jk). Theα-generators define the specific tempered tuning
and the coefficientsjk specify the exact ratios of the privileged intervals within the temperament. The set of all
generatorsαi for which

1 = Rs0 < Rs1 < Rs2 < . . . < RsQ (4)

holds is called thevalid tuning range(VTR). If the musical system contains an interval of equivalencepe, the
privileged intervals need only be considered inpe-reducedform.

Given any layout mappingL (as discussed in Sect. 4), thejk correspond directly to the buttons that must be
pressed in order to sound those intervals. Accordingly, (4) guarantees that the fingering of privileged intervals
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remains fixed for all possible perturbations of the basis within the VTR and the privileged intervals are said to be
consistently fingeredover the VTR. Note that the VTR does not guarantee that the privileged intervals sound ‘in
tune’ or remain recognisable in a harmonic sense (i.e. as equivalent to specific small-integer ratios), but it does
guarantee that the scalic order of all privileged intervals is invariant. For example, a scale (e.g. the chromatic)
might consist of privileged intervals (e.g. the harmonic consonances of common practice) and the intervals that can
connect these privileged intervals by all possible types of contrapuntal motion (i.e. similar and contrary and oblique)
(e.g. the tones and semitones of common practice). These connective intervals may serve as the raw material for
melodies and for voice-leading between harmonies, and so support a system of counterpoint. In such a scale, the
melody will have the same contour (i.e., the same pattern of up and down notes) for all tunings in the continuum
within the VTR. Outside the VTR, the contour, and hence the melodies, will change. Thus the VTR defines the
limit over which the system of counterpoint remains invariant (of course, the adventurous composer or performer
may choose to explore the exotic melodic terrain beyond the VTR).

For non-contrapuntal systems it may be more useful to choose privileged intervals that are not harmonic con-
sonances but are instead important melodic entities, such as the two differently sized steps of an MOS scale (see
Example 3.5, for a concrete example). In this way, the VTR of any given MOS scale (characterised according to its
cardinality) is equivalent to the tuning range over which that scale can actually exist. In such a system, the melodic
contour (and, therefore fingering) of all within-scale playing is invariant throughout the VTR.

There is an interesting relationship between the VTRs of some regular temperaments (using harmonic conso-
nances as the privileged intervals) and the VTR of an associated MOS scale (using that scale’s steps as privileged
intervals). When the VTR of the MOS scale includes the VTR of the regular temperament, it implies that all of
that MOS’s melodic intervals can also voice-lead between all of that temperament’s consonant harmonies. Such
systems might be considered to have desirable musical properties because their melodic and harmonic structures
are so tightly bound together. Example 3.5 gives a concrete example: the seven note diatonic MOS scale used to
embody the syntonic temperament (of which meantone tunings are the most familiar) is a system in which every
melodic interval is also a voice-leading interval. An exploration of other such harmonic/melodic synergies, and the
relationships between VTRs and coherence [11], may provide interesting topics for future investigations.

EXAMPLE 3.1 (The Primary Consonances)Perhaps the most common example of a privileged set of intervals in
5-limit JI (recall Examples 2.1-2.3) is the set of eight common practice consonant intervals1, 65 ,

5
4 ,
4
3 ,
3
2 ,
8
5 ,
5
3 , 2,

which are familiar to musicians as the unison, just major and minor thirds, just perfect fifth, octave, and their
octave inversions.

EXAMPLE 3.2 (Higher-Limit Primary Consonances)Themajor prime chordof a p-limit just intonation is built
from an octave-reduced version of the primes2 : 3 : 5 : . . . : p. Theminor prime chordis analogously built from
octave-reduced versions of the inverted primes1

2 :
1
3 :

1
5 : . . . :

1
p . The intervals that make up these chords form

natural candidates for the privileged set when working with higher order just intonations.

