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Abstract A broad class of boosting algorithms can be interpreted as performing

coordinate-wise gradient descent to minimize some potential function of the margins

of a data set. This class includes AdaBoost, LogitBoost, and other widely used and

well-studied boosters. In this paper we show that for a broad class of convex potential

functions, any such boosting algorithm is highly susceptible to random classification

noise. We do this by showing that for any such booster and any nonzero random classi-

fication noise rate η, there is a simple data set of examples which is efficiently learnable

by such a booster if there is no noise, but which cannot be learned to accuracy better

than 1/2 if there is random classification noise at rate η. This holds even if the booster

regularizes using early stopping or a bound on the L1 norm of the voting weights. This

negative result is in contrast with known branching program based boosters which do

not fall into the convex potential function framework and which can provably learn to

high accuracy in the presence of random classification noise.
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1 Introduction

1.1 Background

Much work has been done on viewing boosting algorithms as greedy iterative algorithms

that perform a coordinate-wise gradient descent to minimize a potential function of

the margin of the examples, see e.g. [3,13,22,8,21,2]. In this framework every potential
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function φ defines an algorithm that may possibly be a boosting algorithm; we denote

the algorithm corresponding to φ by Bφ. For example, AdaBoost [12] and its confidence-

rated generalization [23] may be viewed as the algorithm Bφ corresponding to the

potential function φ(z) = e−z. The MadaBoost algorithm of Domingo and Watanabe

[6] may be viewed as the algorithm Bφ corresponding to

φ(z) =

(

1 − z if z ≤ 0

e−z if z > 0.
(1)

(We give a more detailed description of exactly what the algorithm Bφ is for a given

potential function φ in Section 2.)

1.2 Motivation: noise-tolerant boosters?

It has been widely observed that AdaBoost can suffer poor performance when run on

noisy data, see e.g. [11,18,5]. The most commonly given explanation for this is that the

exponential reweighting of examples which it performs (a consequence of the exponen-

tial potential function) can cause the algorithm to invest too much “effort” on correctly

classifying noisy examples. Boosting algorithms such as MadaBoost [6] and LogitBoost

[13] based on a range of other potential functions have subsequently been provided,

sometimes with an explicitly stated motivation of rectifying AdaBoost’s poor noise

tolerance. However, we are not aware of rigorous results establishing provable noise

tolerance for any boosting algorithms that fit into the potential functions framework,

even for mild forms of noise such as random classification noise (henceforth abbrevi-

ated RCN) at low noise rates. This motivates the following question: are Adaboost’s

difficulties in dealing with noise due solely to its exponential weighting scheme, or are

these difficulties inherent in the potential function approach to boosting?

1.3 Our results: convex potential boosters cannot withstand random classification

noise

This paper shows that the potential function boosting approach provably cannot yield

learning algorithms that tolerate even low levels of random classification noise when

convex potential functions are used. More precisely, we exhibit a fixed natural set of

base classifiers h1, . . . , hn and show that for every convex function φ satisfying some

very mild conditions and every noise rate η > 0, there is a multiset S of labeled

examples such that the following holds:

– There is a linear separator sgn(α1h1+· · ·+αnhn) over the base classifiers h1, . . . , hn

that correctly labels every example in S with margin γ > 0 (and hence it is easy for

a boosting algorithm trained on S to efficiently construct a final hypothesis that

correctly classifies all examples in S). However,

– When the algorithm Bφ is run on the distribution Dη,S , it constructs a classifier

that has error rate 1/2 on the examples in S. Here Dη,S is the uniform distribution

over S but where examples are corrupted with random classification noise at rate

η, i.e. labels are independently flipped with probability η.
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We also show that convex potential boosters are not saved by regularization through

early stopping [20,26] or a bound on the L1 norm of the voting weights (see [22,17]).

These results show that random classification noise can cause convex potential

function boosters to fail in a rather strong sense. We note that as discussed in Section 9,

there do exist known boosting algorithms [14,15] that can tolerate random classification

noise, and in particular can efficiently achieve perfect accuracy on S, after at most

poly(1/γ) stages of boosting, when run on Dη,S in the scenario described above.

A number of recent results have established the statistical consistency of boosting

algorithms [4,19,25,17,26,1] under various assumptions on a random source generating

the data. Our analysis does not contradict theirs roughly for the following reason. The

output of a boosting classifier takes the form sign(f(x)), where the unthresholded f(x)

can be thought of as incorporating a confidence rating – usually, this is how much more

weight votes for one class than the other. The analyses that establish the consistency

of boosting algorithms typically require a linear f to have “potential” as good as any f

(see e.g. Condition 1 from [1]). In this paper, we exploit the fact that convex potential

boosters choose linear hypotheses to force the choice between many “cheap” errors and

few “expensive” ones. If any f is allowed, then an algorithm can make all errors equally

cheap by making all classifications with equally low confidence.

Though the analysis required to establish our main result is somewhat delicate,

the actual construction is quite simple and admits an intuitive explanation (see Sec-

tion 4.2). For every convex potential function φ we use the same set of only n = 2

base classifiers (these are confidence-rated base classifiers which output real values in

the range [−1, 1]), and the multiset S contains only three distinct labeled examples;

one of these occurs twice in S, for a total multiset size of four. We expect that many

other constructions which similarly show the brittleness of convex potential boosters to

random classification noise can be given. We describe experiments with one such con-

struction that uses Boolean-valued weak classifiers rather than confidence-rated ones

in Section 8.

