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Abstract. Computational models offer an excellent tool for the study and 
analysis of scientific discovery processes. The study of failures provides an 
insight into the history and philosophy of science as valuable as the study of 
successful discoveries. Using a computational model I analyzed Kepler’s 
approach in formulating a quantitative law for refraction. Although Kepler 
ultimately failed in discovering the sine law, the model shows that his basic 
hypothesis as well as his approach by geometrical reasoning was a correct 
one. This went largely unnoticed by commentators on the history of optics. 
Based on this analysis I provide new evidence that Descartes and Snell found 
in Kepler’s main hypothesis everything needed to deduce the sine law by pure 
geometrical reasoning. Our computational model is based on geometrical 
knowledge as contrasted with previous quantitative approaches. It has been 
implemented as a Prolog program. 

1. Introduction 

Recent studies on discovery, in the history and philosophy of science, show a 
shift of focus from the product (the discovery) to the process. Instead of asking 
“Who was the first to discover the sine law of refraction?” and “How did he come to 
the idea?”, philosophy of science becomes more interested in the necessary 
conditions for, and the process of scientific discovery. One tends to move away from 
the romantic idea, popular in the nineteenth century and the beginning of the 
twentieth century, of the isolated bright mind individually bringing about giant steps 
in the progress of science. The scientific practice of a community of scientists, often 
with opposing and conflicting views and interpretations of basic concepts, becomes 
the new object of study. Within this new view on scientific discovery, failures as 
well as successes of scientific practice need to be studied. Given a common context 
of scientific knowledge, the failure to discover something by one scientist may learn 
us as much as the success of another. In this study we have attempted to model the 
historic process and ultimate failure of Johannes Kepler in formulating a quantitative 
law for the relation between the angles of incidence and refraction of light rays in 
different media. We have formalized Kepler’s approach of generating and testing 
hypotheses and implemented his method in a computational model. Using this 
model we have been able to infer two important results: 1) Despite his failure, 
Kepler’s approach was a correct one. It did generate promising hypotheses which 
could have led to the discovery of the sine law. 2) The model provides strong 



arguments for the claim that Kepler’s method was Snell’s as well as Descartes’s 
path to discovery. 

In this paper we cannot go into the history of optics1, but will give a detailed 
account of Kepler’s study of refraction based on his Ad Vitellionem paralipomena of 
1604. Thanks to his diligent reporting style Kepler’s writings are grateful objects of 
study and allow us to reconstruct his path of reasoning in detail. We will first sketch 
the historical context and then critically review a previous model of the discovery of 
the sine law of refraction. Our model of Kepler’s discovery process is based on his 
central hypothesis that the optical densities of two media are proportional to some 
ratio of line segments in a geometrical representation of refraction. We will show 
how a computational model is able to derive the correct ratio from this central 
hypothesis, corresponding to the sine law. 

2. Historical context 

The discovery of the sine law is only a small fragment of a theory on refraction. 
The fact that the sine law was discovered independently by Thomas Harriot (around 
1600), René Descartes (around 1620), Willebrord Snell (between 1621 and 1625) 
and Pierre de Fermat (1662) in a period of a few decades is significant.2 It shows 
that the context of optical knowledge in natural philosophy at the beginning of the 
seventeenth century was the right one. Therefore, in order to understand Kepler’s 
endeavours it is important to briefly sketch the historical context in which he 
operated. He could rely on a vast body of knowledge on optics which was founded 
centuries before, by Euclid (Optics, ca. 300 B.C.) and Hero of Alexandria 
(Catoptrics, ca. 60 A.D.). Euclid established the rectilinear propagation of the visual 
ray which was a prerequisite for the geometrical treatment of vision.3 Visual rays 
reflect and refract in a single plane, which allows us to apply the laws of plane 
geometry. Refraction was considered to be caused by a change of media traveled 
through by the visual ray.  Ptolemy (Optics, ca. 150 A.D.) conducted careful 
experiments to measure and quantify refraction between air and water, air and glass, 
and glass and water. He observed that, when traveling from a rare to a denser 
medium, rays are refracted towards the normal. Using his measurements he could 
predict the angle of refraction for a given angle of incidence within given media. 
Despite Ptolemy’s sophisticated analysis of refraction and geometrical treatment of 
image location on plane and spherical surfaces, he did not come at a physical 
                                                            
1 Lindberg, 1976, is the most authorative study on the development of optics since the Arabs. 

Sabra, 1981, is a trustworthy source for seventeenth century optics. For a short overview 
specific to the sine law see Heeffer, 2003. 