Given a tuning systemS, a set of commas and a set of privileged intervals, it is important to be able to find the
VTR. After tempering, each of the privileged intervalsRsi may be represented as an elementsi ∈ Zp−n. The
requirement thatRsi+1 > Rsi in (4) is identical to the requirement that








s1
s2
...

sp−n















log(α1)
log(α2)

...
log(αp−n)







>








s0
s1
...

sp−n−1















log(α1)
log(α2)

...
log(αp−n)








(5)

where the inequality signifies an element-by-element operation. Let

S =








s1 − s0
s2 − s1

...
sp−n − sp−n−1








andx =








log(α1)
log(α2)

...
log(αp−n)







. (6)
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Then (5) becomesSx > 0, which is the intersection ofp−n half-planes with boundaries that pass through the origin.
Since the elements ofx are positive (which follows becauseαi ≥ 1), only the first quadrant need be considered.
The monotonicity assumption (4) guarantees that the intersection is a nonempty cone radiating from the origin; this
cone defines the VTR.

EXAMPLE 3.3 (5-Limit Syntonic Continuum)Consider the5-limit JI system in Example 2.2 in which the syntonic
comma is used to give the temperament mappingR̂ in (1). The primary consonances of Example 3.1 are mapped
throughR̂ to

(
0 5 −6 2 −1 7 −4 1
0 −3 4 −1 1 −4 3 0

)T
which can be read in terms of two generatorsα andβ (renamed fromα1

andα2 above) as a requirement that the inequalities

1 = α0β0 < α5β−3 < α−6β4 < α2β−1 < α−1β1 < α7β−4 < α−4β3 < α1β0

hold for all α andβ in the VTR. Rewriting this as in (5)-(6) gives

(
5 −11 8 −3 8 −11 5
−3 7 −5 2 −5 7 −3

)T(
x1
x2

)

>

(
0
0

)

.

This region is the cone bounded below byx2 = 11
7 x1 and bounded above byx2 = 8

5x1. Sincex1 = log(α) and

x2 = log(β), these can be solved by exponentiation to show thatα
11

7 < β < α
8

5 . For α = 2, this covers the
range between 7-edo and 5-edo. Outside this range, one or more of the privileged intervals changes fingering. At
the boundaries, the difference between two of the privileged intervals collapses to a unison. This VTR range is
identical to Blackwood’s range of recognisable diatonic tunings [12], to the 12-note MOS scale generated by fifths,
and to the range of the syntonic tuning continuum in [1, 2]. The syntonic tuning continuum contains the familiar
meantone tunings used in common practice, though the term meantone typically refers to the narrower range of
syntonic tunings that have an established historical usage (a range of approximately 19-edo to 12-edo). An MOS
scale containing only the primary consonances and the voice-leading intervals that connect them is the 12-note
chromatic, and hence the contour of any chromatic melody (or diatonic, because it is a subset of the chromatic) is
preserved over all members of the syntonic continuum.

EXAMPLE 3.4 (5-Limit Syntonic Continuum II)The5-limit JI system in Example 2.3 is defined by the generators
2, 32 ,

5
4 , uses the syntonic comma, and has temperament mapR̂ in (2). The primary consonances of Example 3.1

are mapped througĥR to
(
0 2 −2 1 0 3 −1 1
0 −3 4 −1 1 −4 3 0

)T
, which can be rewritten using (5)-(6) as

(
2 −4 3 −1 3 −4 2
−3 7 −5 2 −5 7 −3

)T(
x1
x2

)

>

(
0
0

)

.

This region is the cone bounded below byx2 = 4
7x1 and bounded above byx2 = 3

5x1. This corresponds to the

regionα
4

7 < β < α
3

5 which is again identical to Blackwood’s range of recognisable diatonic tunings and to the
12-note MOS scale generated by fifths.

The above examples show how the VTR changes when the temperament is expressed in different bases. Different
privileged intervals imply different VTRs. For example, if some of the intervals are removed from consideration
in Examples 3.3 and 3.4, the VTR may expand. If more intervals are included in the privileged set, the VTR may
contract.

EXAMPLE 3.5 (The Seven-Note MOS Scale Generated by “Fifths”)Perhaps the most familiar example of a
privileged set of melodic intervals are the tones and semitones that make up the diatonic scale. When 27→ G1,
3/2 7→ G2, the diatonic steps are

(
0 −1 3 1
0 2 −5 0

)T
. Rewriting this as in (5)-(6) gives

(
−1 4 −2
2 −7 5

)T
( x1x2 ) > (

0
0 ). This

region is the cone bounded below by x2 =
1
2x1 and bounded above byx2 = 4

7x1, corresponding to the region

α
1

2 < β < α
4

7 , which includes the above syntonic VTR.