2 Background and Notation

Throughout the paper X will denote the instance space. H = {h1, . . . , hn} will de-

note a fixed finite collection of base classifiers over X, where each base classifier is

a function hi : X → [−1, 1]; i.e. we shall work with confidence-rated base classifiers.

S = (x1, y1), . . . , (xm, ym) ∈ (X × {−1, 1})m will denote a multiset of m examples

with binary labels.

For each convex potential function φ, we will consider three kinds of convex po-

tential boosters: global-minimizing convex potential boosters, L1-regularized convex

potential boosters, and early-stopping convex potential boosters. First, we will define

a convex potential function, then each kind of boosting algorithm in turn.

2.1 Convex potential functions

We adopt the following natural definition which, as we discuss in Section 7, captures

a broad range of different potential functions that have been studied.

Definition 1 We say that φ : R → R is a convex potential function if φ satisfies the

following properties:
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1. φ is convex and nonincreasing and φ ∈ C1 (i.e. φ is differentiable and φ′ is contin-

uous);

2. φ′(0) < 0 and limx→+∞ φ(x) = 0.

2.2 Convex potential boosters

Let φ be a convex potential function, H = {h1, . . . , hn} a fixed set of base classifiers,

and S = (x1, y1), . . . , (xm, ym) a multiset of labeled examples.

All the boosting algorithms will choose voting weights α1, ..., αn and output the

classifier

sign

 

n
X

i=1

αihi(x)

!

obtained by taking the resulting vote over the base classifier predictions. Let

F (x;α1, ..., αn) =

n
X

i=1

αihi(x)

denote the quantity whose sign is the outcome of the vote, and whose magnitude reflects

how close the vote was.

2.3 Global-minimizing convex potential boosters

The most basic kind of convex potential booster is the idealized algorithm that chooses

voting weights α1, ..., αn to minimize the “global” potential function over S:

Pφ,S(α1, ..., αn) =

m
X

i=1

φ(yiF (xi; α1, ..., αn)). (2)

It is easy to check that this is a convex function from Rn (the space of all possible

(α1, . . . , αn) coefficient vectors for F ) to R. We will denote this booster by Bideal
φ .

2.4 L1-regularized boosters

For any C > 0, the L1-regularized booster minimizes Pφ,S subject to the constraint

that
Pn

i=1 |αi| ≤ C. We will denote this booster by BL1

φ,C ; see [22,17] for algorithms of

this sort.

2.5 Early-stopping regularized boosters

To analyze regularization by early stopping, we must consider how the optimization is

performed. Similarly to Duffy and Helmbold [7,8], we consider an iterative algorithm

which we denote Bφ. The algorithm performs a coordinatewise gradient descent through

the space of all possible coefficient vectors for the weak hypotheses, in an attempt to

minimize the convex potential function of the margins of the examples. We now give a

more precise description of how Bφ works when run with H on S.
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Algorithm Bφ maintains a vector (α1, ..., αn) of voting weights for the base clas-

sifiers h1, ..., hn. The weights are initialized to 0. In a given round T , the algorithm

chooses an index iT of a base classifier, and modifies the value of αiT
. If αiT

had

previously been zero, this can be thought of as adding base classifier number iT to a

pool of voters, and choosing a voting weight.

Let F (x;α1, ..., αn) =
Pn

i=1 αihi(x) be the master hypothesis that the algorithm

has constructed prior to stage T (so at stage T = 1 the hypothesis F is identically

zero).

In stage T the algorithm Bφ first chooses a base classifier by chooses iT to be the

index i ∈ [n] which maximizes

−
∂

∂αi
Pφ,S(α1, ..., αn),

and then choosing a new value of αiT
in order to minimize Pφ,S(α1, ..., αn) for the

resulting α1, ..., αn. Thus, in the terminology of [7] we consider “un-normalized” algo-

rithms which preserve the original weighting factors α1, α2, etc. The AdaBoost algo-

rithm is an example of an algorithm that falls into this framework, as are the other

algorithms we discuss in Section 7. Note that the fact that Bφ can determine the ex-

actly optimal weak classifier to add in each round errs on the side of pessimism in our

analysis.

For each K, let Bearly
φ,K be the algorithm that performs K iterations of Bφ, and then

halts and outputs the resulting classifier.

2.6 Distributions with noise

In our analysis, we will consider the case in which the boosters are being run on a

distribution Dη,S obtained by starting with a finite multiset of examples, and adding

independent misclassification noise. One can naturally extend the definition of each

type of booster to apply to probability distributions over X ×{−1, 1} by extending the

definition of potential in (2) as follows:

Pφ,D(α1, ..., αn) = E(x,y)∼D(φ(yF (x;α1, ..., αn))). (3)

For rational values of η, running Bφ on (3) for D = Dη,S is equivalent to running Bφ

over a finite multiset in which each element of S occurs a number of times proportional

to its weight under D.

2.7 Boosting

Fix a classifier c : X → {−1, 1} and a multiset S = (x1, y1), . . . , (xm, ym) of examples

labeled according to c. We say that a set of base classifiers H = {h1, . . . , hn} is boostable

with respect to c and S if there is a vector α ∈ Rn such that for all i = 1, . . . , m, we

have

sgn[α1h1(xi) + · · · + αnhn(xi)] = yi.

