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Topological vector spaces, by A. Grothendieck, Gordon and Breach, New York, 
London, Paris, 1973, x 4- 245 pp., $19.50. (Translated by Orlando Chaljub) 

This book is a translation of the notes of a course given by Grothendieck in 
Sao Paulo in 1954 and published in French during the same year (a second 
edition came out in 1958, a third in 1964). The original lecture notes had 
several distinctions: they constituted the first expository treatment of locally 
convex spaces, they contained much material which could not be found 
anywhere else, and, most importantly, they were written by a man who had 
become one of the leading mathematicians of the 20th century. 

Grothendieck was engaged in research on topological vector spaces between 
1950 and 1953. During this period he put his stamp on the theory and proved 
some of its deepest results. In 1954 he wrote his lectures in complete mastery 
of the whole field as the top expert on the subject: already for this reason alone 
the notes deserve to appear as a printed book. 

It begins with a Chapter 0 entitled "Topological introduction" and contain
ing preliminary material concerning topics which were less well known in 1954 
than they are now: initial and final topologies, precompact sets, topologies in 
function spaces and equicontinuity. The writing is very concise, and since 
Chapters I-IV, VIII and IX of Bourbaki's "Topologie générale" are stated to 
be prerequisites anyway, the reader is advised to study the material in 
Bourbaki's Chapter X, preferably in the "entirely recast" 1961 edition. 

Very little of Chapter 0 is used later on, so that one can start with Chapter 
1 : "General properties", where in 32 pages one gets an elegant introduction to 
the basic concepts: topologies compatible with vector structure, subspaces, 
quotients, products, direct sums, continuous linear maps, bounded sets, @-
topologies (which in the translation became ©-topologies). Locally convex 
spaces are defined through seminorms, and since convex sets appear only in 
Chapter 2, their characterization as spaces with a fundamental system of 
convex neighborhoods is given there. Chapter 1 contains the Banach homo-
morphism theorem, the closed graph theorem and the Banach-Steinhaus 
theorem, with their usual corollaries. 

The title of Chapter 2 is "The general duality theorems on locally convex 
spaces". After a discussion of convex sets, the geometric form of the Hahn-
Banach theorem is proved in a simple way. There exist now several proofs of 
the analytic form, one based on Banach's original idea, one on a theorem 
concerning the extension of positive linear forms. Aumann and Dinges 
considered a generalization of the latter, in which vector spaces are replaced 
by commutative monoids, the best result in this direction is due to Scheller 
[33]. There is a relation between extensions of additive maps and "sandwich" 
theorems which affirm the existence of an additive map between a subadditive 
and a superadditive one [12], [22]. 
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From the geometric form of the Hahn-Banach theorem Grothendieck 
deduces the analytic one, and the usual consequences of the two. Vector 
spaces in duality are introduced, together with the accompanying concepts: 
weak topology, polarity, ©-topologies. If (£ ,£") is a dual system and @ a 
collection of bounded subsets of E, the dual of E' equipped with the @-
topology is determined: this leads to criteria for reflexivity and the Mackey-
Arens theorem characterizing the topologies compatible with the duality. Next 
Grothendieck proves his own completeness theorem. In §16 he studies 
transposes of linear maps and topological homomorphisms ( = strict mor-
phisms). He proves that u: E -> F is a strict morphism if and only if: 

(i) the image u(F') of F' by the transpose xu\ F' -> E' is o(E\ £)-closed (i.e., 
weak*-closed), 

(ii) every equicontinuous subset E' contained in 'w(F') is the image by 'w of 
an equicontinuous subset of F'. 

Köthe [23] observed that (ii) holds exactly if u is almost open, i.e., for every 
neighborhood V of 0 in E the closure of u(V) is a neighborhood of 0 in u(E). 
Any linear map from a locally convex Hausdorff space into a barrelled space 
is almost open. Denote by v{E\E) the finest topology on E which induces on 
every equicontinuous set the same topology as o(E\E); it is introduced on 
p. 159 of the book under review. If every *>(£', £)-closed subspace of E' is 
a(E\ Zs^-closed then E is said to be a Ptâk (or 5-complete or fully complete) 
space. It follows from Köthe's observation that any continuous, almost open 
linear map from a Ptâk space onto a locally convex Hausdorff space is a strict 
morphism and so we get Ptak's homomorphism theorem (Exercise 1 on pp. 
160-161 of Grothendieck's book): any surjective, continuous, linear map from 
a Ptâk space onto a barrelled space is a strict morphism. 