EXAMPLE 3.6 (7-Limit Bohlen-Pierce)A 7-limit Bohlen-Pierce system has odd generators3, 5, and7 which are
tempered to3 7→ G1, 5 7→ G2, and7 7→ G3 by the commaG−71 G62G

−1
3 = 1. C = (−7, 6,−1) has null space
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Table 1. A selection of temperaments with2 7→ α and1 < β < 2
1
2 . With the exception of ‘syntonic’, the common names are taken from the Tonalsoft Encyclopedia of

Microtonal Music Theory [13]. VTR values are rounded to the nearest cent and the comma vectors presume that2 7→ G1, 3 7→ G2, 5 7→ G3.

Common name Negri Porcupine Tetracot Hanson Magic Würschmidt Semisixths Schismatic Syntonic

Comma (−14, 3, 4) (1,−5, 3) (5,−9, 4) (−6,−5, 6) (−10,−1, 5) (17, 1,−8) (2, 9,−7) (−15, 8, 1) (−4, 4,−1)
VTR (cents) 120–150 150–171 171–185 300–327 360–400 375–400 436–450 494–514 480–514

spanned by the rows ofR =
(
1 0 −7
0 1 6

)
, which is presented in row-reduced form. The privileged intervals (the

analog of the primary consonances in the BP system) are1, 97 ,
7
5 ,
5
3 ,
9
5 ,
15
7 ,
7
3 , 3, which are mapped throughR to

(
0 9 −7 −1 2 8 −8 1
0 −6 5 1 −1 −5 6 0

)T
. Rewriting this as in (5)-(6) gives

(
9 −16 6 3 6 −16 9
−6 11 −4 −2 −4 11 −6

)T
( x1x2 ) > (

0
0 ) . This region

is the cone bounded below byx2 = 16
11x1 and bounded above byx2 = 3

2x1, which corresponds to the region

α
16

11 < β < α
3

2 and the tuning range of the 13-note MOS scale generated byα ≈ 3 andβ ≈ 5.

EXAMPLE 3.7 (Reflected Scales)Consider a basis expressed in the formα = A, β = AkB whereα, β > 1.
For anyk ∈ Z, all such bases produce identicalα-reducedβ-chains and identical VTRs (afterα-reduction). The
reflected basisα = A, β = AkB−1 produces anα-reducedβ-chain that is reflected about the zeroth note and a
VTR that is reflected aboutα

1

2 . For instance a chain of six perfect fifth meantone generators produces the Lydian
mode, which has step intervals of M2, M2, M2, m2, M2, M2, m2, and a VTR of686–720 cents. A chain of six
perfect fourth meantone generators produces the Phrygian mode, which has the same step intervals as Lydian
but in reverse order (m2, M2, M2, m2, M2, M2, M2), and a VTR of480–514 cents. Using the5-limit primary
consonances as the privileged intervals and fixingα at 2, Table 1 shows theβ-tunings that are within the VTRs of
a selection of temperaments (the tuning range ofβ is limited to1–2

1

2 , i.e.0–600 cents).

When assigning the values ofα andβ to controllable parameters, it is necessary to choose sensible ranges over
which the parameters may vary: one strategy is to fix one component (sayα = p

1/r
e , thereby ensuring that the

interval of equivalence is always purely tuned) and assign the other to a one-axis controller such as a slider. The
performer moves the controller to change the tuning of the instrument, allowing exploration of the tunings within a
given VTR and enabling easy transitions between different VTRs. Because all bases of the formα = A, β = AkB
are interchangeable (see Example 3.7), the tuning range ofβ need be no wider thanα.