If γ > 0 is such that

yi ·
“

α1h1(xi) + · · · + αnhn(xi)
”

|α1| + · · · + |αn|
≥ γ
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for all i, we say that H is boostable w.r.t. c and S with margin γ.

It is well known that if H is boostable w.r.t. c and S with margin γ, then a range of

different boosting algorithms (such as AdaBoost) can be run on the noise-free data set S

to efficiently construct a final classifier that correctly labels every example in S. As one

concrete example, after O( log m
γ2 ) stages of boosting AdaBoost will construct a linear

combination F (x) =
Pn

i=1 γihi(x) of the base classifiers such that sgn(F (xi)) = yi for

all i = 1, . . . , m; see [12,23] for details.

2.8 Random classification noise and noise-tolerant boosting

Random classification noise is a simple, natural, and well-studied model of how benign

(nonadversarial) noise can affect data. Given a multiset S of labeled examples and a

value 0 < η < 1
2 , we write Dη,S to denote the distribution corresponding to S corrupted

with random classification noise at rate η. A draw from Dη,S is obtained by drawing

(x, y) uniformly at random from S and independently flipping the binary label y with

probability η.

We say that an algorithm B is a boosting algorithm which tolerates RCN at rate

η if B has the following property. Let c be a target classifier, S be a multiset of m

examples, and H be a set of base classifiers such that H is boostable w.r.t. c and S.

Then for any ǫ > 0, if B is run with H as the set of base classifiers on Dη,S , at some

stage of boosting B constructs a classifier g which has accuracy

|{(xi, yi) ∈ S : g(xi) = yi}|

m
≥ 1 − η − ǫ.

The accuracy rate above is in some sense optimal, since known results [14] show

that no “black-box” boosting algorithm can be guaranteed to construct a classifier

g whose accuracy exceeds 1 − η in the presence of RCN at rate η. As we discuss in

Section 9, there are known boosting algorithms [14,15] which can tolerate RCN at rate

η for any 0 < η < 1/2. These algorithms, which do not follow the convex potential

function approach but instead build a branching program over the base classifiers, use

poly(1/γ, log(1/ǫ)) stages to achieve accuracy 1− η − ǫ in the presence of RCN at rate

η if H is boostable w.r.t. c and S with margin γ.

3 Main Result

As was just noted, there do exist boosting algorithms (based on branching programs)

that can tolerate RCN. Our main result is that no convex potential function booster

can have this property:

Theorem 1 Fix any convex potential function φ and any noise rate 0 < η < 1/2.

Then

(i) The global-minimizing booster Bideal
φ does not tolerate RCN at rate η;

(ii) For any number K of rounds, the early-stopping regularized booster Bearly
φ,K does not

tolerate RCN at rate η; and

(iii) For any C > 0, the L1-regularized booster BL1

φ,C does not tolerate RCN at rate η.
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Our first analysis holds for the global optimization and early-stopping convex po-

tential boosters. It establishes parts (i) and (ii) of Theorem 1 through the following

stronger statement, which shows that there is a simple RCN learning problem for which

Bideal
φ and Bearly

φ,K will in fact misclassify half the examples in S.

Theorem 2 Fix the instance space X = [−1, 1]2 ⊂ R2 and the set H = {h1(x) =

x1, h2(x) = x2} of confidence-rated base classifiers over X.

There is a target classifier c such that for any noise rate 0 < η < 1/2 and any

convex potential function φ, there is a value γ > 0 and a multiset S of four labeled

examples (three of which are distinct) such that (a) H is boostable w.r.t. c and S with

margin γ, but (b) when Bideal
φ or Bearly

φ,K is run on the distribution Dη,S , it constructs

a classifier which misclassifies two of the four examples in S.

Our theorem about L1 which establishes part (iii) is as follows.

Theorem 3 Fix the instance space X = [−1, 1]2 ⊂ R2 and the set H = {h1(x) =

x1, h2(x) = x2} of confidence-rated base classifiers over X.

There is a target classifier c such that for any noise rate 0 < η < 1/2 and any

convex potential function φ, any C > 0 and any β > 0, there is a value γ > 0 and a

multiset S of examples such that (a) H is boostable w.r.t. c and S with margin γ, but

(b) when the L1-regularized potential booster BL1

φ,C is run on the distribution Dη,S , it

constructs a classifier which misclassifies 1
2 − β fraction of the examples in S.

Section 4 contains our analysis for the global optimization booster Bideal
φ ; the early

stopping and L1 regularization boosters are dealt with in Sections 5 and 6 respectively.

4 Analysis of the global optimization booster

We are given an RCN noise rate 0 < η < 1/2 and a convex potential function φ.

4.1 The basic idea

Before specifying the sample S we explain the high-level structure of our argument.

Recall from (3) that Pφ,D is defined as

Pφ,D(α1, α2) =
X

(x,y)

Dη,S(x, y)φ(y(α1x1 + α2x2)). (4)

As noted in Section 2.2 the function Pφ,D(α1, α2) is convex. It follows immediately from

the definition of a convex potential function that Pφ,D(α1, α2) ≥ 0 for all (α1, α2) ∈

R2.

