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ON CONFmMATION

JANINA HOSIASSON-LINDENBAUM

1. Taking for the relation of confinnation the following obvious axioms, we
obtain several more or less well-known theorems and are able to solve in a
definite and strict manner several problems concerning confirmation.

Let 0, b, and c be variable names of sentences belonging to a certain class, I

the operations a· b, a + b, and a the (syntactical) product, the sum, and the
negation of them. Let us further assume t!le existence of a real non-negative
function c(a, b) of a and b, when b is not self-contradictory. Let us read
'c(a, b)' 'degree of confirmation of a with respect to b' and take the following
axioms:

Axiom I. If a~a consequence of b, c(a, b) == 1.
Axiom II. If a· b is a consequence of c,

c(a+b, c) = c(a, c) + c(b, c).

Axiom III. c(a. b, c) = c(a, c). c(b, a· c).
Axiom IV. If b is equivalent to c, c(a, b) = c(a, C).2
As may be easily seen, the interval of variation for c is (0, 1); this is quite

conventional.

2. We begin with some simple propositions about confirmation, fl)-f,) below,
which follow from the above axioms. These propositions can be derived with
the help of a proposition which is easily obtained from the axioms, Le.:

(1) c(b, a.c) = C«b, c») if a is a consequence of b and c and if c(a, c) ~ o.
c a, c

Let c represent our knowledge at a given moment, b a sentence (hypothesis,
law, or the like) in whose cwe are interested, and a the statement of an observed
fact (observed just after the given moment at which c represents our knowledge)
which is a consequence of band c.

I shall frequently omit the characterization "consequence of band c" and
simply speak about facts a and their law or hypothesis b, understanding by
this statements of facts a which are consequences of the law or hypothesis b
and our present knowledge c. Similarly, I shall speak about a hypothesis or
law and its facts.

Received August 27, 1940.
1 The class must be broad enough to include all sentences for which we desire to speak

about confirmation.
t These axioms are analogous to St. Mazurkiewicz's system of axioms for probabilities

(see Zur Axiomatik der Wahrscheinlichkeitsrechnung, Comptes rendus des slances de la
Societe des Sciences et des Lettres de Varsovie, vol. 25 (1932».
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134 JANINA HOSIASSON-LINDENBAUM

f1) A sentence b which is certain "a priori" i.e. certain on the basis of our
knowledge at the given moment, cannot increase or decrease its c under the
influence of its observed fact a, unless c(a, c) = o.

For, if c(b, c) = 1, then c(b, a.c) = _(.1) by (I); but neither c(b, a.~) nor
c a, c

c(a, c) can exceed 1, and therefore the theorem follows. Thus the c of the
sentence 'salt is salt,' if this sentence is certain a priori, cannot increase or
decrease under the observation of a bit of salt which is salt.

ft ) A sentence b, false a priori, cannot increase or decrease its c under the
influence of its observed fact, unless c(a, c) = o.

For 0 divided by any number different from 0 is o. E.g., the cof the sentence
'All children born this year are girls' cannot increase on the basis of the fact
that a given child born this year is a girl.

fa) A fact which is certain a priori does not increase or decrease the c of its
law or hypothesis.

For, if c(a, c) = 1, c(b, a.c) = c(b, c). E.g., if the fact that this salt is salt
is certain a priori, it does not raise or decrease the c of its law.

f,) The smaller is the a priori c of a fact, the more does the c of its law or
hypothesis increase when this fact is observed.·

For the smaller is c(a, c), the greater is c(b, a.c). E.g., if a weather forecast
for a whole week, deduced from meteorological data, turns out to be true, the
meteorological assumptions are confirmed to a greater degree than a similar
fulfilled weather forecast concerning only one day of this week.

fi ) The same fact, on the basis of the same body of knowledge, raises 'by a
smaller value the c of its law if this c is smaller a priori.

I This fact may be expressed more simply and intuitively as follows. We find in chapters
on induction and probability the statement that a hypothesis is the more probable the more
facts we have observed following from it. This statement is a special case of f.) if we take
the degree of confirmation instead of probability. For, the product of facts al·at ... a.
has a smaller c than the product al·a2 ... an-l-a result easily obtained on the basis of our
axioms, provided that a" does not follow from al·a2 ... an-I. (If a" does follow, we would
not say that we have observed more facts, when a" is observed after al·a2 ... all-l.)

Moreover, assuming that we obtain more or stronger knowledge or data by observing
or stating facts which were more difficult to anticipate, i.e. less confirmed a priori, we may
simply define "more or stronger observed facts or data" by "less confirmed a priori."
Let us therefore say that: F 1 are more or stronger observed facts or data thanF1!!EI c(F l, c) <
c(F2, c), where c is the knowledge available at the time. This definition allows us to
compare-with respect to more or stronger facts or data-not only two sets of facts where
the first includes or implies the other, but also two quite independent sets of facts. E.g.
an observation of the weather during a whole week constitutes, ceteris paribus, more or
stronger facts or data according to our definition than an observation of the weather
during one day of another week.