4 Layout mappings and the geometry of the swathe

A button is any device capable of triggering a specific pitch; it could be a physical object such as a key or lever,
or it might be a ‘virtual’ object such as a position on a touch-sensitive display screen or in a holographic projec-
tion. A layout is the embodiment of a temperament in the button-lattice of a musical instrument. In the same way
that a regular temperament has a finite number of generators (e.g.α andβ) that generate its intervals, a lattice
can be represented with a finite number of basis vectors that span its surface. The logical means to map from a
temperament to a button-lattice is to map the generating intervals of the temperament to a basis of the lattice. The
lattice generated by a full-rank matrixL is Λ(L) = {Lk|k ∈ Zn} . If a copy of the fundamental parallelepiped
P (L) = {Lx|x ∈ Rn, 0 ≤ xi < 1} is placed at every point of the lattice,Rn is tiled by the parallelepipeds, each
with volume|det(L)|. The determinant ofL is inversely proportional to the density of the lattice, that is, the num-
ber of lattice points inside a sphereO approachesvol(O)|det(L)| asO grows [14]. All layout mappings in this paper are
assumed to have a determinant±1, which ensures that their button densities are equivalent and so comparisons
between them are fair. Since transpositional invariance requires a linear and invertible layout mapping [1], a rank-2
temperament must be embodied on a 2-dimensional lattice. Thus most examples are drawn in two dimensions,
whereL : Z2 → R2 maps from the exponentsi andj of the generatorsαi andβj through the layout mapping

L = (ψ ω) =

(
ψx ωx
ψy ωy

)

(7)

to the button-lattice. Physically,ψ andω form a basis of the button-lattice, which ensures that all notesαiβj are
mapped to some button and that each button location corresponds to some note.
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Table 2. Matrix representations of a selection of button-latticesB, layoutsL, and transformationsT (rotation, reflection, scale, and shear). The values are given to two decimal places; the actual values
for the layout matrices are multiples of theBHex vectors.

Hexagonal:BHex =

(
2
1
2 3−

1
4 ≈ 1.07 2−

1
2 3−

1
4 ≈ 0.54

0 2−
1
2 3

1
4 ≈ 0.93

)

Square:BSqu=

(
1 0
0 1

)
Thummer:BThu =

(
1.25 0.62
0 0.80

)
Wilson:BWil =

(
0.94 0.47
0.35 1.23

)

L1 =

(
0.54 1.07
0.93 0

)
Wicki: LWic =

(
0 0.54
1.86 0.93

)
L2 =

(
2.69 1.61
0.93 0.93

)
CBA-B: LCBA-B =

(
3.76 2.15
2.79 1.86

)

CBA-C:LCBA-C =

(
3.76 2.15
−2.79 −1.86

)
Fokker:LFok =

(
6.45 3.76
1.86 0.93

)
Bosanquet:LBos=

(
4.90 2.86
0 0.20

)
Wilson:LWil =

(
5.66 3.30
0 0.18

)

TRot(θ) =

(
cos θ − sin θ
sin θ cos θ

)
TRef(θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
TSca(k) =

(
k
1
2 0

0 k−
1
2

)

TShe(kx, ky) =

(
1 + kxky kx

ky 1

)

Table 2 shows the matrix representations of the reduced bases of a selection of unimodular lattices. The hexagonal
button-latticeBHex allows for the densest possible packing of buttons [15]. For this reason many existing button-
lattice instruments are approximately hexagonal in form: Thumtronics’ Thummer [16], Starr Labs’ Vath 648 [17],
C-Thru Music’s Axis [18], H-Pi’s Tonal Plexus [19], the Fokker organ [20], and the generic chromatic button ac-
cordion. Table 2 also shows typical matrix representations for several common layouts [20–23]. As generic names,
these may also refer to any reasonably similar layout. All values are given with respect to a hexagonal lattice, ex-
cept forLBos andLWil , which use the lattice forms in [23]. The syntonic tuning continuum of Example 2.3 is shown
graphically in [1] as laid out with a Wicki mapping.

Left-multiplying a layoutL by a unimodular real matrix may be interpreted as a transformation of the underlying
lattice geometry and a selection of easy to visualise transformations is shown in Table 2. For example,TSca(1.346)∗
LWic gives the Wicki layout mapping as applied to a Thummer lattice. Right-multiplying a layoutL by a unimodular
integer matrix may be interpreted as a new layout mapping to a different basis of the same underlying lattice. For
example,LWic ∗

(
−2 −1
7 4

)
= LCBA-B.