The high-level idea of our proof is as follows. We shall construct a multiset S of

four labeled examples in [−1, 1]2 (actually in the unit disc {x : ‖x‖ ≤ 1} ⊂ R2) such

that there is a global minimum (α∗
1, α∗

2) of the corresponding Pφ,D(α1, α2) for which

the corresponding classifier g(x) = sgn(α∗
1x1 + α∗

2x2) misclassifies two of the points in

S (and thus has error rate 1/2).



8

“large margin” example

(1, 0)“penalizers”
(γ,−γ)

“puller”

(γ, 5γ)

Fig. 1 The sample S. All four examples are positive. We show that for a suitable 0 < γ < 1/6
(based on the convex potential function φ), the “puller” example at (γ, 5γ) causes the optimal
hypothesis vector to incorrectly label the two “penalizer” examples as negative.

4.2 The sample S

Now let us define the multiset S of examples. S consists of three distinct examples,

one of which is repeated twice. (We shall specify the value of γ later and show that

0 < γ < 1
6 .)

– S contains one copy of the example x = (1, 0) with label y = +1. (We call this the

“large margin” example.)

– S contains two copies of the example x = (γ,−γ) with label y = +1. (We call these

examples the “penalizers” since they are the points that Bφ will misclassify.)

– S contains one copy of the example x = (γ, 5γ) with label y = +1. (We call this

example the “puller” for reasons described below.)

Thus all examples in S are positive. It is immediately clear that the classifier c(x) =

sgn(x1) correctly classifies all examples in S with margin γ > 0, so the set H =

{h1(x) = x1, h2(x) = x2} of base classifiers is boostable w.r.t. c and S with margin γ.

We further note that since γ < 1
6 , each example in S does indeed lie in the unit disc

{x : ‖x‖ ≤ 1}.

Let us give some intuition. The halfspace whose normal vector is (1, 0) classifies

all examples correctly, but the noisy (negative labeled) version of the “large margin”

example causes a convex potential function to incur a very large cost for this hypothesis

vector. Consequently a lower cost hypothesis can be obtained with a vector that points

rather far away from (1, 0). The “puller” example (whose y-coordinate is 5γ) outweights

the two “penalizer” examples (whose y-coordinates are −γ), so it “pulls” the minimum

cost hypothesis vector to point up into the first quadrant – in fact, so far up that the

two “penalizer” examples are misclassified by the optimal hypothesis vector for the

potential function φ. See Figure 1.

4.3 Proof of Theorem 2 for the Bideal
φ booster

Let 1 < N < ∞ be such that η = 1
N+1 , so 1 − η = N

N+1 .
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We have that

Pφ,D(α1, α2) =
X

(x,y)

Dη,S(x, y)φ(y(α1x1 + α2x2))

=
1

4

X

(x,y)∈S

[(1 − η)φ(α1x1 + α2x2) + ηφ(−α1x1 − α2x2)] .

It is clear that minimizing 4(N + 1)Pφ,D is the same as minimizing Pφ,D so we shall

henceforth work with 4(N + 1)Pφ,D since it gives rise to cleaner expressions. We have

that 4(N + 1)Pφ,D(α1, α2) equals

X

(x,y)∈S

[Nφ(α1x1 + α2x2) + φ(−α1x1 − α2x2)]

= Nφ(α1) + φ(−α1)

+2Nφ(α1γ − α2γ) + 2φ(−α1γ + α2γ)

+Nφ(α1γ + 5α2γ) + φ(−α1γ − 5α2γ). (5)

Let P1(α1, α2) and P2(α1, α2) be defined as follows:

P1(α1, α2)
def
=

∂

∂α1
4(N + 1)Pφ,D(α1, α2) and

P2(α1, α2)
def
=

∂

∂α2
4(N + 1)Pφ,D(α1, α2).

Differentiating by α1 and α2 respectively, we have

P1(α1, α2) = Nφ′(α1) − φ′(−α1)

+2γNφ′(α1γ − α2γ) − 2γφ′(−α1γ + α2γ)

+Nγφ′(α1γ + 5α2γ) − γφ′(−α1γ − 5α2γ)

and

P2(α1, α2) = −2γNφ′(α1γ − α2γ) + 2γφ′(−α1γ + α2γ)

+5γNφ′(α1γ + 5α2γ) − 5γφ′(−α1γ − 5α2γ).

Some expressions will be simplified if we reparameterize by setting α1 = α and

α2 = Bα. It is helpful to think of B > 1 as being fixed (its value will be chosen later).

Now, let us write P1(α) to denote P1(α, Bα) and similarly write P2(α) to denote

P2(α, Bα), so that

P1(α) = Nφ′(α) − φ′(−α) + 2γNφ′(−(B − 1)αγ)

−2γφ′((B − 1)αγ) + Nγφ′((5B + 1)αγ)

−γφ′(−(5B + 1)αγ)

and

P2(α) = −2γNφ′(−(B − 1)αγ) + 2γφ′((B − 1)αγ)

+5γNφ′((5B + 1)αγ) − 5γφ′(−(5B + 1)αγ).
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We introduce the following function to help in the analysis of P1(α) and P2(α):

for α ∈ R, Z(α)
def
= Nφ′(α) − φ′(−α).

