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Abstract analysis is one of the youngest branches of mathematics, but is now
quite pervasive. However, it was not so many years ago that it was considered rather
strange. The generic attitude of mathematicians before World War II can be briefly
evoked by the following story told by the late Norman Levinson. During Levinson’s
postdoctoral year at Cambridge studying with Hardy, von Neumann came through
and gave a lecture. Hardy (a quintessential classical analyst) remarked afterwards,
“Obviously a very intelligent young man. But was that mathematics?”

Abstract analysis was born in the ’20s from the challenge of quantum mechan-
ics and the response thereto of von Neumann and M. H. Stone. The Stone-von
Neumann theorem (e.g., [1]), which specified the structure of the generic unitary
representation of the Weyl relations, established the equivalence of the Heisenberg
and Schrödinger quantum mechanical formalisms. (It is interesting that the latter
two men seem never to have understood this. The moral may be that rigorous
mathematical physicists should not expect the approbation of the practical ones,
however fundamental their work.) This was the first nontrivial structure theorem
for an infinite-dimensional unitary representation of a noncommutative group and
as such an important prototype for infinite-dimensional Lie group representation
theory. Von Neumann’s writings make it clear that he well understood the impor-
tance of this theory for quantum mechanics, and he strongly encouraged his friend
Wigner to develop the theory in the case of the Poincaré group. Wigner’s paper
doing so [2] later became the most referenced work of the twentieth century1.

Von Neumann himself took on the greater challenge of the mathematics of quan-
tum phenomenology. Together with Stone he established the spectral theorem in
complex Hilbert space and the extension theory of hermitian operators, largely a
culmination of the work begun by Hilbert, whose prescience two decades in using
the term “spectrum” still seems remarkable.

1991 Mathematics Subject Classification. Primary 82Exx.
1A collection of the most referenced works was published years later by Springer. It is inter-

esting, and representative of the relations between mathematics and physics, that Wigner’s paper
was originally submitted to a Springer physics journal. It was rejected, and Wigner was seeking
a physics journal that might take it when von Neumann told him not to worry, he would get it
into the Annals of Mathematics. Wigner was happy to accept his offer. (Verbal information from
Wigner.)
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Soon afterwards, von Neumann proved the double commutor theorem [3], which
at the time was a striking theorem in the noncommutative context and thus specif-
ically in the quantum-mechanical direction. The paper was highly suggestive of
an infinite-dimensional theory comparable to the Wedderburn structure theorem.
In retrospect, it marks the beginning of abstract analysis and led to the classic
series of papers on Rings of operators, perhaps the most original major work in
mathematics in the twentieth century.

There were three principal motivations for the series of papers on “rings”, as
von Neumann called them. The primary one was, to be sure, the challenge of
quantum mechanics. In particular, the divergent character of quantum field the-
ory contrasted oddly with its simple intuitive basis, and von Neumann hoped to
reconcile these contrasting features by a suitable formalism. A second significant
potential application was to the structure of infinite-dimensional representations of
nonabelian groups, which he had already solved in the case of the Heisenberg group.
A third motivation was the generalization of the Wedderburn structure theorems.

Today the divergences in quantum field theory appear as probable consequences
of an oversimple space-time geometry. In the Einstein universe R1 × S3, which
is a no less reasonable model for space-time than Minkowski space and locally
approximates it arbitrarily closely, the divergences are absent in the crucial case
of quantum electrodynamics [4] and in all likelihood in electroweak theory as well.
Extensions and applications of the Poincaré lemma to the infinite-dimensional case
serve to establish relativistically invariant integrals of powers of quantized fields as
selfadjoint operators in Hilbert space [5, 6, 7].

Noncommutative integration theory, in which operators rather than functions
are integrated relative to countably additive measures on projections rather than
sets [8], together with von Neumann’s direct integral (i.e., algebra decomposition)
theory, adequately fulfills the basic abstract needs of group theory, e.g., the estab-
lishment of the Plancherel theorem for locally compact groups [9]. The Wedderburn
structure theory has been extended to arbitrary “type I” rings, i.e., the type that
most commonly occurs in practice. The other types are scarcely less refractory
than they appeared after the completion of their global theory several decades ago.
The local theory dependent on the classification of the central simple rings, or “fac-
tors”, has been investigated with much ingenuity and energy, but a full classification
remains elusive and appears hardly more realizable than a full classification for in-
finite discrete groups, nor is there any apparent great need for such a classification
in other parts of mathematical science.