According to this definition, however, f.) becomes equivalent to the simpler and more
intuitive statement given at the beginning of this note (in italics). We have only to
substitute in it "confirmed" instead of "probable."
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Suppose c(a, c) = p, with 0 < P < 1, and c(b, c) = 8. Then, since by (I)

c(b, alOe) = ~, the difference between the a posteriori and a priori values of the c
p

of the law is ~ - 8. But ~ - 8= 8(!- - 1), so that as 8increas~ so does
p p P

this difference. Thus the c of a hypothesis with a small a priori c approaches 1
(certainty) more slowly when based upon an observed instance of it, than does
the c of a hypothesis with a greater a priori c on the basis of the same instance.
The approach of degrees of confirmation to 1 therefore proceeds like an ava­
lanche.4 E.g., we take a toadstool, inject into it a certain substance S, whose
influence we do not know. We can only see that the color of this substance is
similar to a known poison. Subsequently we discover that this toadstool was
eaten by somebody who becomes poisoned. Then, the c of the law 'Toad­
stools are poisonous' differs less from certainty than the c of the hypothesis
'Substances S are poisonous.'

fa) The following criticism of procedures of confirmation has been made,
though it is sometimes possible to ignore it: The c of a sentence b should always
be related to (based upon) data Cl which are directly confirmed, rather than to
observed physical facts a which are in their turn based upon Cl; for only CI can
be counted as belonging to our established knowledge, which is fixed once for all.

For example, let b be the sentence: 'Water boils at the temperature of 98.5°0,
under the pressure of 720 mm.' Let the fact a be observed: On a given ther­
mometer placed into boiling water under the pressure of 720 mm, the mercury
reaches 98.5°C. Then, according to the above criticism, the directly confirmed
datum is either CI: I see such and such shapes coinciding; or (purely phenomeno­
logically) CI: Such and such coinciding shapes are given. Consequently, we
should base the c of b upon CI instead of upon a (and CI).

Now, if c(a, CI·C) is high enough (as in our example), c(b, a.cI·c) is close to
c(b, CI· c); and the greater is c(a, CI· c), the nearer is c(b, a· CI· c) to c(b, CI· c).
To see this it is enough to substitute CI· C for C in (I) and remember that a
follows from b· c.

Therefore, when c(a, CI· c) is high enough, it is indifferent whether we consider
c(b, a.cI·c) or c(b, CI·C). However, it is safer to relate the c of a sentence b to
facts a whose c with respect to CI· C is great, because the deviation from c(b, CI· c)
is then small.

In spite of that we may relate b to facts a whose c with respect to CI· C is not
great, on the understanding that we realize the approximative character of our
procedure and the extent of approximation. E.g., we may relate the c of the
sentence b1, which gives a general law of the temperature of boiling water under
a pressure, to the fact which constituted sentence b in the above example. We

4 We may also say, however, that the distance from 1, when the cof a hypothesis decrea8e,
under the influence of a fact, proceeds like an avalanche. If a fact is unfavorable for two
hypotheses and its c is equal with respect to both, then the difference in the distance from
1 of the cwill be greater for that one of the two hypotheses w'hose a priori c is greater.
This may be easily seen when applying (I'), see p. 144.
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should remember, however, that the true c of b1 (true-in the opinion of ob- .
jectors) would be only approximately the same as this.6

3. The propositions f1)-fs) may now be used to explain special problems, when
certain further propositions concerning c are assumed and some consequences
of the above axioms are added. The following formula, a development of the
denominator of the right-hand side of equation (I), is the most important of
these consequences:

(II) If a follows from band c, then c(a, c) = c(b, c) + c(h, c). c(a, b. c) =

"c(b, c) + L c(b i , c).c(a, bi·c), where bi are sentences (hypotheses) incompatible
i-I

with one another and whose logical sum is h.
Let us consider the following problems in which f1)-fs) will be used. We shall

call the first one f7), resolving it with the help' of fa) and f.), and the second
one fs), resolving it with the help of f6).

4. f7) C. G. Hempel has stated the following paradox. The sentence a: 'This
is a man, and is mortal,' confirms the general proposition b: 'Every man is
mortal.' Moreover, the sentence al: 'This chair is not mortal, and is not a man,'
confirms the general proposition b1 : 'No non-mortal being isa man.' Now b1

is equivalent to b. Thus ai, confirming b1, should at the same time confirm b.
But this sounds paradoxical.

The paradox disappears, I think, if we make use ofproposition fa) or f.).
Let us first apply fa).

al does not raise the c of b1 (nor, therefore, of b). For c ('this is not a man',
'this is a chair and is not mortal' .c) = 1, where c is the knowledge available
to us at the given time, even without the addition of b. This is so because c
contains the law that no chair is a man.s

But, it may be said in objection, for the confirmation of a sentence 'No B
(non-B) is A' we are not forced to choose examples where it is known a priori
that the given B is not A.

I If a does not follow from boc, then

c(b, aocl°c)

c(b, Cl 0 c)

(a, b.ctoc)

c(a, Cl·C) ,

&s we see from (I'), po 1440 Thus taking c(b, aOctOc) instead of c(b, Cl°C) is the less dangerous,
the nearer the right hand side of the equality is to 10 If it is equal to 1, we say that b is
independent of a, given Cl·Co In that case we can obviously take c(b, aocloC) instead of
(b, CloC), since they are equal.

a This emphasizes the fact that what may increase the c of the instance of the law Every
A is B is not the logical product X is A and X is B, but only its second factor (X is B)
when the first (X is A) ""as observed, i.eo when X is A belongs to the knowledge we possess
at the given timeo For it is X is B which follows from Every A is B and X is A and not
X is A from Every A is B. Thus, when I shall speak about the increase of the c of a sentence
on the basis of its instance, I shall mean the second factor of the instance, when the first
was observed, Le. when the first belongs to our knowledge already possessed.
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It is rather difficult to find examples of a different type for our present b1•