Let us establish some basic properties of this function. Since φ is differentiable and

convex, we have that φ′ is a non-decreasing function. Since N > 1, this implies that

Z(·) is a non-decreasing function. We moreover have Z(0) = φ′(0)(N − 1) < 0. The

definition of a convex potential function implies that as α → +∞ we have φ′(α) → 0−,

and consequently we have

lim
α→+∞

Z(α) = 0 + lim
α→+∞

−φ′(−α) > 0,

where the inequality holds since φ′(α) is a nondecreasing function and φ′(0) < 0. Since

φ′ and hence Z is continuous, we have that over the interval [0, +∞) the function Z(α)

assumes every value in the range [φ′(0)(N − 1),−φ′(0)).
Next observe that we may rewrite P1(α) and P2(α) as

P1(α) = Z(α) + 2γZ(−(B − 1)αγ) + γZ((5B + 1)γα) (6)

and

P2(α) = −2γZ(−(B − 1)αγ) + 5γZ((5B + 1)γα). (7)

In the rest of this section we shall show that there are values α > 0, 0 < γ < 1/6,

B > 1 such that P1(α) = P2(α) = 0. Since Pφ,D is convex, this will imply that

(α∗
1, α∗

2)
def
= (α, Bα) is a global minimum for the dataset constructed using this γ, as

required.

Let us begin with the following claim which will be useful in establishing P2(α) = 0.

Proposition 1 For any B ≥ 1 there is a finite value ǫ(B) > 0 such that

2Z(−(B − 1)ǫ(B)) = 5Z((5B + 1)ǫ(B)) < 0 (8)

Proof Fix any value B ≥ 1. Recalling that Z(0) = φ′(0)(N − 1) < 0, at ǫ = 0 the

quantity 2Z(−(B − 1)ǫ) equals 2φ′(0)(N − 1) < 0, and as ǫ increases this quantity

does not increase. On the other hand, at ǫ = 0 the quantity 5Z((5B + 1)ǫ) equals

5φ′(0)(N − 1) < 2φ′(0)(N − 1), and as ǫ increases this quantity increases to a limit, as

ǫ → +∞, which is at least 5(−φ′(0)). Since Z is continuous, there must be some ǫ > 0

at which the two quantities are equal and are each at most 2φ′(0)(N − 1) < 0. ⊓⊔

Observation 4 The function ǫ(B) is a continuous and nonincreasing function of B

for B ∈ [1,∞).

Proof The larger B ≥ 1 is, the faster −(B − 1)ǫ decreases as a function of ǫ and the

faster (5B + 1)ǫ increases as a function of ǫ. Continuity of ǫ(·) follows from continuity

of Z(·). ⊓⊔

We now fix the value of B to be B
def
= 1 + γ, where the parameter γ will be fixed

later. We shall only consider settings of α, γ > 0 such that αγ = ǫ(B) = ǫ(1 + γ); i.e.

given a setting of γ, we shall take α =
ǫ(1+γ)

γ . For any such α, γ we have

P2(α) = (7) = γ[−2Z(−(B − 1)ǫ(1 + γ)) + 5Z((5B + 1)ǫ(1 + γ))] = 0
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−φ′(0)

φ′(0)(N − 1)

LHS(γ)

RHS(γ)

Fig. 2 The LHS of (9) (solid line) and RHS of (9) (dotted line), plotted as a function of γ.
As γ ranges through (0,∞) the LHS decreases through all values between −φ′(0) (a positive
value) and φ′(0)(N −1) (a negative value). The RHS is 0 at γ = 0 and is positive for all γ > 0.
Since both LHS and RHS are continuous, there must be some value of γ > 0 at which the LHS
and RHS are equal.

where the last equality is by Proposition 1. Now let us consider (6); our goal is to show

that for some γ > 0 it is also 0. For any (α, γ) pair with αγ = ǫ(1 + γ), we have by

Proposition 1 that

2γZ(−(B − 1)γα) + γZ((5B + 1)γα)

= 2γZ(−(B − 1)ǫ(1 + γ)) + γZ((5B + 1)ǫ(1 + γ))

= 6γZ((5B + 1)ǫ(1 + γ))

where the second equality is by Proposition 1. Plugging this into (6), we have that for

α =
ǫ(1+γ)

γ , the quantity P1(α) equals 0 if and only if

Z

„

ǫ(1 + γ)

γ

«

= −6γZ((5B + 1)ǫ(1 + γ))

= 6γ · (−Z((6 + 5γ) · ǫ(1 + γ))). (9)

Let us analyze (9). We first note that Observation 4 implies that ǫ(1 + γ) is a

nonincreasing function of γ for γ ∈ [0,∞). Consequently
ǫ(1+γ)

γ is a decreasing function

of γ, and since Z is a nondecreasing function, the LHS is a nonincreasing function of

γ. Recall that at γ = 0 we have ǫ(1+γ) = ǫ(1) which is some fixed finite positive value

by Proposition 1. So we have limγ→0+ LHS = limx→+∞ Z(x) ≥ −φ′(0). On the other

extreme, since ǫ(·) is nonincreasing, we have

lim
γ→+∞

LHS ≤ lim
γ→+∞

Z

„

ǫ(1)

γ

«

= Z(0) = φ′(0)(N − 1) < 0.

So as γ varies through (0,∞), the LHS decreases through all values between −φ′(0)
and 0.