Thus, von Neumann’s basic program has in substantial part effectively been re-
alized. But noncommutative operator algebra is a natural framework for a range of
secondary applications, from quantum theory to topology, algebra, and differential
geometry. There is little doubt that the author of this handsome, nicely printed
book on these applications may be unsurpassed among abstract analysts of his
generation. The subject of “noncommutative geometry” has its origin in the von
Neumann program for rings of operators together with the representation theory
for Banach algebras of Stone, Gelfand, and others. The latter work provided a
geometric interpretation for commutative algebras in the form of a maximal ideal
or similar space. This pre-war work was quickly followed by the noncommutative
extension due to Gelfand and Neumark that brought the Banach algebra theory in
close relation to Hilbert space. From a quantum mechanical standpoint, the thrust
of these works was that “space-time” was more logically not a primary concept but
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one derived from the algebra of “observables” (or operators). In its simplest form,
the idea was space-time might be, at a deeper level, the spectrum of an appropriate
commutative subalgebra that is invariant under the fundamental symmetry group
(e.g., [11]).

The algebras investigated by Murray and von Neumann (henceforth, MvN) and
those investigated by the Gelfand school were formally similar and in fact essen-
tially identical in the finite-dimensional case. But they differ in topology in the
infinite-dimensional case, which at first glance may appear as an essentially techni-
cal distinction, but is in fact one that rather fundamentally changes the character
of the theory. The algebras of MvN were closed in the weak operator topology,
while those of Gelfand were closed in the uniform (operator bound norm) topology.
Both are closed under operator adjunction, thus are “*-algebras”, hence are appro-
priately called W ∗- and C∗-algebras. The name “von Neumann algebra” was later
proposed by Dixmier for a W ∗-algebra.

The discovery by Gelfand and Neumark in 1943 of an intrinsic purely algebraic
characterization for C∗-algebra was a watershed in the theory operator of *-algebras
and has strongly influenced operator-algebraic research. (Von Neumann told me
that he was really surprised by it.) In particular, it provides a ready-made noncom-
mutative generalization of the notion of topological space, expecially those that are
locally compact. The point is that a locally compact space is essentially equivalent
to the algebra of continuous functions thereon, as shown finally by Gelfand and
Kolmogoroff, completing a line of investigation by Banach and Stone. This algebra
of continuous functions is essentially just a generic commutative C∗-algebra. Thus
the noncommutative C∗-algebras can reasonably be considered to define a kind of
noncommutative “space”. Starting from this connection, topological invariants of
a space can be reformulated in terms of an algebra of functions thereon and then
extended to general C∗-algebras.

At the same time, C∗-algebras were seen to provide a natural framework for
quantum phenomenology: the relations of observables, states, spectra, and the
general role of group invariance. The attainment of such a framework had been
one of von Neumann’s central objectives, and in the late ’30s he wrote an influen-
tial if ultimately inconclusive paper in this direction that was essentially based on
the W ∗-algebra point of view. The hunch that he indicated to me was that the
physicists were “in the wrong ring”, i.e., W ∗-algebra. (He was particularly fond
of the “approximately finite” factor of type II1, which in fact plays a basic role in
the representation of fermion fields.) The Gelfand-Neumark theory provided the
missing link to a simple and comprehensive mathematical formulation of quantum
phenomenology. In the mid and later ’40s, when I undertook to merge the von
Neumann and Gelfand outlooks and set up the modern notions of state and ob-
servable, this work was thought quite eccentric by many (e.g., [12]). But today it
seems hardly more controversial than euclidean geometry.

With a bit more structure, one is led to extend quantum theory from its original
Minkowski space-time context to general space-times and to correlate topological
invariants with quantum-theoretic concepts, such as Heisenberg canonical systems.
Many differential geometric concepts also extend in a natural way to the noncom-
mutative context, e.g., that of differential form. A corresponding noncommutative,
or “quantum” notion, arises naturally from the isomorphism between functions
and operators that underlies commutative spectral theory. If f is a function on
a measure space M , it determines a normal operator Mf on the Hilbert space
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H = L2(M), consisting of multiplication by f , acting on the domain of functions g
in H such that fg is also in H. Conversely any normal operator in Hilbert space (or
set of commuting normal operators) is unitarily equivalent to such a multiplication
operator (or set of such). In addition, the map f → Mf is evidently an alge-
braic *-isomorphism, which is essentially applicable to unbounded (“measurable”)
as well as bounded operators. Thus again there is a natural basis for replacement
of functions on spaces by operators.