2 The dating of Descartes’s dicovery is based on his fundamentum inventi mirabilis 
(fundamental principles of a wonderful discovery) reported in the Olympica, part of his 
little notebook which only survives in a translation by Adrien Ballet of 1691. This early 
dating is controversial and is rejected by A. Mark Smith (1987) and William Shea (1991). 
However, Gaukroger (1995) defends the thesis that Descartes is refering to the sine law in 
the Olympica. Other writing of Descartes around this period show evidence of his study of 
Kepler’s Ad Vitellionem paralipomena. Our model provides further support for a dating as 
early as 1620. 

3 For the Greeks, light emanating from the eye strikes the external objects that we observe. 
They therefore speak of visual rays instead of light rays. This extramission theory was 
replaced by intromission after Alhazen. 



explanation of why light rays change their direction upon entering a medium with a 
different optical density. In the ten centuries following Ptolemy the most important 
contribution to the answer of this question came from the Arab scholar Abū Alī Al-
Hasan Ibn Al-Hasan Ibn al-Haytham, more commonly referred to as Alhazan. 
Alhazan’s Optics or Kitāb al-manāzir in Arabic had a profound influence in 
medieval Europe and on seventeenth-century natural philosophers. Alhazen was the 
first to decompose reflected and refracted light rays into normal (vertical) and 
tangential (horizontal) components, which was an important step in geometrical 
optics. Alhazen’s theory of light explains refraction in terms of resistance and speed 
that depend on the resisting media. Light rays that enter the second medium, 
perpendicular to the surface, are not refracted and the perpendicular is therefore the 
path of the least resistance. Light rays passing obliquely from a rare to a dense 
medium are, because of this reason, refracted towards the normal. By the end of the 
sixteenth century it had become clear that what was to be found, was a quantitative 
law describing some proportionality between the angles of incidence and refraction 
as a constant ratio. 

Kepler’s interest in optics was aroused by the solar eclipse of 10 July 1600. He 
studied the works of Alhazen, Witelo and Pecham and conducted many experiments. 
His Ad Vitellionem paralipomena, published in 1604, was a status questiones of all 
current knowledge on human vision and optics correcting many of the anomalies 
and mistakes he had found with the perspectivists. He spent considerable efforts in 
finding a qualitative law for refraction because of its importance in providing an 
exact measure of atmospheric refraction. The major contribution of his book is the 
retinal image paradigm based on the analogy with the camera obscura and his 
analysis of threefold refraction of light in the eye. In 1611, the Dioptrice was 
published, in which his knowledge of optics is applied to the design and usage of 
lenses. In both works Kepler gave a quantitative relation between the angles of 
incidence and refraction, which is nearly correct for rays near the perpendicular, but 
fails for wider angles. 

3. The failure of quantitative models of scientific discovery 

The only previous attempt at a computational model for the discovery of the sine 
law, I know of, is from the BACON team from Carnegie Mellon University.4 
BACON is to be situated within a research programme on the modelling of human 
problem solving, originating from the 1950s. Herbert Simon and Alan Newell take 
merit for the important demystification of the romantic conception of discovery and 
a revival of interest in scientific discovery. Their working hypothesis is that 
scientific discovery is not a specific activity in itself but a special case of problem 
solving. Thomas Nickles calls their approach “the neo-enlightment counterpart of 
universal Reason, a faculty that could in principle solve any (solvable) problem in 
any domain”.5 The strength of reducing discovery to problem solving is also its 
weakness. On the one hand it allows us to use the instruments of cognitive science 
and artificial intelligence, mostly state-space search, and provide models for some 
                                                            
4 The best summary of the methods and results of BACON is in Langley, Simon, Bradshaw 

and Zytkow, 1987. The “discovery” of the sine law by BACON.4, is treated  on pp. 141-
145 and of BACON.5 on pp. 174-178. 