On the other hand, at γ = 0 the RHS of (9) is clearly 0. Moreover the RHS is

always positive for γ > 0 by Proposition 1. Since the RHS is continuous (by continuity

of Z(·) and ǫ(·)), this together with the previous paragraph implies that there must

be some γ > 0 for which the LHS and RHS of (9) are the same positive value. (See

Figure 2.) So we have shown that there are values α > 0, γ > 0, B = 1 + γ such that

P1(α) = P2(α) = 0.
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We close this section by showing that the value of γ > 0 obtained above is indeed

at most 1/6 (and hence every example in S lies in the unit disc as required). To see

this, note that we have shown that for this γ, we have Z((6 + 5γ)ǫ(1 + γ)) < 0 and

Z
“

ǫ(1+γ)
γ

”

> 0. Since Z is a nondecreasing function this implies 6 + 5γ < 1
γ which

clearly implies γ < 1/6 as desired.

This concludes the proof of Theorem 2 for the Bideal
φ booster.

5 Early stopping

In this section, we show that early stopping cannot save a boosting algorithm: it is

possible that the global optimum analyzed in the preceding section can be reached

after the first iteration.

Since Pφ,D(α1, α2) depends only on the inner product between (α1, α2) and the

(normalized) example vectors (yx1, yx2), it follows that rotating the set S around the

origin by any fixed angle induces a corresponding rotation of the function Pφ,D, and

in particular of its minima. (Note that we have used here the fact that every example

point in S lies within the unit disc; this ensures that for any rotation of S each weak

hypothesis xi will always give outputs in [−1, 1] as required.) Consequently a suitable

rotation of S to S′ will result in the corresponding rotated function Pφ,D having a global

minimum at a vector which lies on one of the two coordinate axes (say a vector of the

form (0, τ )). The weight vector (1, 0) achieved a margin γ for the original construction:

since rotating this weight vector can only increase its L1 norm, the rotated weight

vector also achieves a margin γ.

Now, all that remains is to show that Bearly
φ,K will choose the ultimately optimal

direction during the first round of boosting. For this to be the case after rotating,

all we need before rotating is that at the point (0, 0), the directional derivative of

Pφ,D(α1, α2) in any direction orthogonal to (α∗
1, α∗

2) is not as steep as the directional

derivative toward (α∗
1, α∗

2), which we will now prove.

In Section 4, we established that (α, Bα) = (α, (1 + γ)α) is a global minimum for

the data set as constructed there. The directional derivative at (0, 0) in the direction

of this optimum is
P1(0)+BP2(0)√

1+B2
.

Since φ′(0) < 0, by (6) and (7) we have

P1(0) = (1 + 3γ)φ′(0)(N − 1) < 0

P2(0) = 3γφ′(0)(N − 1) < 0.

This implies that P1(0) < P2(0) < 0, which, since B > 1, implies BP1(0) − P2(0) < 0.

This means that (B,−1) rather than (−B, 1) is the direction orthogonal to the optimal

(1, B) which has negative slope.

Recalling that B = 1 + γ, we have the following inequalities:

B < 1 + 6γ =
(1 + 3γ) + 3γ

(1 + 3γ) − 3γ

B <
−P1(0) − P2(0)

−P1(0) + P2(0)
(10)

B(−P1(0) + P2(0)) < −P1(0) − P2(0) (11)

P1(0) + BP2(0) < BP1(0) − P2(0) < 0, (12)
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where (11) follows from (10) using P1(0) < P2(0) < 0. So the directional derivative in

the optimal direction (1, B) is steeper than in (B,−1) ⊓⊔

6 L1 regularization

Our treatment of L1 regularization relies on the following intuition. One way to think

of the beneficial effect of regularizing a convex potential booster is that regularization

controls the impact of the convexity – limiting the weights limits the size of the margins,

and thus the extremity of the losses on large-margin errors. But the trouble with

regularization is that the convexity is sometimes needed to encourage the boosting

algorithm to classify examples correctly: if the potential function is effectively a linear

function of the margin, then the booster “cares” as much about enlarging the margins

of already correctly classified examples as it does about correcting examples that are

classified incorrectly.

In the absence of noise, our construction for regularized boosters concentrates the

weight on two examples:

– one positive example at (2γ,−γ) with weight 1 + ǫ (where ǫ > 0), and

– one positive example at (−γ, 2γ) with weight 1.

As in Section 2.3, when there is noise, for N > 1, each clean example will have

weight N , and each noisy example weight 1. (Note once again that if N and ǫ are ratio-

nal, these can be realized with a finite multiset of examples.) Thus, the L1-regularized

convex potential boosting algorithm will solve the following optimization problem:

minα1,α2 Q(α1, α2), s.t. |α1| + |α2| ≤ C,

where Q(α1, α2) = (1 + ǫ)Nφ(2α1γ − α2γ) + Nφ(−α1γ + 2α2γ)

+(1 + ǫ)φ(−2α1γ + α2γ) + φ(α1γ − 2α2γ).

(13)

Let us redefine P1(α1, α2) and P2(α1, α2) to be the partial derivatives with respect

to Q:

P1(α1, α2) =
∂Q(α1, α2)

∂α1
= 2γ(1 + ǫ)Nφ′(2α1γ − α2γ) − γNφ′(−α1γ + 2α2γ)

−2γ(1 + ǫ)φ′(−2α1γ + α2γ) + γφ′(α1γ − 2α2γ)

P2(α1, α2) =
∂Q(α1, α2)

∂α2
= −γ(1 + ǫ)Nφ′(2α1γ − α2γ) + 2γNφ′(−α1γ + 2α2γ)

+γ(1 + ǫ)φ′(−2α1γ + α2γ) − 2γφ′(α1γ − 2α2γ).