As successive notes in anα-reducedβ-chain are laid onto a button-lattice they cut aswatheacross it. Whenα
is the interval of equivalencepe, it is musically meaningful to divide the intervals of a regular temperament into
those that lie within a swathe (i.e. allα-reduced intervals larger than unison but smaller thanα) and the repetitions
of those intervals that lie outside that swathe (i.e. all intervals larger thanα). The size of the swathe determines the
microtonal and modulatory capabilities of the instrument; the number ofα-repetitions determines the overall pitch
range of the instrument. The number of physical buttons on any given keyboard lattice limits the total number of
intervals; the choice of layoutL determines the trade-off.

The vector positionvn of thenth noten = . . . ,−2,−1, 0, 1, 2, . . . with respect to the zeroth note in a swathe can
be expressed as a function ofα, β,ψ, andω as

vn = nω − bnzcψ wherez = logα(β) (8)

andn ∈ Z. The slope and thickness (measured orthogonally to the slope) of the swathe are given by

m =
ωy − ψyz
ωx − ψxz

andT =
1

√
(ωx − ψxz)2 + (ωy − ψyz)2

. (9)

The swathe is affected not just by the choice of generating vectors (ψ andω) but also by the size of the generating
intervalsα andβ via the variablez of (8). Clearly, the different VTRs of different regular temperaments have
swathes with different thicknesses and slopes. Fig. 2 shows the swathes produced for generators with differentz
values (z ≈ 7

12 , suitable for the meantone temperament;z ≈ 2
3 for the Magic temperament;z ≈ 1

4 for the Hanson
temperament), when using the Wicki and Fokker layouts. The swathe thicknessT gives a measure of the extent
to which that swathe favours the number ofα-reduced intervals compared to the number ofα repetitions of those
intervals. WhenT is large, the swathe is wide and so uses up more button-lattice space forα-reduced intervals and
implies fewer repetitions. WhenT is small, the swathe is narrow and so leaves more lattice space forα-repetitions.

Given a specific button-lattice and tuning, the size ofT (as determined by the layout) determines the highest
cardinalityα-reducedβ-chain, and therefore MOS scale, that can be hosted. If all given button lattice shapes are
approximated by a circular button-lattice, the maximum cardinality chain is proportional toT . When using the
button-lattice illustrated in Fig. 2 withα = 2 and aβ-tuning of approximately300 cents (z = 1

4 ) the Fokker layout
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Figure 2. Swathes produced by the Wicki layout (left) and the Fokker layout (right) forz = 7
12

(first row),z = 2
3

(second row),z = 1
4

(third row).

gives a maximum cardinality chain of only five notes, while Wicki manages a much more useful unbroken chain
of 16 notes (buttons−9 to +6). On the other hand, at aβ-tuning of approximately700 cents (z = 7

12 ), Fokker
manages a remarkable49-note unbroken chain length (buttons−18 to+30), while Wicki achieves19 notes, so at
this tuning Fokker can provide greater microtonal/modulatory resources, though over a smaller octave range.

For a given layout mappingL, theT -curve (9) represents the change of swathe thicknessT with respect toz. Thus
T -curves indicate the range of tunings (and therefore temperaments) over which a given layout mapping provides
usable swathes.T -curves for the Fokker and Wicki mappings are illustrated in Fig 3. Taking the derivative of (9)
with respect toz and solving fordTdz = 0 shows that the maximum swathe thickness occurs at

z∗ =
ψxωx + ψyωy
ψ2x + ψ

2
y

. (10)

Substituting this intoT (and using|det (L)| = 1) shows that the maximum width of the swathe is

Tmax = T (z
∗) =

√
ψ2x + ψ

2
y = ‖ψ‖ with slopemmax = −

ψx

ψy
.
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Figure 3. T -curves for the Wicki and Fokker layout mappings.

ThusTmax is equal to the length of the basis vectorψ and the slope of the swathe at its widest point ismmax.
The second derivative ofT with respect toz shows the curvature of theT -curve at the point of maximal thickness.

A low value indicates a wide gentle peak, a large value indicates a spiky peak:

Tcurvature=
d2T

dz2

∣
∣
∣
∣
z=z∗

= −
(ψ2x + ψ

2
y)

5

2

(ψxωy − ψyωx)3
= ±(ψ2x + ψ

2
y)

5

2 = ±T 5max. (11)

This shows that the higher the value ofTmax, the greaterT ’s curvature, and so the more specific the layout mapping
is to a smaller tuning range of generator intervals. A layout mapping can, therefore, only produce a wide swathe
over a narrow tuning range; this is clearly illustrated by Figs. 3 and 4.