To give a simple example, if f is a function in euclidean space, its differential
df =

∑
j(∂jf)dxj (where ∂j = ∂/∂xj) is equivalent to the “differential” of the

corresponding multiplication operator, “dMf” =
∑
j [∂j ,Mf ]dxj . This observation

leads to the formulation of the differential dA of an operator A on a given space as
the linear map X → [X,A] from vector fields to operators. A “quantized” 1-form
is correspondingly essentially a suitable linear map from vector fields to operators.
With suitable restrictions, d extends, along with notions of closure and exactness,
to forms of arbitrary degree. Thus quantized forms appear as natural within a
purely mathematical framework, but they involve more than the “generalized ab-
stract nonsense” that they may seem to represent. They arose from quantum field
theoretic considerations and form an essential ingredient, in the infinite-dimensional
case, in a systematic treatment of the “products” of quantized fields, which are at
best operator-valued distributions (e.g., [5, 6, 7]).

As indicated above, the difference between C∗- and W ∗-algebras is quite func-
tional and not merely technical. Because of the intrinsic algebraic characterization
of C∗-algebras, the natural notion of equivalence is that of *-isomorphism. Uni-
tary equivalence of course implies algebraic isomorphism, but the corresponding
invariants are too complicated to be very useful. Even under the *-isomorphism
equivalence relation, the invariants are not that simple. There are just as many
equivalence classes of commutative C∗-algebras as there are locally compact spaces,
and the equivalence classes of noncommutative C∗-algebras are vastly more exten-
sive.

In the case of W ∗-algebras, unitary (or “spatial”) equivalence is the natural
notion, and classification is facilitated by the fact that algebraic isomorphism in
conjunction with a suitable lack of nontrivial multiplicity suffices to imply unitary
equivalence. The simplest case is that of maximal abelian self-adjoint algebras
of bounded operators on Hilbert space, for which *-algebraic isomorphism implies
unitary equivalence. But in general the theory of W ∗-algebras has to do with
invariant subspaces and the corresponding reduction of the algebra.

In the case ofW ∗-algebras of “type I” in the MvN scheme, there is a quite explicit
structure theorem [10] that classifies these algebras, within unitary equivalence.
The type I algebras include most of the algebras that “really come up” in concrete
analytic practice, but a highly notable exception is that of the Clifford algebra over
a Hilbert space. This is the simplest of the type II W ∗-algebras, and its discovery
in the early ’30s by von Neumann (in a different form [13]) made it strikingly clear
that there were qualitatively new phenomena in infinite-dimensional W ∗-algebras.
In particular, the Clifford algebra is a central simple algebra that is altogether
different from the algebra of all bounded operators on Hilbert space. At the same
time, this algebra plays a fundamental role in the analysis of free fermionic quantum
fields. In terms of a commonly used notation, it is the algebra generated by the
canonical fermionic Q’s, and so the analog of the abelian algebra generated by the
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bosonic canonical Q’s. The Clifford algebra is the simplest of the factors that are
direct limits of matrix algebras, and as yet only such relatively accessible factor
families have been fully classified.
C∗- and W ∗-algebras have in common that both support notions of integration.

A state E of a C∗-algebra is a positive linear functional, which in the commutative
case is equivalent to a measure on the spectrum (or maximal ideal space) of the
algebra. In the noncommutative case it is in general not central, i.e., E(AB) and
E(BA) are generically unequal. This limits the breadth of C∗-algebraic integration
theory, but the plenitude of states makes their limited theory quite useful neverthe-
less. For example, positive definite functions on groups determine states and can
effectively be treated in terms of them. There are generalizations of the Radon-
Nikodym and other basic theorems in measure theory to the C∗-algebra context,
beginning with [12, 14].

A “weight” on a W ∗-algebra A is a countably additive and nonnegative function
on projections that is unitarily invariant and thus similarly generalizes the notion of
measure applicable to the abelian case. All the basic theorems and ideas of Lebesgue
integration theory extend to the noncommutative case, and “measurable” operators
can be added and multiplied with abandon, quite like measurable functions and
unlike unbounded operators in general. A typical application is the Plancherel
theory for general locally compact unimodular groups. When A has a trivial center,
i.e., is a “factor”, there is an essentially unique weight, which is the dimension
function of MvN.

This is the foundation on which Noncommutative geometry rests. The “geom-
etry” part of the title is a bit programmatic; a more descriptive title might be
Topics in operator algebra and its applications. The approach is subjective and
informal, although technically highly sophisticated. The author runs through the
main features of his own and related works of the past three decades with mini-
mal attention (or references) to earlier, including some ideationally basic, works.
The result appears as a brilliant and sustained tour de force that will fascinate
sufficiently knowledgeable devotees of the author’s main lines of investigation but
may baffle nonspecialists. This would be a pity, for the book goes into relations
between diverse aspects of its subject that are otherwise not well represented in the
literature, especially those in a topological or homological algebraic direction.