The following key lemma characterizes the consequences of changing the weights

when γ is small enough.

Lemma 1 For all C > 0, N > 1, 1 > ǫ > 0, there is a γ > 0 such that, for all α1, α2

for which

|α1| + |α2| ≤ C,

we have

P1(α1, α2) < P2(α1, α2) < 0.
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Proof If |α1|+ |α2| ≤ C, then |2α1 − α2| ≤ 3C and |2α2 − α1| ≤ 3C. Thus, by making

γ > 0 arbitrarily small, we can make |2α1γ − α2γ| and |2α2γ − α1γ| arbitrarily close

to 0. Since φ′ is continuous, this means that for any τ > 0, there is a γ > 0 such that,

whenever |α1| + |α2| ≤ C, we have

|φ′(2α1γ − α2γ) − φ′(0)| < τ

|φ′(2α2γ − α1γ) − φ′(0)| < τ

|φ′(−2α1γ + α2γ) − φ′(0)| < τ

|φ′(−2α2γ + α1γ) − φ′(0)| < τ.

For such a γ, we have

P1(α1, α2) − P2(α1, α2)

γ
= 3(1 + ǫ)Nφ′(2α1γ − α2γ) − 3Nφ′(−α1γ + 2α2γ)

−3(1 + ǫ)φ′(−2α1γ + α2γ) + 3φ′(−2α2γ + α1γ)

< 3((1 + ǫ)N + 1)(φ′(0) + τ ) − 3(1 + ǫ + N)(φ′(0) − τ )

= 3ǫ(N − 1)φ′(0) + 3(2(N + 1) + ǫ(N + 1))τ.

Since φ′(0) < 0, ǫ > 0, and N > 1, for sufficiently small τ , we have

P1(α1, α2) − P2(α1, α2)

γ
< 0

and since γ > 0, this means

P1(α1, α2) < P2(α1, α2).

Furthermore

P2(α1, α2) < −γ(1 + ǫ)N(φ′(0) − τ ) + 2γN(φ′(0) + τ )

+γ(1 + ǫ)(φ′(0) + τ ) − 2γ(φ′(0) − τ )

= γ(1 − ǫ)(N − 1)φ′(0) + γ(3 + ǫ)(N + 1)τ

so
P2(α1, α2)

γ
< (1 − ǫ)(N − 1)φ′(0) + (3 + ǫ)(N + 1)τ.

Again, since φ′(0) < 0, 1 > ǫ > 0, and N > 0, this means that when τ gets small

enough
P2(α1, α2)

γ
< 0

and thus P2(α1, α2) < 0. ⊓⊔

Lemma 2 For all C > 0, N > 1, and 1 > ǫ > 0 there is a γ > 0 such that the output

(α∗
1, α∗

2) of the L1-regularized potential booster for φ satisfies α∗
1 > 0, α∗

2 = 0.

Proof By Lemma 1, there is a γ > 0 such that whenever |α1| + |α2| ≤ C,

P1(α1, α2) < P2(α1, α2) < 0.

For such a γ, if either of the coordinates of the optimal solution were negative, we

could improve the solution while reducing the L1 norm of the solution by making the
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negative component less so, a contradiction. Also, if α∗
2 were strictly positive, then we

could improve the solution without affecting the L1 norm of the solution by transferring

a small amount of the weight from α∗
2 to α∗

1, again, a contradiction. ⊓⊔

Looking at the proof of Lemma 1 it is easy to see that the lemma actually holds

for all sufficiently small γ > 0, and thus we may suppose that the instances (2γ,−γ)

and (−γ, 2γ) lie in the unit square [−1, 1]2. Lemma 2 thus implies Theorem 3 because

if α∗
1 > 0 and α∗

2 = 0, the positive example (−γ, 2γ) is classified incorrectly.

7 Consequences for Known Boosting Algorithms

A wide range of well-studied boosting algorithms are based on potential functions φ

that satisfy our Definition 1. Theorem 1 thus implies that each of the corresponding

convex potential function boosters as defined in Section 2.2 cannot tolerate random

classification noise at any noise rate 0 < η < 1
2 . (In some cases the original versions

of the algorithms discussed below are not exactly the same as the Bφ algorithm as

described in Section 2.2 because of small differences such as the way the step size

is chosen at each update. Thus we do not claim that Theorem 1 applies directly to

each of the original boosting algorithms; however we feel that our analysis strongly

suggests that the original boosters may, like the corresponding Bφ algorithms, be highly

susceptible to random classification noise.)

AdaBoost and MadaBoost. As discussed in the Introduction and in [7,21] the

Adaboost algorithm [12] is the algorithm Bφ obtained by taking the convex potential

function to be φ(x) = exp(−x). Similarly the MadaBoost algorithm [6] is based on the

potential function φ(x) defined in Equation (1). Each of these functions clearly satisfies

Definition 1.

LogitBoost and FilterBoost. As described in [7,21,2], the LogitBoost algorithm

of [13] is based on the logistic potential function ln(1+exp(−x)), which is easily seen to

fit our Definition 1. Roughly, FilterBoost [2] combines a variation on the rejection sam-

pling of MadaBoost with the reweighting scheme, and therefore the potential function,

of LogitBoost.