5 Examples of layouts and corresponding swathes

Fig. 4 shows theT -curves for all mappings that fit onto a hexagonal lattice withTmax no larger than eight. The
highlightedT -curves show a selection of mappings, in order of height:L1, Wicki, L2, Chromatic Button Accordion
(CBA-B and CBA-C have the sameT -curve), and Fokker. The majority of layout mappings have a limited tuning
range over which the swathe has a reasonable thickness. The Fokker layout mapping, for example, has a reasonable
swathe width within a tuning range of approximately520–860 cents; outside of this range the width drops below 1.
Assuming2 7→ α, this makes Fokker unsuitable for temperaments such as Hanson that require a small (or large)β.
Specialised layouts such as Fokker, which have high values ofTmax, are only usable over a limited tuning range,
but they are useful if there is a requirement for MOS scales of high cardinality (which provide a greater resource of
octave-reduced intervals, at the expense of a restricted octave range) at specific tunings. Fokker is notable because its
swathe thickness peaks within the meantone2 7→ α VTR, and so is particularly suitable for exploring microtonality
within this tuning region. Using Fig. 4, it is straightforward to choose a layout mapping that is suitable for any given
VTR or MOS scale.

A reasonable swathe thickness over a wide range of tunings is attained by members of a small class of mappings.
This is exemplified by the Wicki layout, which hasTmax at 600 cents and a swathe thickness that drops below
one only in the first and last90 cents of the tuning range. TheL1 mapping is also usable over a wide tuning range,
though its swathe width may be considered a little narrow within the important meantone VTR. With a good balance
between octave-reduced intervals and overall pitch over the widest possible tuning range, Wicki is a particularly
useful layout when a wide tuning range is required.

Another notable layout isL2, which has a good swathe thickness over the entire upper half of the tuning range.
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Figure 4. TheT -curves of all possible mappings to a hexagonal lattice that haveTmax < 8. A selection of mappings from Table 2 are highlighted.

Right-multiplying this layout by
(
1 1
0 −1

)
reflects itsz∗ value aboutz = 1

2 , and so this has a good thickness over the
lower half of the tuning range.

The relationship between MOS scales, temperaments, and layouts is illustrated in Fig. 5, which shows the maxi-
mum cardinalityα-reducedβ-chains for a selection of layouts hosted on an approximately hexagonal button-lattice,
with a reduced basis of( 1 0.50 1 ), and a diameter of ten buttons. The angular position around the circle corresponds to
theβ-tuning in cents (α is fixed at 1200 cents). The grey radial lines show theβ-tunings that given-edos and their
cardinalityn is indicated by the ring at which each line starts. The arcs between then-edos represent the tuning
ranges of all MOS scales, with cardinality indicated by the ring on which they are drawn. The bold radial lines
indicate optimal tunings for various5-limit regular temperaments, and the ring from which each line starts shows
the lowest cardinality scale within which every scale note is a member of a full major or minor triad.

6 Isotones and pitch axes

Pitch axes are directions on a button field in which the pitch behaves in a simple way: anisotoneis an axis in
which the pitch remains fixed, theorthogonal pitch axismeasures the shortest distance from a button to the isotone,
and thesteepest pitch axispoints in the direction where the pitch increases (or decreases) most rapidly. Such axes
can provide useful landmarks when playing in unfamiliar scales or tunings; they allow the fingering of different
scales to be estimated (even without full knowledge of the layout being used) and allow easy visualisation of the
pitch-density of chords and melodies. Pitch axes make a keyboard layout easier to learn and play because the pitch
of every button can be estimated by sight and touch as well as hearing.