But instead of continuing with b we may consider the sentence b': 'All salt
(kitchen salt) is soluble in water.' And as a particular instance of the contra­
positive of b' we take the statement a~ that a certain substance S, which does
not happen to be (kitchen) salt, is insoluble in water, although we do not know
a priori that the substance is not (kitchen) salt. However, a~ ('S is insoluble
in water and is not salt') would still confirm the equivalent contrapositive of
b', call it b~: 'No substance insoluble in water is (kitchen) salt,' and so a~
would also confirm b'. This still sounds paradoxical, although perhaps less
so than before. For we would find it rather curious if a chemist, in order
to confirm b', should take substances insoluble in water and then examine
them to see if they are salt, instead of taking salts in order to discover
whether they are soluble in water. Why would we find this strange? An
application of f4) to the case at hand supplies an answer, and we proceed to
find it.

a~ raises the c of b~, and therefore of b' also, quite negligibly in comparison
with the incre8Be of the c of b' under the influence of a' (which asserts that a
certain instance of salt is soluble in water). This is so for two reasons:

(i) The number of substances (or kinds of substances) insoluble in water is
immense in comparison with the number of substances (or kinds of substances)
which are salt.

It can be proved (see the demonstration below) on the basis of (II) that if the
number of B's (non-B's) is greater than the number of A's, then the cof an in­
stance of B being A is, ceteris paribu8, greater than the cof an instance of A being
B. Thus, on the strength of f4), the second instance raises the cof the sentence
'Every A is B' by a greater value than the first; and the difference between
these two values increases with an increase in the ratio of the cardinal number
of class B and of class A.

Demonstration: Let us read 'NC.(X)' as 'the number of X's,' and assume, in
the first place, that a) Nc(A) == m, Nc(B) == n, and n>m. We have to prove
that the c of a thing being B, when it is found to be A, is smaller than the c
of a thing being A when it is found to be B. We have

(1) Nc(BA) == Nc(B) - Nc(A) + Nc(AB)

(because Nc(BA) = Nc(B) - Nc(BA) and Nc(BA) == Nc(A) - Nc(AB)).
Let us call h,the hypothesis that Nc(AB) == i, for i == 0, 1, S, ... , m; hi is

equivalent to Nc(BA) = n - m + i because of (1).

Let us now assume, in the second place, that b) c('X is B', 'X is A' .hi·c) == !
m

and c('X is A', 'X is B'.hi' c) == n - m + i, where C is our knowledge before
n

establishing that X is A; i.e. all the A's have the same status with respect to
being B, and all the B's have the same status with respect to being A.
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Now, on the basis of (II),

'"C('X is B', 'X is A' -c) = L c(h" IX is A' -c) -c('X is B', ~.IX is A' .c),-0
m •

= L c(ht, 'X is A' -c). -!. ,
i-O m

C('X is A', 'X is B' .c) = f c(~, 'X is B' .c).n - m + i.
i-O n

Let us assume in the third place that c) c(h" 'X is A' .c) = c(h" 'X is B'tc) =
c(hi, c) = Ci, for i = 0, 1, 2, ... , m. This assumption is the same as saying that
the simple observation of an object being A (or B) before we establish the fact
that it is B (or A) does not change the c of any hypothesis hi.

Let us write c('X is B', 'X is A' .c) = CB and c('X is A', 'X is B' .c) = CA.

Thus we have:

(2)

and

'" .
CB=LCi~,

i-O m

WI n-m+i m n-m '" i
CA = L Ci = L c,-- + L Ci-

i-O n i-O n i-O n
(3)

n -m m . '"= -- + CB --, since L Ci = 1.
n n i-O

Hence Ci - CB = n - m + CB~ - CB = (1 - !!!'). (1 - CB) > 0 only if CB < 1,
n n n

and CA - CB grows with the growth of ~, q.e.d.
m

(ii) The C that the class of (kitchen) salts is Jwrnogeneou8 as far as solubility
in water is concerned is high and much greater than the C that the class of sub­
stances which are not soluble in water is homogeneous with respect to their
not being (kitchen) salts.

I shall say that a class A is homogeneous with respect to B, if either every A
is B or every A is B, i.e. if one A is B, every A is B, and if one A is B, no A is B.

Now c('If one sample of (kitchen) salt is soluble in water, every sample of
(kitchen) salt is soluble in water', c) is much greater7 than c('If one substance

7 As a matter of fact the difference between the extensions of the class of substances
insoluble in water and of the class of salts alone makes it equal or greater. For the c of
the class A being homogeneous with respect to B is equal to or greater than the c of the
class B being homogeneous with respect to A-if the extension of B is greater than that
of A; and it is greater if c ('No A is B', c) ~ O.

In fact, c ('Every or no A is B', c) == c ('Every A is B', c) + c ('No A is B', c), c('No
or every B is A', c) == c ('NoB is A', c) + c ('Every B is A', c). The first members of the
sums are-equal, since 'Every A is B' and 'No B is A' are equivalent propositions. (It can
be easily shown on the basis of the above axioms that equivalent sentences have the
same c.) But c ('Every B is A', c) == 0, because there are more B's than A's.

But the difference between the c's of the two homogeneous classes (that of the class A
with respect to B and that of the class B with respect to A) may be great or small inde­
pendently of the difference between the extensions of B and A, unless this last difference
is O.
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insoluble in water is (kitchen) salt, every substance insoluble in water is (kitchen)
salt', c); or at least the first c was much greater than the second when people

8 .
first began to examine salts.