If every v{E', is)-closed, a(£,/,jE,)-dense subspace of E' is equal to E', then 
E is an infra-Ptâk (incomplete) space. Ptak's closed graph theorem states that 
every linear map from a barrelled space into an infra-Ptâk space, whose graph 
is closed, is continuous. Adasch, Komura and Valdivia [19] have determined 
the largest class of spaces-the "infra-s-spaces"-such that every closed linear 
map from a barrelled space into a space of the class is continuous. Other 
maximal classes of source and target spaces have been determined [8], [9], [11], 
[19] and their properties investigated in view of the two outstanding conjec
tures: Is every infra-Ptâk space a Ptâk space? Does there exist on any infra-s-
space a finer infra-Ptâk topology? The conjecture that for every infra-s 
topology the associated barrelled topology is infra-Ptâk has been disproved 
[10]. 

The last paragraph, §18 of Chapter 2, presents elementary properties of 
compact sets and compact maps and introduces Montel spaces. 

Chapter 3 is devoted to "Spaces of linear mappings". After ©-topologies 
and bounded sets, Grothendieck defines barrelled, quasi-barrelled ( = infra-
barrelled) and bornological spaces. When these spaces were introduced, it was 
an open problem whether there exist barrelled spaces which are not bornolog
ical. The first examples were given in 1954 by Nachbin and Shirota; since then 
many more were found [42]. We also know that a barrelled, bornological space 
is not necessarily ultrabornological (called strictly bornological in the book, p. 
148) [40], and that the space E of §3, Exercise 8 (p. 109) is such an example 
[1]. Every Baire space is barrelled, but, as the same exercise shows, the 
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converse is false. Recently a whole scale of spaces has been intercalated 
between Baire and barrelled spaces [30], [31], [32]. 

Next Grothendieck introduces bilinear maps, hypocontinuity and spaces of 
bilinear maps. The e-tensor-product makes a brief appearance in §6, pp. 
124-126. The chapter ends with two examples: spaces of continuous linear 
functions from a locally convex space into a space of continuous functions, 
and differentiable functions with values in a locally convex space. 

Chapter 4 has the title "Study of some special classes of spaces" and consists 
of four parts, the first of which is called "Inductive limits, (£3) spaces". After 
some basic definitions, facts and examples, strict inductive limits, direct sums 
and, in particular, direct sums and products of lines are taken up. We now 
know [7] that the answer to the question asked on p. 140, after the definition 
of a strict inductive limitais negative: there exist strict inductive limits E of 
uncountable families (Et of locally convex spaces such that not every bounded 
subset of E is contained in one of the Et. 

An (£3) space E is defined as the inductive limit of a sequence Et of Fréchet 
spaces with respect to linear maps w,-: Ei -» E such that U «,•(£,•) generates E. 
Here Grothendieck proves his closed graph theorem: let E be an ultrabornol-
ogical space and F a locally convex space which is the union of a sequence of 
images of Fréchet spaces by continuous linear maps; then every linear map 
E -> F, whose graph is sequentially closed, is continuous. Then he adds: "It 
seems we could considerably weaken the conditions on F, a question worth 
some research." I am happy to report that this research has been brilliantly 
performed by Marc De Wilde [3]; [6]. A web on a vector space E is a family 
28 = {C(«!,... ,nk)} of subsets of E9 where k, nl9 n2, . . . are integers > 1, 
such that 

00 00 

E= U C W C(/i! « H ) = U C(«! » H , 4 
nx = 1 nk = 1 

A web SB on a locally convex Hausdorff space E is of type 6 if for every 
sequence (nk) there exist pk > 0 such that the conditions 0 < Xk < pk and 
xk E C(«i , . . . ,nk) for k > 1 imply that 2*°=i \xk converges in E. De 
Wilde's closed graph theorem can be stated as follows: any linear map with 
sequentially closed graph, from an inductive limit of Fréchet spaces into a 
locally convex space with a web of type &, is continuous. Spaces with webs of 
type G have remarkable stability properties, satisfying all the desiderata of 
Grothendieck [17, Introduction IV, pp. 18-19]. 