5 Nickles, 1994, p. 283. 



simple quantitative laws. On the other hand, reducing scientific discovery to 
heuristic search is for most of the interesting cases an excessive over-simplification. 
An illustration of such simplification is their model for the discovery of the sine law. 
BACON.4 is provided with a table of 9 data lines which contains the sines of angles 
of incidence and refraction for three angles and combinations with three media. The 
program “discovers” that the ratio between the two sines is invariant for a given 
combination of media. In the case of BACON.5 the program is not given the sines 
but the projection of the ray to the normal, which is essentially the same. The 
problem with putting the notion of a quantitative invariance on par with scientific 
discovery is of course, that the data provided to BACON is giving away the 
discovery! Once you are looking for invariance in the ratio of sines, you have found 
the sine law. The real discovery is the hypothesis that ratio of optical densities 
corresponds to some geometrical proportion. The authors claim that the sine law is 
one of the “three instances where, in the actual history of the matter, the data – 
essentially the same data that were available to BACON – were interpreted 
erroneously before the “correct” law was discovered”.6 This is actually not the case. 
The data available to Kepler, Witelo and the mediaeval perspectivists writing on 
refraction were the tables of Ptolemy’s Optics.7 Ptolemy devised a bronze graduated 
disc constructed to measure refraction. A rotatable part, called dioptron, could be 
adjusted in steps of 10 degrees and the angle of the refracted ray could directly be 
measured by reading the marks in the quadrant. In this way Ptolemy compiled 
highly accurate tables with angles of incidence and measured angles of refraction for 
different combinations of media. The data that was used by Kepler and other 
philosophers of nature, should have been the input of BACON. It is easy to predict 
the result of the quantitative approach used by BACON. A polynomial curve fit 
using Mathematica on Ptolemy’s data reveals the suspiciously nice quadratic 
relations between angles of incidence (i) and angles of refraction (r): r = (33 – i2) / 4 
for air/water, r = (29 – i2) / 4 for air/glass and r = (39 – i2) / 4 for water/glass. In 
tradition with astronomical tables, which did not reflect real observational data but 
which were generated by geometrical models, the refraction tables use constantly 
diminishing increments, which leads to this remarkable quadratic relation.8 This 
formula would be the quantitative law that BACON would produce and not the sine 
law. The authors of BACON conclude their work with the words: “We would like to 
imagine that the great discoverers, the scientists whose behaviour we are trying to 
understand, would be pleased with this interpretation of their activity..”9 I seriously 
doubt Kepler or Descartes would have been pleased with this unfair representation 
of their enquiries. A reconstruction of scientific discoveries is not possible without a 
serious study of the context and the history of scientific practice leading to the 
discovery. Such a study reveals the degree to which the discovery of the sine law is 
the result of a process that took several centuries. Let us look in some detail how 
Kepler conducted his experiments. 
                                                            
6 Langley, Simon, Bradshaw and Zytkow, 1987, p. 224. 
7 Lejeune, 1956. 
8 Gilberto Govi, who published a Latin edition of Ptolemy’s Optics, was the first to point out 

this relation: r = ai – bi2 (Govi, 1885, pp XXII). A. Mark Smith, 1996, gives the relation r = 
R-(n2d2-nd2)/2. Lejeune, 1956 warns that the figures may have been „adjusted“ by previous 
translators “Il n’est pas absolument exclu que les tables aient été régularisées par un 
interpolateur grec our arabe”, but Otto Neugebauer , 1957 gives the explanation of a 
constantly diminishing increments, typical for Babylonian astronomy. 

9 Langley, Simon, Bradshaw and Zytkow, 1987, p. 340. 



4. Hypotheses formation by Kepler 

Our analysis of Kepler’s experiments is based on the fourth chapter of the 
Paralipomena. Crucial for his attempt at a quantitative law is one carefully designed 
drawing.10  

 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The drawing is both a representation of empirical data as well as an ingenious 

analysis of refraction. Line CB represents the surface of a refracting medium 
(water). The three lines originating in point A are incidence rays. The lines 
originating in R represent the measured angles of refraction corresponding with the 
angles of the lines originating from A. The fact that the refraction lines all meet in 
point R is very unusual. A representation like this is the main step in discovering the 
sine law. Line ED is the bottom of the vessel with water. Line KL is a construction 
based on the crossing point of the perpendicular lines HN, IM and DL with the 
refracted rays. The perpendicular was also called cathetus and was used by the 

                                                            
10 Figure 42 in Frish ,1859.  Donahue, 2000 p. 101.  
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perspectivists for locating the reflected or refracted image.11 This clever 
representation allows to reason about refraction using geometrical knowledge about 
rectangular triangles. Given this drawing, Kepler now formulates a central 
hypothesis: 

 
„Since density is obviously a cause of refraction, and refraction itself 
appears to be a kind of compression of light (i.e., towards the 
perpendicular), it comes to mind to ask whether the ratio of the 
media in the case of densities is the same as the ratio of the bottom 
of the spaces that light has entered into and strikes, first in an empty 
vessel, and then one filled with water.”12 

 
He then investigates several ratios between line segments in the drawing, which I 

have summarized in the table, included with the figure. His formulation only refers 
to H01, the ratio between EQ and EH, but then extends the hypothesis to other ratios 
(numbered H02 to H11). His belief is that one of these ratios corresponds to the 
“ratio of the media in the case of the densities”, which we would now call the 
refraction index. After some pages of discussion he dismissed all eleven hypotheses 
as “refuted by experience, not to mention other procedures of enquiry”.  