If we agree with this we have another reason for the fact that instance a~

raises the c of b~ and therefore of b' by a smaller amount than does instance a'.
For it can be proved (see next demonstration) that, with a given c('Every A
is B', c), the greater is the difference between the c's for the two homogeneities
considered, the greater is the difference, ceteris paribus, between the c of a B
being A and the c of an A being B.9 Thus, using f4), the difference between
the increase of the c of the generalization 'Every A is B' under the influence of
its particular case and the increase of the c of this generalization under the
influence of a particular case of its contrapositive 'Every B is A,' becomes great.

It will also be proved (in the next demonstration) that if the c for the homo­
geneity of A with respect to B tends to 1, the ratio of the c of A being B to the c
of the generalization 'Every A is B' also tends to 1. But this ratio, as it is seen
from (I), presents the c of the generalization under the influence of one of its
observed instances. Thus, if the c for the homogeneity of A with respect to B
tends to 1, the c obtained by the generalization from an observed instanee of it
also tends to 1; whereas, when the extension of B is greater than that of A, an
observed instance for the contrapositive of the generalization leaves the c of
the generalization far from 1 if the ratio of the cfor the considered homogeneities
is great.

Moreover, it seems that the c for the homogeneity of the class of (kitchen)
salts with respect to solubility in water is high in itself. We thus have still
another ground for the difference in the increase of the c of the generalization
by its instance and the increase of the cof the generalization by an instance of its
contrapositive.1o

8 At present the c of the generalization 'Every kitchen salt is soluble in water' is so high
that not only an instance of its contrapositive but also an instance of itself raises its c by
a minute value only, because the c of this instance is nearly 1. (See f.), but also f6), p. 134).
Moreover, the c of the .contrary proposition 'No kitchen salt is soluble in water' is at the
present state of knowledge near 0, so that the difference between the two homogeneities
considered in (ii) is small (see footnote 7). We understand by 'no kitchen salt' 'no kitchen
salt not yet examined,' for otherwise the c of the sentence 'no ki tchen salt is soluble in
water' would be o.

Instead of the solubility of salt in water, which we took because (kitchen) salt and water
are generally known substances, we could consider, e.g., the solubility of boron chloride in
diethylene glycol, which is probably not yet examined.

t The first c being always greater than the second, when Nc(B) > Nc(A), 88 the previous
demonstration showed.

10 To make the notion of 'homogeneity' clearer let us give the two following examples,
the first where the cof the homogeneity is 1 or nearly 1, the second where it is near o. Let
us place one ball in each of a great number of empty urns, putting in a white or a black
one according to the outcome of tossing a coin.

1. We make several drawings from one and the same urn, replacing the ball into the urn
after each drawing.

2. We make several drawings, each time from a different urn.
Consider the c of the sentence b2 : 'Every drawing gives a white ball.' In the first case

supposed, one drawing determines the contents of the urn, Le. makes the c of b, equal 1,
independently of the extension of its subject term.
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Demonstration: Let us use the same notation and the same assumptions a),
b), Bnd c) as in the previous demonstration.

. We had there C..i - c. = (1 - ;) (1 - c.).

1. Let us assume now that to, which constitutes the difference between the
c's for the two homogeneities considered (see footnote 7) increases, that C.
does not change, ~d that the Ci, for i = 1, S, · · · , m - 1 decrease in equal
proportion. Then, it is easy to see, (2) may be written:

.-1 ·

(2') CB == c. + E Ci ~ + eo·O,
i-I m

80 that c. decreases. Thus C1 - CB increases, q.e.d.
2. Let us suppose that C. + Co = h and that 11, varies and tends to 1. Then

--1 c C:E c, tends to 0 and ~ tends also to 1, because of (2). If h == 1, ~ == 1.
i-I C6 c.

But since

(3)
__1 n - m + i n - m

C1 == c.. + E Ct + Co-- t
~1 n n

n - m ..-I n - m + i
the ratio of CI to C. + Co -- tends to 1, since E Gi tends to O.

n '-1 n

Thus the ratio of (A" to c. or 1 also tends to 1. But

+ n-m l+Con-mC. (0-- ---
n C. n

this last quotient is far from 1, if ~ is large. Q.e.d.
c.

Now, if the above explanation of Hempel's paradox is right, the paradox should
disappear when we choose an example of a sentence 'Every A is B' such that
the extension of A is greater than that of B,ll the c of B being homogeneous
with respect to A is greater than the cof A being homogeneous with respect to B,
and such that B being .A is not certain (or almost certain) a priori. Such an
example is obtained by simply taking b~, i.e., 'Every substance which is not
soluble in water is not (kitchen) salt,' as 'Every A is B'; b', i.e., 'Every (kitchen)
salt dissolves in water,' as its contrapositive; and a'-a sample of salt which
dissolves in water-as an instance of b'. This example should raise the c of b'
and thus also of b~, i.e., of the sentence 'No substance which is insoluble in water
is salt.'

This example seems to me to yield no greater paradox than one may legiti­
mately expect. This conclusion is all the more persuasive if we note that after

11 As a matter of fact the great majority of general sentences which we may think of at
random are such that their subject term is less extensive than the negation of their predi.
cate term. And it is so, because, in most cases, the negations of names which are in use
are more extensive than the names themselves. Thus, if we think of a general sentence
'Every A is B' at random, without artificially constructing it, there is a large chance that
B will be more extensive than B and a fortiori than A.
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having exhausted all or almost all B's, i.e. all or almost all samples of salt,
and after having found that they are soluble in water, i.e. after having gained
the c of b' equal to 1 or very near 1 (it is much easier to do this by examining
instances a' than by examining instances a~) we obtain certainty or almost cer­
tainty also with respect to b~.