Grothendieck was the first to observe that a subspace of an (£5) space is not 
necessarily an (£9) space and Kascic and Roth gave an example of such a 
subspace in the Schwartz test function space ^(ft). This led to the concept of 
well-located subspace of an (£5) space [6]. 

Part 2 of Chapter 4 is on metrizable locally convex spaces. The main result 
is the Banach-Dieudonné theorem according to which on the dual E' of a 
metrizable space E the topology v{E\E) is the topology of uniform conver
gence on precompact subsets of E. In §4, p. 162 (whose heading got lost in the 
translation) homomorphisms from one Fréchet space into another are charac
terized following Dieudonné-Schwartz, and one obtains a condition used in 
the theory of partial differential equations [36]: u: E -> F is surjective if and 
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only if lu is injective and 'w(F') is a(F', F)-closed. Several extensions of this 
condition were given [18], [35]. 

To define elegantly the topic of Part 3, "(tftâ) spaces", one best introduces 
some variants of the notion of barrelledness, which have been studied lately 
[20], [4]. A locally convex Hausdorff space is countably barrelled if every 
weak* bounded subset of the dual, which is the union of a sequence of 
equicontinuous subsets, is equicontinuous; it is sequentially barrelled if every 
weak* bounded sequence is equicontinuous. The concepts of countable and 
sequential infra-barrelledness are obtained replacing weak* boundedness by 
strong boundedness. The strong dual of a Fréchet space is not necessarily 
infra-barrelled but Grothendieck [16] observed that it is always countably 
infra-barrelled. Motivated by this observation, he defined a (<$>$) space as a 
countably infra-barrelled space which possesses a countable fundamental 
system of bounded sets. The present book contains only a selection of his 
results, for more details he refers to [16]. 

The connection of the various barrelledness concepts with the behavior of 
balanced, convex sets was investigated by De Wilde and Houet [4], [5], who 
generalized, in particular, a result of Valdivia [38], from which it follows that 
a countable-codimensional subspace of a barrelled space is itself barrelled. 
This result was also proved by Levin and Saxon [24], for finite codimension it 
is due to Dieudonné. Similarly, a finite-codimensional subspace of an infra-
barrelled (resp. bornological) space is infra-barrelled (resp. bornological) [37]. 
On the other hand a countable-codimensional subspace of a bornological 
space is not necessarily even infra-barrelled [41], but a countable-codimen
sional subspace of an ultrabornological space is bornological [39]. Other 
generalizations of barrelledness were investigated by Marquina and Perez 
Carreras [26]. 

Part 4 deals with "Quasi-normable and Schwartz spaces", also introduced 
in [16]. Schwartz spaces are nowadays mostly considered in terms of operator-
ideals of Pietsch, which permits studying them simultaneously with other 
classes of spaces, e.g., nuclear ones [21]. Schwartz maps, the analogs of nuclear 
maps, were defined by Randtke [27]. 

Chapter 5, "Compactness in locally convex topological vector spaces", is 
again divided into four parts. The first of these is concerned with "The Kreïn-
Milman theorem", according to which a compact, convex subset K of a locally 
convex space is the closed, convex hull of the set Ep(K) of its extreme points. 
Choquet has made the theorem more precise by proving that every x £ K is 
the barycenter of a measure, which-if K is metrizable-is carried by Ep(K\ and 
defined a simplex as a set for which this representation is unique. Choquet's 
theory is one of the most important contributions to functional analysis since 
Grothendieck's book was written. 

Part 2 is the "Theory of compact operators". It treats operators of the form 
u + v, where u is an isomorphism and v a compact map, following a note of 
Laurent Schwartz [34], and the Riesz theory of operators of the form / 4- v. 
This theory has been extensively studied and refined in recent years [2]. 

Visibly the topics treated in the last two parts of Chapter 5 were close to 
Grothendieck's heart. They are "General criteria of compactness", associated 
with the names of Smulian, Eberlein and Kreïn, and the Dunford-Pettis 
criterion for "Weak compactness in L1". On each of these topics he has written 
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a paper [14], [15] and he lists 47 exercises, which take up almost 24 of the 40 
pages devoted to the two parts. Much of the material presented in the exercises 
cannot be found anywhere else. 