The central hypothesis 

Our model is based on Kepler’s general hypothesis. In fact, the hypothesis he 
uses is more general than in the quotation above, because more ratios are 
investigated than those on the bottom of the vessel. A fair reformulation of Kepler’s 
central hypothesis would be the following: 

 
“The ratio of the optical densities of two media is proportional to 
some ratio of two line segments in the geometrical representation of 
a light ray traversing the two media, the first line segment related to 
the angle of incidence, the second to the angle of refraction.” 

 
Implementing this central hypothesis in our computational model, the latter 

generates all of Kepler’s hypotheses H01 to H11, as well as many more. We notice 
from the table that, with exception of H08 and H11, in all ratios the two line 
segments have one point in common. If we add the restriction in the starting 
hypothesis, that the line segments used in the ratios, should start in the same point, 

                                                            
11 The cathetus rule for locating images is discussed in Dupré 2002, 125-141. Dupré writes: 

“this path of discovery [of the sine law] was not open to Kepler, because he rejected the 
cathetus rule as a way of finding the image. Eventually, Kepler considered the search for a 
law of refraction from the determination of the location of images by the cathetus rule to be 
in vain” (p. 134). Our model precisely shows that Kepler’s original hypothesis could have 
led to the sine law. 

12 Kepler 1604, Ch. 4, § 2, Frish, 1859 Bd II, p. 182: “Cum ergo densitas plane sit in causa 
refractionum, et refractio ipsa compressio quaedam videtur lucis, utpote ad 
perpendicularem, subiit animum inquirere, an quae proportio mediorum causa densitatis 
eadem sit proportio fundi spatiorum, quae lux primum in vacuum vas, dein aqua superfusa, 
introgressa feriat.” Translation by Donahue 2000, p. 102. 



the model generates only nine (linear) instances. These ratios cover all of Kepler’s 
except the special case H07.  

The next step is to either prove or disprove the generated hypotheses. Kepler’s 
approach is to eliminate hypotheses by deduction or observation. Most hypotheses 
can be refuted deductively, by simple geometrical reasoning. For example, H11 
states that the ratio CK/FX remains the same for varying angles of incidence. This is 
evidently not the case. As the angle of incidence increases, the length of FX will 
increase while CK remains the same. Therefore the ratio CK/FX decreases and 
hypothesis H11 is refuted. The tragedy of this case study is that Kepler succeeded in 
formulating both a suitable representation of the problem and the correct hypothesis 
that some geometrical proportion corresponds to the refraction index. He failed in 
identifying the correct ratio. Both FR/FA and FN/FH correspond to the ratio of 
optical densities of the two media. These ratios can be proved to be constant by 
geometrical reasoning. We can use line segment FC to establish a relation between 
the angles of incidence and refraction as it is the same side of the right-angled 
triangles FRC and FAC. This unfortunate oversight was Kepler’s failure in 
discovering the sine law. Both Snell and Descartes have read the Paralipomena and 
undoubtedly found here their main inspiration for the sine law. Snell’s formulation 
was based on a ratio of cosecants equaling FH/FN.13 Descartes never mentioned his 
sources and took care not to reveal his path of discovery of the sine law. Several 
authors have formulated hypotheses on how Descartes came to his discovery. In an 
early study by Kramer, it was suggested that Descartes hit upon the sine law through 
his study of conic sections, in particular the problem of the anaclastic curve.14 
Others, such as William Shea believe that Descartes used the sine law to solve the 
anaclastic.15 Shea argues that the demonstration of a refractometer, presented by 
Descartes in a letter to his lens cutter Ferrier, as the procedure leading to the sine 
law. Given Kepler’s analysis as sketched above and the fact that Descartes called 
Kepler “my first teacher in optics”16 I consider it most likely that Descartes found in 
Kepler’s drawing and his main hypothesis everything needed to deduce the sine law 
by pure geometrical reasoning as early as 1620.  

5. Computational model 

Our computational model generates hypotheses in the form of candidate ratios 
and tests their invariance by applying trigonometry to the three angles of incidence 
and refraction. The model is implemented as a Prolog program. Our main intention 
is to demonstrate the validity of Kepler’s main hypothesis rather than developing a 
model to perform rigorous geometry theorem proving. We therefore took a 
pragmatic approach and implemented only the functions necessary for the task. Our 
approach can best be compared with the theorem prover for Euclidean plane 
                                                            
13 Volgraff, 1918, p. 21b. 
14 Kramer 1882, p 256-8 and note 39. 
15 Shea 1991: „Once Descartes had found the sine law, the next step was to use it to construct 

lenses that would bring all incoming parallel rays into focus, thereby yealding the 
anaclastic.“ p 157. 