Should, however, somebody still feel a paradox even here, this may be so be­
cause the equivalence of b' and b~ is forgotten when one thinks about the con­
firmation of b1• If in spite of noting this equivalence the paradox still remains,
nothing can be done but to give up the principle that facts confirming a sentence
also confirm its equivalent. But this would, I think, violate the meaning of
confirmation. It would also contradict the above axioms.12

5. fs) It is often maintained that the characteristic of a "metaphysical"
theory is that it does not imply any observable fact.

But, as a matter of fact, "metaphysical" theories, if they are not senseless
sentences, may very well imply observable facts. Thus the hypothesis that a
hidden entity (substance or force or the like), called entelechy or otherwise,
causes the turning of plants towards light, implies the observable facts of the
turning of plants towards light. And in general, for every set of observable
facts a we may offer a metaphysical assumption about the existence of a b, add
to it the further metaphysical assumption that every time b occurs, it produces
a fact belonging to a, and take both assumptions as a hypothesis b1• Such
hypothesis obviously implies the observable facts belonging to Q. a may also
contain facts not yet observed; and subsequent observations may then either
negate those facts and thus falsify the hypothesis, or exhibit those facts and
not falsify the hypothesis.

Consequently, the distinctive feature of hypotheses called metaphysical (i.e.
that they do not imply observable facts) must, I think, be specified in terms of c.

The following is one possible way of doing this, which involves the use of fl ) :

The a priori cof such a hypothesis b1 is so small that only very many observed
strongS facts could raise it, i.e. approach it to certainty by a perceptible amount.
Moreover, there is a small a priori c, in the present state of our knowledge,
that such facts could be tested, i.e. their occurrence or non-occurrence observed.

As to the facts Q implied by b1, which are explicitly implied by b, their occur­
rence does not raise the c of b1 perceptibly; their a priori c is great, since they
also follow from well confirmed hypotheses. Thus, to take the hypothesis
about entelechies as an example, there is a hypothesis about the chemical consti­
tution of plants and its influence on the behavior of plants in daylight, which
implies the turning of plants towards light and is well confirmed a priori.

12 In an "existential" sense of the proposition 'Every A is B,' this proposition presup­
poses the existence of A. Thus 'Every A is B' is not equivalent to 'Every B is A' which
presupposes in its turn the existence of 13, but does not presuppose the existence of A.

But the paradox persists when we interpret the proposition 'Every A is B' and its con­
trapositive in a nonexistential sense. Furthermore, we have assumed the existence of A
(and of B) in our examples prior to the confirmation of the general proposition. Thus, the
rale of a confirming instance is not to establiah the existence of A.
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The restriction made, "in the present state of our knowledge," seems to me es­
sential. For hypotheses which may at one time be found metaphysical may later
become entirely "scientific"13 after we have gained more knowledge. E.g.,
the atomic hypothesis was metaphysical in antiquity, but is no longer.
Again, if somebody had offered the hypothesis no more than fifty years ago
that mutations in living organisms are caused by a kind of rays, not yet
"observed," and had called them "cosmic rays," this would have been said to be
a metaphysical hypothesis. What has changed since? We now have ne~ ob­
servations confirming the existence of "cosmic" rays (the existence of b in our
above notation) and new observations confirming their causing mutations (the
production of ex by b). The hypothesis has simply been confinned to a greater
degree, its c has grown. Moreover, the chas also grown, that new facts will be
tested the occurrence of which would confirm and the non-occurrence disconfirm
the hypothesis.

6. By the application of (II) and some other theorems following from Axioms
I-IV, among others of a .proposition whose immediate particular case is (I), we
can also solve the question:

f9) whether the cof a fact 112 is increased when there is observed another fact
al which is a consequence of the same hypothesis b as the first fact but which is
not certain a priori.

This question cannot, in general, be answered affirmatively, and a generally
affirmative answer would lead to absurdity. For every two facts have a com­
mon reason; thus, the facts Al is Band Cl is D, where Al is A and C1 is C, have
a common reason 'Every A is B and every C is De' E.g., 'This piece of iron
melts at 1500°' and 'Water in this vessel boils at 100°' have the common
reason 'Iron melts at 1500° and water boils at 100°.'

Reichenbach in his Experience and prediction (pp. 372-3) advances the fol­
lowing view: Nc'wton discovered a formula which implies the laws of both
Galileo and Kepler; in consequence, the observational material supporting
Galileo's law also supports the law of Kepler (and vice versa). Now this view
may be quite correct; but the question is on what grounds it is to be justified.
It has already been seen that in general one consequence of a hypothesis does
not support, i.e. raise the c, of another consequence. However, by applying
(II) we can give a sufficient condition for the increase of the c of one conse­
quence of b by another of its consequences.

'Ve have in fact the follo\ving:
(1) al and 112 follow from band c.
(2) c(b, c) '¢. 0, i.e. the c of b is not 0 a priori.
(3) c(al, c) "¢ 1 ~ c(a2, c), for otherwise the c of 112 could not increase.