This section focuses on thep− n = 2 dimensional case, where a 2-D regular temperament can be characterized
by two generatorsα andβ. Let g = (log(α), log(β)) be the tuning vector and letg⊥ be the orthogonal complement
(in Sect. 2 this was called the isotone hyperplane). Mapping the isotone via the keyboard mappingL gives

Lg⊥ =

(
ψx ωx
ψy ωy

)(
log(β)
− log(α)

)

=

(
−ωx log(α) + ψx log(β)
−ωy log(α) + ψy log(β)

)

which points in the direction−ωy log(α)+ψy log(β)−ωx log(α)+ψx log(β)
= ωy−ψyz

ωx−ψxz
wherez is defined in (8). Observe that this is equal

to m of (9) and so the slope of the isotone is the same as the slope of the swathe. The isotone is a straight line
across the button-lattice where the pitch remains unchanged. It may pass through the centres of some buttons: for
example, when the tuning is12-edo an isotone passes through the enharmonically equivalent F[[[, E[[, D, C]],
B]]]. Such cases represent particular values ofα andβ within the tuning continuum that have an additional comma.
The shortest distance from a button to an isotone is monotonically related to its pitch, so a line drawn at right angles
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Figure 5. The maximum cardinalityα-reducedβ-chains for a selection of layouts on an approximately hexagonal button-lattice with a 10-button diameter.

to an isotone is the orthogonal pitch axis. Finally, the tuning vector is mapped toLg, which points in the direction
of the most rapid increase (or decrease, if negative) of the pitch.

It is convenient if the pitch axes are easily discernable. The most straightforward approach is to have (at least
one) axis angled horizontally or vertically allowing the pitch of a button to be quickly determined according to its
horizontal (or vertical) position on the button-lattice. For example, the Wilson layout ensures thatm =∞ when the
tuning is 12-edo (i.e. atz = 7

12 ). Because the angle of the isotones and pitch axes are dependent on theβ-tuning,
they can only be approximately horizontal or vertical over a limited range of tunings. Since the Wilson layout (like
the Fokker and Bosanquet) is a specialised mapping that is usable over only a limited range of tunings, this does
not present too much of an issue.

When a more generalist layout mapping is used, the broad range of tunings over which it can function inevitably
means that the angle of the pitch axes vary substantially. For example, Fig. 6 shows the isotones for a selection of
differentβ-values (α is fixed at1200 cents) that run through the reference button D of a Thummer-style button-
lattice using its default Wicki mapping (withLWic given in Table 2).

Observe how the isotone rotates clockwise about the reference button as the value ofβ increases. For example
whenβ = 600 cents, the isotone is horizontal so the pitches of the buttons marked G[, A[, B[, C, D, E, F], G],
and A] are identical; whenβ is increased to685 cents, the isotone rotates clockwise and the pitches of the buttons
marked D[, D, and D] become identical. Both these examples show how the conventional note names that are used
in this figure become invalid outside the tuning range of diatonic recognisability (2

4

7 < β < 2
3

5 ).
Somewhat paradoxically, the importance of obvious pitch axes is greater for generalist layout mappings than for

specialist layout mappings. This is because the pitch order of the buttons changes as the tuning changes and, in the
foreign landscape of an unfamiliar tuning, pitch axes provides a useful compass.

The following figures show how isotones may help to elucidate the intervallic structure of MOS scales, and the
tunings at which the MOS scale passes between its different tuning phases. This is explained in detail for Fig. 7(a),
which shows the six-note MOS scale generated whenα0 < β < α

1

5 (in the following examplesα is fixed at1200
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Figure 6. A selection of isotones for the Wicki layout (the above note names are meaningful only within the range of recognisable diatonic tunings, but are
provided here for reference).

Figure 7. (a) Six-note MOS scale with tuning range0 < β < 240 cents. (b) Seven-note MOS scale with tuning range300 < β < 400. (c) Nine-note MOS
scale with tuning range600 < β < 685. (d) Eight-note MOS scale with tuning range720 < β < 800.
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cents, so theβ-tuning range is0–240 cents). This tuning range is shaded and three isotones are shown: the boundary
isotones at 0 cents and 240 cents, and the 6-edo isotone at 200 cents. This MOS scale has two types of scale stept1
andt2, as indicated on the layout by their differing shapes:t1 is defined by(0.5, 1) and is found between buttons0,
1, 2, 3, 4, 5; t2 is defined by(−2.5,−3) and is found between buttons5 and6. The position of the isotones indicate
the five different tuning phases of the MOS scale.

(i) Whenβ is 0 cents,t1 = 0 cents which appears in the figure as buttons0–5 all lie on the0 cent isotone. This
tuning has only octaves. It marks the non-inclusive boundary of the six-note MOS scale.