16 Descartes to Mersenne, 31 March 1638 and also in Descartes to Mersenne, 13 mei 1638: 
„..ce qui n’empêche pas que je n’avoue que Kepler a été mon premier maître en optique, et 
qu’il est celui de tous hommes qui en a le plus su par ci-devant.“ Cousin, Bd VII, p 161. 



geometry by Coelho and Cotta (1988, 88-97). Our Prolog program consists of three 
parts.  

5.1 Representation 

The first module contains a representation of Kepler’s figure 42. We have chosen 
not to use coordinates as is done in many geometry theorem provers. The specific 
nature of refraction makes it impossible to place all point on integer coordinates. For 
the purpose of this application, we must be able to define points, line segments and 
triangles and relate them to the three angles of incidence and refraction. Prolog 
predicates are used to describe all points and their relation to one of the three rays. 
Points are named by a letter as in the figure, e.g. point(1,f) represents point F 
on ray 1. Line segments are described by a binary predicate; cn(f,h) designates 
the connection of points F and H by a straight line. The reformulation of Kepler’s 
main hypothesis distinguishes points related to the angle of incidence and angle of 
refraction. This is represented by the predicate rel, thus rel(a,h) means that 
point H is related to incidence point A. Some points in the drawing, such as F are 
related to both incidence and refraction point.  Also the points C, E and K on the 
cathetus are considered to be related to both incidence and refraction. Finally we 
have to define right-angled and similar triangles. The predicate rt(X,Y,Z) 
represents a right-angled triangle with X as the point of the right angle and Y-X as 
the opposite of Z. An example of similar triangles are HFN ~ AFR, represented as 
similar(h,f,n,a,f,r).  We adopted a careful choice of canonical naming to 
avoid combinatorial problems in matching line segments, angles and triangles.  
Without canonical naming, the representation of the fact that HFN and AFR are 
similar, would require 72 clauses to cover all naming variations. The program takes 
care of generating the possible variations at the moment when a fact is retrieved 
from the database during the hypothesis generation or proof. 

5.2 Hypotheses generation 

A second module implements the hypotheses generation. Kepler looked for ratios of 
line segments related to the angle of incidence and angle of refraction. The top-level 
rule of the hypotheses generation in our program is as follows: 
ratio(X, Y1-Y2, Y1-Z2) :-  

 line(X, a, Y1-Y2),  

 line(X, r, Y1-Z2), Y2 \== Z2. 

A candidate ratio for a given angle X, consists of two line segments, originating 
from the same point Y1 and connecting to (different) points related to the angle of 
incidence and angle of refraction. Thus, for angle 1 and for example point H, the 
predicate ratio will generate the candidates HN/HX and HE/HN. The tracing of 
lines of connected points is implemented by the predicate line. In addition to 
Kepler’s hypothesis H09 our computational model also generates the correct ratios 
FH/FN and FA/FR. 



5.3 Hypotheses testing 

A third module tests the nine generated 
hypotheses through geometrical reasoning. A 
hypothesis is considered correct if the 
corresponding ratios can be proved to be 
invariant for the three angles of incidence 
and refraction. It is considered faulty if this 
proof fails. Proving the invariance is based 
on geometrical reasoning, for which we 
have to introduce some knowledge about 
trigonometry. Our program has knowledge 
about the six trigonometric functions, although not all are used. The sine of angle 
YZX of the right-angled triangle XYZ with X as the right angle, is defined as 
sin(X,Y,Z,Y-X,Y-Z). The line segments Y-X and Y-Z represent the opposite 
and the hypotenuse. The sine of the angle at point Y is the ratio between these two 
line segments. The ratios FA/FR can be proved invariant in a direct way. The 
hypothesis FH/FN is found to be correct by proving its equivalence to the previous 
ratio. The direct proof uses the equivalence of the adjacent side FC in the sines of 
the angles AFC and RFC and thus establishes the invariance of FA/FR, GA/GR and 
BA/BR. Once the invariance is proved, the ratio is reformulated in terms of the sines 
of the angles of incidence FAC and refraction FRC (see table 1). 

6. Conclusion 

A computational model proves to be an excellent tool in reconstructing historical 
cases and provides an insight in the methods, successes and failures of scientific 
discovery. A detailed analysis of Kepler’s method of investigation into refraction 
reveals that at some point he formulated the correct hypothesis for finding the sine 
law. This was unnoticed by commentators for centuries. I believe that his approach 
was not overlooked by Descartes and Snell and that Kepler’s Paralipomena was 
their most important source of inspiration in formulating the law.  
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