Each of the six chapters has its own theme, representing a major interest of
the author: I, “Noncommutative spaces and measure theory”; II, “Topology and
K-theory”; III, “Cyclic cohomology and differential geometry”; IV, “Quantized cal-
culus”; V. “Operator algebras”; VI, “The metric aspect of noncommutative geome-
try”. All chapters involve *-algebras to a greater or lesser extent but are otherwise
only somewhat loosely connected. An introduction provides a prospectus for each
chapter. Among the favorite themes that recur are (i) foliations, (ii) cohomology,
(iii) K-theory, (iv) the classification of factors, and (v) interpretations of aspects
of mathematical physics.

Presently the most novel of these is perhaps the last. It represents an interesting
and courageous attempt to bring the author’s considerable expertise and flexibility
to bear on a variety of topics in physics that he sees as related to operator algebra.
These include the KMS (Kubo-Martin-Schwinger) states, whose theory he appar-
ently considers fundamental for statistical mechanics. Unfortunately, there is no
apparent empirical basis for this, and at this late date the theory appears as an
abstraction from a physical initiative that has not been especially fruitful.
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A more lively physical topic is the (two-dimensional) quantum Hall effect, which
manifests itself by the integrality (or rationality) of certain observed quantities. A
variety of mathematical hypotheses have been advanced in the mathematical phys-
ical literature to explain these observations. The book presents a mathematically
striking but intricate theory due to Bellisard that deals with the integrality cases.
This is based on the “noncommutative torus”, an application of cyclic cohomology.

The most remarkable initiative in the physical direction is an interpretation of
the unification of the electromagnetic and weak interactions. The “standard model”
due to Glashow, Weinberg, and Salam has been empirically quite successful, mod-
ulo suitable renormalization prescriptions and extensive radiative corrections. As
the author emphasizes, this model is basically phenomenological and is hardly ac-
ceptable as an ultimate theory. The book presents a sophisticated mathematical re-
formulation of the standard model, which it is hoped has the potential to go beyond
it. It is exemplary for the author to apply his advanced mathematical expertise to
theoretical physics; higher mathematics has become all too introverted and needs
the challenge of external connections. However, the interpretation given is basi-
cally descriptive rather than explanatory. No resolution for the long-standing basic
question of why the electromagnetic interaction is invariant under space inversion
while the weak interactions are maximally noninvariant is proposed. More broadly,
the efforts toward issues in mathematical physics seem to ignore some rather basic
physical principles—causality, stability (effectively, positivity of the energy), etc.—
in favor of a quick technological fix. This appears to represent a kind of naiveté
that contrasts oddly with the very high level of mathematical knowledgeability.

Mathematically the most novel chapter of the book is that dealing with cyclic
cohomology, which essentially subsumes the quantized forms earlier described but
is much more general. It is, however, far from being a systematic exposition of
the subject, nor is it intended as such. It is rather an essay on various ramifica-
tions, applications to foliations, topology, and the like. It appears technically quite
ingenious but perhaps a bit short on independently interesting external issues.

The otherwise most authoritative chapter is that on W ∗-algebras, which mainly
treats the classification of factors. The early idea of MvN was that the structure
of general W ∗-algebras might be reducible to that of factors via the decomposition
of the algebra with respect to its center. The reduction theory of von Neumann
provided a decomposition of any given W ∗-algebra (on a separable space) relative
to any given Boolean algebra of invariant subspaces. This implies in particular that
any W ∗-algebra is a “direct integral” of factors. In a formal way, this “local” theory
reduces the problem to the case of factors, but the “global” theory is more powerful
and illuminating in practice and less fraught with measurability difficulties. Thus,
in harmonic analysis over noncompact simple Lie groups the only factor involved
is that of all bounded linear operators on a separable Hilbert space, as follows
from early work of Harish-Chandra, but this is a long way from establishing the
Plancherel theory for such groups.

The book effectively conveys the flavor and spirit of Connes’s theory and should
be quite stimulating and useful for those doing research in the area. On the other
hand, its technical emphasis and the short shrift given to the ideational aspects and
historical origins may be offputting to nonspecialists. It would probably be quite
difficult to use the book as a reference or source of precise information, somewhat
more so because of the lack of page numbers in the index. It is more in the nature
of a long discourse or letter to friends. Indeed, its informal style approximates
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the opposite of the crisp definition-theorem-proof style that one might expect from
Connes, and this may be a bit frustrating to those who are not already on top of
the material. There is, however, a lengthy bibliography and a brief summary of
notation.

As an effervescent and yet sustained account of a wide range of advanced and
refined aspects of abstract analysis, this book appears quite valuable and is certainly
unique.
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