8 Experiments with Binary-valued Weak Learners

The analysis of this paper leaves open the possibility that a convex potential booster

could still tolerate noise if the base classifiers were restricted to be binary-valued. In

this section we describe empirical evidence that this is not the case. We generated 100

datasets, applied three convex potential boosters to each, and calculated the training

error.

Data. Each dataset consisted of 4000 examples, divided into three groups, 1000

large margin examples, 1000 pullers, and 2000 penalizers. The large margin examples

corresponded to the example (1, 0) in Section 4.2, the pullers play the role of (γ, 5γ),

and the penalizers collectively play the role of (γ,−γ).

Each labeled example (x, y) in our dataset is generated as follows. First the label

y is chosen randomly from {−1, 1}. There are 21 features x1, . . . , x21 that take values

in {−1, 1}. Each large margin example sets x1 = · · · = x21 = y. Each puller assigns

x1 = · · · = x11 = y and x12 = · · · = x21 = −y. Each penalizer is chosen at random

in three stages: (1) the values of a random subset of five of the first eleven features
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x1, . . . , x11 are set equal to y, (2) the values of a random subset of six of the last ten

features x12, . . . , x21 are set equal to y, and (3) the remaining ten features are set to

−y.

At this stage, if we associate a base classifier with each feature xi, then each of the

4000 examples is classified correctly by a majority vote over these 21 base classifiers.

Intuitively, when an algorithm responds to the pressure exerted by the noisy large

margin examples and the pullers to move toward a hypothesis that is a majority vote

over the first 11 features only, then it tends to incorrectly classify the penalizers, because

in the penalizers only 5 of those first 11 features agree with the class.

Finally, each class designation y is corrupted with classification noise with proba-

bility 0.1.

Boosters. We experimented with three boosters: AdaBoost, MadaBoost (which

is arguably, loosely speaking, the least convex of the convex potential boosters), and

LogitBoost. Each booster was run for 100 rounds.

Results. The average training error of AdaBoost over the 100 datasets was 33%.

The average for LogitBoost was 30%, and for MadaBoost, 27%.

9 Discussion

We have shown that a range of different types of boosting algorithms that optimize a

convex potential function satisfying mild conditions cannot tolerate random classifica-

tion noise. While our results imply strong limits on the noise-tolerance of algorithms

that fit this framework, they do not apply to other boosting algorithms such as Freund’s

Boost-By-Majority algorithm [9] and BrownBoost [10] for which the corresponding po-

tential function is non-convex. An interesting direction for future work is to extend our

negative results to a broader class of potential functions.

The L1 regularized boosting algorithms considered here fix a bound on the norm

of the voting weights before seeing any data. This leaves open the possibility that an

algorithm that adapts this bound to the data may still tolerate random misclassification

noise. We suspect that this type of adaptiveness in fact cannot confer noise-tolerance;

it would be interesting to show this.

There are efficient boosting algorithms (which do not follow the potential function

approach) that can provably tolerate random classification noise [14,15]. These noise-

tolerant boosters work by constructing a branching program over the weak classifiers;

the original algorithms of [14,15] were presented only for binary-valued weak classifiers,

but recent work [16] extends the algorithm from [15] to work with confidence-rated

base classifiers. A standard analysis shows that this boosting algorithm for confidence-

rated base classifiers can tolerate random classification noise at any rate 0 < η < 1/2

according to our definition from Section 2.8. In particular, for any noise rate η bounded

below 1/4, if this booster is run on the data sets considered in this paper, it can

construct a final classifier with accuracy 1 − η − ǫ > 3/4 after O(
log 1/ǫ

γ2 ) stages of

boosting. Since our set of examples S is of size four, though, this means that the

booster’s final hypothesis will in fact have perfect accuracy on these data sets which

thwart convex potential boosters.

This work thus points out a natural attractive property that some branching pro-

gram boosters have, but all convex potential boosters do not. It would be interesting

to further explore the relative capabilities of these classes of algorithms; some concrete

goals along these lines include investigating under what conditions branching program
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boosters can be shown to be consistent, and working toward a characterization of the

sources for which one kind of method or another is to be preferred. The fact that

convex potential boosters have been shown to be consistent when applied with weak

learners that use rich hypothesis spaces suggests that branching program boosters have

the most promise to improve accuracy for applications in which the number of features

is large enough that, for example, boosting a decision tree learner is impractical. Also,

because branching program boosters divide data into disjoint bins during training, they

are likely to be best suited to applications in which training data is plentiful.

The parameter γ used in our constructions is associated with the quality of the weak

hypotheses available to the booster. The known noise-tolerant boosting algorithms

tolerate noise at rates that do not depend on γ, and the analysis of this paper shows

that potential boosters cannot achieve such a guarantee. The still leaves open the

possibility that noise at rates depending on γ may still be tolerated. In fact, “smooth”

boosting algorithms can tolerate even “malicious” noise at rates that depend on γ [24].

The construction using binary classifiers as weak learners that we used for the

experiments in Section 8 is patterned after the simpler construction using confidence-

rated weak learners that we analyzed theoretically. It may be possible to perform a

theoretical analysis for a related problem with binary weak learners. The main out-

standing task appears to be to get a handle on the unattractiveness of the penalizers to

the boosting algorithm (for example, to prove nearly matching upper and lower bounds

on their contribution to the total potential).
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