As we sa\v, these conditions are not sufficient in order that

(4)

13 There are hypotheses for "'hich it is expressly assumed that they do not imply any
observed fact or for "'hich it can be logically demonstrated that no observable fact could
confirm or disconfirnlthem. But these hypotheses do not exhaust those which are called
metaphysical.
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Now, the following condition (5) together with (1)-(3) implies (4):
(5) b disjoins into k mutually exclusive alternatives bl, b2, • • • , b", with k ~ 1
which confer upon llt the 8ame c as upon aI, independently of the observation of
aI, i.e_

c(al, bi-c) = c(lI2, b.-c) = c(a.t, aI-b.-c)

for i = 1, 2, .• - , k with k ~ 1, where b. implies bi for j ¢ i and (t bi ) == ~_14
,-1

We could prove this by applying (II); but for the sake of further considera-
tions it will be convenient to prove a more general Theorem 1, needing the
application of (II'), whose immediate particular case is (11)_

Theorem 1_ Let bl , ~, - - - , b" be concurring hypotheses (k~2) not excluded
a priori and whose logical sum is a priori certain_ That is,

(6) C(bi, c) ¢ 0,

(7) c(t bt , c) = 1_
,-1

Furthermore, let aI, C12, • • • , an be facts which possess constant c's with respect
to each b. and which are independent of previously observed facts a.- That is,
(8) c(a" b•. c) = c(a., b.·al-lL2 - - . a.-I-c) = const ¢ 0 for every i (1 ~i~k)
and for every 8 (1 ~8~n)_
Finally, let
(9) c(a" b•. c) ¢ c(a., bi-c) for at least one pair of i, j such that i ¢ j_ Then

(10) c(a", aI-at - .. an-I.e) > c(a"-l, al-CJt ••• a,,-I-c).

It is easy to see that the statement immediately preceding Theorem 1 is a
special case of this theorem, namely when n = 2 and c(a., be-c) = 1 for some
1 ~ t ~ k (we must then assume b == be and since 6 disjoins into k ~ 1 concur­
ring hypotheses, we have, together with b, k ~ 2 hypotheses, which are required
by our theorem_

Demonstration: The following theorem may be obtained from Axioms I-IV:

(II')
Ie

c(a, c) = ~ c(bi , c) ·c(a, bi • c)
.-1

U Instead of (5) the following condition is also sufficient for (4) when (1)-(3) are assumed:

c(a2, 6-e) ~ c(a2, al-6-e).

The demonstration is based upon the two equalities,

c(al, c) = c(b, c) + c(b, c) - c(al, 6-c) and

c(a2, al·e) = c(b, al·e) + c(b, al-e)·c(a2, al-6-e),

which are cases of (II).
A necessary and sufficient condition for (4), when (1), (2) and (3') are assumed, with

(3') as c(a, c) ;e 1 ;e c(a2, at· c), is:

c(b, at· c) - c(b, c) c(a2, b· c) - c(a2, b· al- c)

c(b, c) > c(ci2, b-al-e) ,

as is evident from the above two inequalities.
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(I')

where bi are concurring hypotheses whose logical sum is certainty, i.e,
k

L c(bi , c) = 1_ As is easily seen, (II) is a special case of (II'), when for a
i-I

certain bi == b, c(a, bee) = 1.
From (II') we have the following two equalities:

•
(11) C(tItI-l, al-lJ2 - •• tJn-2-C) = L (bi , al-~ - - - atl-4-c) -(aft-I, bi -al-lJI - - - a..-I.-C)

i-1

k

= L q,iXi.
i-I

k

(12) c(a,., al·~ _. - ~-l·C) = L c(bi , (ll-lI2· - - a,,-l-c).C(a., b,-al·as ••• a.-l-C)
i-I

k

= L 1YiXi.
i-I

the second factors of both sums being equal by assumption (8)_
Let the members of the sum on the right hand side of (11) be ordered with

respect to incre8.Bing magnitude of Xi, Le.

(13) %1+1 ~ Xi.

We then have

(14) 1/1'+1 ~ 'h
cPi+l - <Pc

i.e. the increase of the cunder the influence of a,,-1 is equal or greater for those b,
which afford for ~-1 an -equal or greater C respectively_

To see this, we must apply the following proposition which is a consequence
of the above axioms:

(b ) = c(b, c) -c(a, b-c) if ( )..J. 0
C ,a-c ()' c a, Cr-.(a, e

We see that (1) is an immediate special case of (I') if a is a consequence of
band c.

Let us substitute in (I') a,,-1 for a, bi for b and al-l1t · - • ara-I·e for c. We
have then:

(15) 1/1. - tPiZi
, - (a"-I, al-lJ2 - - - a,,-tee) ·

N ow, if (13), then by (15) also (14). Hence, we may write instead of (12):
k

c(~, al -£12 - _. tIta-l· c) = L (q,i + e,). x, .
i-I

I.e. by (11) we have:
k

(16) c(an, al-£l2 • _. an-l· c) = c(an-I, al-~ - - - €£A-2-e) + Le.-x,.,-1
Now the second member of the right hand side of (16) must be positive. For

k k k

L E, = 0, since L cPi = L 1/1, = 1 because of (7) and /1). We can thus disjoin
i-I i-I i-I

A:

L E,-X. into a positive and a negative part, where the positive part is to the
i-I
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right of the negative because of (14). Since the sum of the positive Et is equal

"to the absolute value of the sum of the negative Ei, the positive part of L fiX,
i-I

exceeds the absolute value of the negative part.Ii

Let us now substitute in Theorem 1 'b -e' for 'e' and take(t b.) == b. (7) is.-1
then satisfied, and if (6), (8), and (9) also hold, we have, instead of (10):

(10') c(a", al·lJ2 · · · a"-l· b. e) > C(an-l, at·lJ2 · · '. aft-I· b· c).

Let us assume further that c(a
"

bee) = 1 for every 8 == 1, S, ... ,n. (10')
then says that, assuming b, i.e. the falsity of our hypothesis b, the c of a new
instance of b increases with the number of observed instances of it.