(ii) As theβ value increases, the isotone rotates clockwise so that the size on the monotonic pitch axis oft1 increases
and the size oft2 decreases. This gives a six-note MOS scale containing five small stepst1 and one large step
t2.

(iii) When β = 200 cents, the isotone rotates so that the sizes on the monotonic pitch axis oft1 andt2 are equal.
This defines a scale with six equally sized steps, i.e. it is6-edo.

(iv) For 200 < β < 240 cents, the isotone continues to rotate and the size on the monotonic pitch axis oft1 becomes
larger thant2. This gives a six-note MOS scale with five large stepst1 and one small stept2. This is the inverse
of the scalic structure found in phase 2.

(v) Whenβ = 240 cents, buttons5 and6, which maket2, occupy the same position on the monotonic pitch axis
(they are parallel to the isotone) andt2 has shrunk to0 cents. This scale, therefore, contains just five equally
sized intervalst1, i.e. it is 5-edo. This is the non-inclusive boundary of the six-note MOS scale.

The same procedure (but with different numbers and positions oft1 andt2 intervals) occurs for any MOS scale
and Fig. 7 provides several examples.

7 Harmonic and melodic considerations

Consider aharmonic-melodic gamutof intervals, the notes of which are typically played simultaneously (harmonic
intervals) or consecutively (melodic intervals). Such intervals need to be spatially arranged on the keyboard so
that they are close enough to be easily fingerable. Intervals outside of this gamut need not be spatially close. One
way to specify the gamut is via the lowest cardinality MOS scale that contains a set of privileged intervals (3)
augmented by the voice-leading intervals that connect them. For example, common practice suggests the use of
the primary consonances of Example 3.1. Augmenting these intervals with the connecting intervals, the lowest
cardinality MOS scale (generated byα = 2 andβ within a syntonic VTR) that contains all these intervals has12
notes. Similarly, Magic temperament’s harmonic-melodic gamut is contained within an MOS scale of 13 notes and
Hanson temperament’s by an MOS of 15 notes.

It is also necessary to consider an overall pitch range that needs to be easy to finger. In common practice, har-
monic and melodic octaves occur frequently and this is reflected in the piano keyboard design where the octave is
(approximately) the largest interval that a single hand can play. Generally it would seem reasonable for the range to
be at least one interval of equivalencepe.

Given a harmonic-melodic gamut defined by anα-reducedβ-chain ofn intervals (i.e.n + 1 notes), an overall
pitch range ofm intervals of equivalence, and a temperament basis wherep

1/r
e 7→ α, the smallest parallelogram

that contains these notes is bounded by the vectorsn(ω − zψ) andmrψ. The magnitude of the diagonal of
this parallelogram is‖mrψ + n(ω − zψ)‖, which is a measure of the maximum possible finger-span required
to play any interval within the gamut. Ideally the layout should be configured so that this finger-span is reasonably
comfortable to play. The physical length of this diagonal is minimised whenmrψ andn(ω − zψ) are orthogonal
and whenmr ‖ψ‖ = ‖n(ω − zψ)‖. Together, these imply

‖ω‖ =

√
(mr)2 + n2z2

n2
‖ψ‖ .
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8 Conclusions

A higher-dimensional tuning system such as a JI can be mapped to a lower-dimensional tuning system by tempering
its intervals. The resulting temperament can be characterised by those intervals (commas) that are tempered to
unison; the temperament’s basis, and mappings to it, can be obtained from the null space of those commas. Any
specific value of the basis elements represents a point on a tuning continuum of all possible values; the VTR
represents the range of values for which all privileged intervals maintain their scalic ordering.

A linear and invertible mapping from a temperament basis to a button-lattice gives: a layout with invariant fin-
gering for all intervals across all keys, invariant fingering for all privileged intervals across the VTR, and pitch axes
enabling easy visualisation of the relative pitches of buttons. A swathe and a harmonic-melodic gamut are math-
ematically defined measures of musically important features, and enable concrete comparisons between different
button geometries. A number of different equal and non-equal, octave and non-octave based temperaments demon-
strate the generality of the tuning-theoretic ideas; a number of different layouts (such as those defined in Table 2)
demonstrate that these results can be applied directly to any two-dimensional button-lattice.
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