Even after twenty years, Grothendieck's book is an elegant and refreshing 
introduction to topological vector spaces, and in spite of the fact that at least 
ten monographs have been written on the subject since 1954, it is probably the 
best textbook to use in a course. The proofs are at times concise or even 
omitted, but this enhances its value as a textbook. An additional feature is the 
195 exercises, some of them quite challenging, which cover about 61 of the 
book's 245 pages. 

The translation has scrupulously reproduced the numerous misprints of the 
original and added generously on its own. Exercise 1 on p. 33 was taken over 
into the English text in spite of the fact that in the new edition of [17] 
Grothendieck points out that it is false. But the trouble with the translation 
goes deeper. When Grothendieck's notes were written, the terms for injective 
and surjective were one-to-one (biunivoque) and onto (sur). However, "biuniv-
oque" is translated everywhere by "bijective" (e.g., p. 75; Exercise 1, p. 152; 
p. 198), which leads to the following gem: " . . . v is clearly bijective . . . we 
shall show that it is onto" (p. 197). Frequently the original had to be consulted 
in order to understand the meaning of a sentence. Take for instance the proof 
of Corollary 2 of Theorem 3 on p. 57. In the original text this reads: "On est 
en effet ramené à prouver que si V est un sous-espace vectoriel fermé, et 
x E CV, il existe un hyperplan fermé contenant V et non x9 ce qui résulte 
aussitôt du th. 3" and has been rendered as follows: "We can prove that if V 
is a closed vector space, and x E CV, there exists a closed hyperplane 
containing V and not x, which is a result of Theorem 3." Or on p. 142 "This 
linear form is restricted to the equicontinuous subsets of E\ which are weakly 
continuous" is offered as a translation of "Cette forme linéaire a ses restric
tions aux parties équicontinues de (E;)' faiblement continues." It makes a 
difference whether a cone contains 0 or has 0 as its vertex (p. 188). On p. 222 
"pas tout à fait" is translated as "not at all". It would be easy but futile to go 
on with these examples. Words and even sentences are missing: on p. 81, in 
the statement of Proposition 25, instead of "A a subset of Fn\ it should say 
"v4 a subset of E, B a subset of F" ' ; on p. 110 the words "is bounded" must 
be added to the penultimate sentence of the exercise; on p. 130 for "coordi
nates i E CJ" read "coordinates with indices / E C / " ; on p. 135 a remark 
and three exercises were simply omitted; on p. 240, line 5 after dT/dz; = 0 the 
words "for every /, hence by a classical theorem of Schwartz, it is defined" are 
missing. The cross references have not been checked; there is, for instance, no 
Exercise 3 in Chapter 2, §3 (p. 114). 

There is no terminological index which is the more bothersome as some 
concepts are mentioned before they are formally defined. Thus quasi-complete 
spaces appear on p. 96 and are defined on p. 104; (§) spaces are never defined, 
but their definition is "recalled" on 154. There is, of course, no bibliography. 

Obviously the interspersed remarks made in this review represent only a 
small and subjective cross-section of the progress of the theory of locally 
convex spaces since 1954, many important topics have not been mentioned. 
Similarly, the list below contains only a tiny portion of the publications on the 
subject. 
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Partial differential equations, by E. T. Copson, Cambridge University Press, 
Cambridge (England), London, New York, Melbourne, 1975, vii + 280 pp. 

Many basic laws of nature can be formulated as systems of differential 
equations, ordinary or partial. Predictions of physical phenomena then present 
themselves as boundary problems for such systems. Many of them are 
formidable mathematical challenges not yet mastered. Those which have been 
solved have required the entire arsenal of analysis, power series, separation of 
variables, successive approximations, Fourier analysis, functional analysis and 
distributions. On the other hand, most of these tools were created to solve 
problems in physics. The classical linear partial differential equations are 
Laplace's equation of potential theory, the wave equation of the theory of 
wave propagation, and the heat equation of the theory of heat conduction. 
The diversity of the physics involved explains the fact that the corresponding 
boundary problems are quite different and also the methods for their solution. 

Riemann's lectures, Partial differential equations and their applications, 
published by Hallendorff in 1882, was the first systematic book in the field. 
Twenty years later came an expanded version by Weber, which after another 
twenty years branched out into the encyclopedic Differential equations of 
physics by Frank and von Mises. At about the same time, Methods of 
mathematical physics by Courant and Hubert, and Webster's Partial differential 
equations of mathematical physics made their appearance. The aim was 
twofold: to give old and new mathematical tools to physicists and to introduce 
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