Thus, Nicod was right as to this point, in his dispute with Keynes (see Le
probleme logique de l'induction, p. 76)~e concerning the limit of c(b, at· at • • • a,,· c)
when n is tending to infinity. For on Keynes' "Principle of Limited Variety,"
conditions (6), (7), (8), and (9) wi~h b.e instead of e are fulfilled, where b is a
generalization of al·lJ2 - · · an.

Nicod W8.B wrong, however, in supposing that c(an, at-at ... a"_1·6.c) may
tend to 1 when n tends to infinity, assuming also Keynes' Principle of Limited
Variety, which Nicod finds "fort acceptable." For it can be demonstrated that

(17) lim C(CIA, ai- at - - - an-I- 6-c) == c(a., h, -c)
n"'ao

if b, is that alternative among the alternatives b1, ~, • • • , bk forming 6 which
gives to a, the maximum c.

Thus, lim c(an, al·~ ... aft-l·b-c) could be 1 only by assuming that for some
n"'oo

t, c(a., b,·e) == 1; but according to Keynes' Principle of Limited Variety all
alternatives into which b disjoins give to a. a c smaller than 1.

To prove (17) we shall need the following theorem:

Theorem 2. Let the conditions (6), (7), (8) and (9) of Theorem 1 be fulfilled,
for k ~ 1. We may then prove that

(18) lim c(b1, al-l!2 - - - an-c) == 1, where
""'00

(19) c(a., b1·c) == max c(a
"

b,·c).

If there is more than one max c(a., b,.B), we may take their logical sum. as b1­

Demonstration: Combining (I') and (II') and substituting 'at', 'a,,', ... , 'a,a'
for 'e', we have

(b ) c(bl, c) -c(al-lJ2 - - - lIta, b1-c)
C I, al-lJ2 - - - an-c == ~1t'--"~--------

L c(b" c) -c(al elJ2 - - - an, b, -c)
'-1

(20) 1
== Ai -

1 + "" c(b., c) •c(al" 112 •• • aft, b•• c)
f::( c(bl , c) -c(al- a2 - - - an, bt - c)

11 There is another demonstration of Theorem 1 by S_ Bernstein, Theor1l of probabiliti••
(in Russian, pp- 84-85)_

18 The dispute is carried on in terms of probability_
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(23)

(22)

c(b, c) _
Ie ,

c(b, c) + :E c(b., c) ·c(a1- tJ2 - - - an, b, -c)
i-1

By applying Axiom III several times we get

c(a1· as · .'. an, b•. c) = c(an , b•. a1· a2 · · · an-1· c)-
(21)

C(an-1, b•. a1· CIt • • • an-2· c) · · · c(~, a1· b•. c). c(a1, b,· c)

for i = 1, 2, · · · , k. But all n factors are equal because of (8)_ Thus,

c(al-CIt - - - an, b.-c) = [c(a1, b._c)]n and

1· c(al-CIt - - - a", b.-c) I· [C(a1, b.-C)]" 0
1m = 1m =

n-+oo c(a1-112 - - - an, b1 - c) n-+oo c(a1, b1- c) ,

because of (19). (20) and (22) give us

lim c(b1, a1-tJ2 - - - an-c) = 1, q.e.d.17

n-+oo

From Theorem 2, (17) immediately follows. For, applying (II'), we have:
Ie

lim c(an , a1- tJ2 - - - an-1- b-c) = lim :E c(b., al-l12 - - - a,. -b-c)
(24) n-+oo "-+00 .-1

-C(a,.-al-at • - - tJ.-l, b,-6-e)_

From Theorem 2 it follows that lim c(b" a1·lIt _.. ale·b.e) = 1 by substituting
"-+00

Ie

'6·e' for 'e' and 'be' for 'b1'. Since by (7) :E c(b., a1·CIt · ~ · a,..b.e) = 1 and lim
i-1 ,.-+.

c(b" a1-CIt · · · an·b.c) = 0 for i ~ t,

lim c(an , a1-112 - - - an-1- b-c) = c(an , a1- CIt - - - a,.-l- b, ·b-c)
"-+00

= c(a,., b, -c), by Axiom IV and (8),

because b, follows from band an is independent of al,~, · · · , an-1 when assuming
b" q.e.d.

7_ The last question to be discussed is flO), whether the c of a hypothesis b,
not excluded a priori, tends to 1 when the number of its observed instances
a1, ~, · · · , an, which are not certain before being observed, tends to infinity.

In general, this question must also be answered in the negative.
To show this, combine (I) and (II) and substitute 'a1·112 · · · an' for 'a', thus

obtaining

(25) c(b, al-l12 - - - an -c)

b. (i = 1, 2, · · · , k) are here alternatives into which b disjoins, as in (II).
Suppose a) that all facts a1, lZt, • • • , an which are consequences of b are also

consequences of another hypothesis be concurring with b and not excluded a
priori. Then c(al· at · · · an, be· c) = 1, and as may easily be seen from (25)

I· (b ) < c(b, c) 1
lffi c , al -112 - - - a,,· c = (b ) + (b ) < ,

n "'00 C , C C e, C

17 See J. Hosiasson, Quelques remarques sur la dependance des probabilites a posteriori
de celles a priori, ComjJtes-rendus du 1 Congres des M athematiciens des Pays Slaves,
Warsaw 1930.
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since c(be, c) ~ 0, so that the limit of the c of b depends on the a priori c's of b
and b,.lS

Suppose (j) that a1, a2, · · · , an do not follow from another hypothesis concur­
ring with b, but that some of these hypotheses, say hypothesis b" not excluded
a priori, confers upon the a, a c tending to 1, when the number of observed a,
tends to infinity;19 that is,

(26) lim c(a", at·1J2 • · · an-I· b,. c) = 1.
"-'00

But it m,ay also be the case that lim c(b, at·t12 ... a".c) < 1. For from (21)
"-'00

we obtain:

c(al·at··· a", b,.c) = c(a", at·at··· aft-l·b,.c)·c(all-I, al·as ... all-I·b,.c)

· · · c(al, b,.c).

Thus, when (26) is satisfied, it may be that lim c(al·as ... a", b,.c) == a > o. In
. "-'00

that case, by (25), it is possible that

1· (b ) ", c(b, c)
1m c , a1· tit • • • a". c :3 (b ) + (b ) ,

""'00 c , c C" C •a

which is < 1 and dependent upon the a priori c's of band b, since c(b" c) ~ 0.20

It is easy to show that the negation of both a) and (j) is a suJficient condition for

(27) lim c(b, a1.lJ2 ••• ala-c) = 1.21
n-'oo

For if no b, confers on a. a c whose limit equals 1, then, using (21), we see that
lim c(a1·a2 ... an, b,.c) = 0, for every i = 1,2, ... , k. Thus, by (25) we have
n~oo

lim c(b, al.ll2 •.. aft.c) = ~b, c) = 1.
n"'oo c(b, c)

Hence in the Nicod-Keynes dispute already mentioned, the latter was right
concerning the limit of c(b, a1' a2 . · · an' c) being 1. For, on the basis of his
Principle of Limited Variety, the n0gation of a) is fulfilled. But (8) is also
fulfilled, which excludes the variability of c(a., a1' CZ2 • • • a.-1· bi • c) with changing
8 and thus also excludes (j).

In an article devoted to this question P. T. l\1aker attempted to show that
(27) is fulfilled (in terms of probability).22 His reasoning is however unsatis­
factory. For although he assumes Keynes's Principle of Limited Variety (he

18 See footnote 17.
19 Note that we did not here assume condition (8) as to the constancy of c(a., al·at ..•

a,-l .b, .c) .
20 See J. Hosiasson, 0 prawdopodobien.stwie hipotez, Przeglqd jilozojiczny, vol. 39 (1936).
21 Thus we may say that the c of the logical sum of hypotheses which are not excluded

a priori and which confer on the facts ai, a2, "', an not certain before being observed a
c equal to 1 in the limit, tends to 1 when the number of ai tends to infinity.

22 P. T. Maker, A proof that pure induction approaches certainty as its limit, Mind, vol.
42 (1933), pp. 208-212.
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includes it in c), he uses it only to show that lim c(aA , al· 02 · · • aft-I· c) = 1.21
A-+OO

He then says: "As the unexamined instances become increasingly probable,
approaching certainty as a limit, the generalization approaches the same limit,
since the certainty of both the examined and the unexamined instances of the
law implies the certainty of the law." However, I see no justification for this
reasoning. The most we can say is that, since the cof the unexamined instances
approaches certainty as a limit, the cof a logical product of a given finite number
of unexamined instances approaches the same limit. But we cannot say that
the c of aU unexamined instances approaches this limit. For the hypothesis
b" "Every examined instance of the law confirms (or will confirm) the law, and
an instance of the law never observed does not confirm it," is a hypothesis which
is not always excluded a priori; moreover it also gives a cequal to 1 to all exam­
ined instances confirming the law. But b, is an alternative concurring with the
law itself, i.e. with the law: "Every instance of the law confirms it."

The considerations of this paragraph make us also doubt whether Camap's
Definition 16 in Testability and meaning24 realizes what the author intended.

The class C' is there specified only by the condition that it contains an infinite
number of independent consequences of S and therefore not necessarily all the
consequences of S. Hence S may very well be a logical product of two factors:
a given law whose consequences are observed sentences of C', and any sentence
whatever with arbitrary terms. On Definition 16, however, S would be said
to be confirmable.

On the other hand the cof S relatively to C' would not be 1, as our considera­
tions show, and may be even very far from 1. This last point may, however, be
no objection for Carnap. For by Decision 5b concerning the admittance of S
with a certain degree of confirmation, when sentences of C are stated, S is a
law of the form '(x)Q(x)' and C the class of sentences 'Q(al)', 'Q(Ot)', · .. ; thus
C contains all instances of S and not only a part of them as is the case with C' .

Decision 5b, however, at least on some interpretations of it, is open to
certain objections. We shall not raise them, however, since the vagueness of
the formulation of Decision 5b does not allow one to decide whether one inter­
pretation or another should be taken. Let us make only the following observa­
tion. There is no difference for the import of Decision 5b, if we cut it short at
the point where "if no other reasons are against this, ... " begins. This is so
because if the corO is high, the cof C cannot be also high, as c(C, c) + c(O, c) =
1. This follows from the above axioms.

In conclusion, we may observe that Axioms I-IV imply many facts about
the c, solve different questions in a definite and precise way and simplify some
statements. They enable us to avoid occasional appeals to intuition, since if
they are once accepted, all further facts may be deduced in quite a formal way.
Therefore we find them useful as general laws governing degrees of confirmation.

VILNA, LITHUANIA

21 To show this, Keynes' Principle is not needed. See Poirier, Remarques sur la pro­
babilite des inductions, Paris 1931, p. 31.

14 Philosophy of science, vol. 3 (1936).




