
Recognition of On-line Handwritten
Mathematical Expressions Using a

Minimum Spanning Tree Construction
and Symbol Dominance

Ernesto Tapia and Raúl Rojas

Freie Universität Berlin, Institut für Informatik
Takustr. 9, D-14195 Berlin, Germany
{tapia, rojas}@inf.fu-berlin.de

Abstract. We present a structural analysis method for the recognition
of on-line handwritten mathematical expressions based on a minimum
spanning tree construction and symbol dominance. The method han-
dles some layout irregularities frequently found in on-line handwritten
formula recognition systems, like symbol overlapping and association of
arguments of sum-like operators. It also handles arguments of opera-
tors with non-standard layouts, as well as tabular arrangements, like
matrices.

1 Introduction

Recognizing mathematical formulae is an important pattern recognition prob-
lem, because mathematical expressions constitute an essential part of the nota-
tion in most scientific disciplines. In off-line recognition, handwritten or printed
formulas are given in the form of images or bit-maps, a static representation of
the data. In on-line recognition, computers with pen devices (graphic tablets,
contact sensitive whiteboards, Tablet PCs) store the data as digital ink, a dy-
namic representation which is in essence a sequence of points with temporal
information.

We follow a two-step approach to recognize on-line handwritten mathematical
expressions [5, 1, 2]. The first step is to divide static or dynamic data into groups
of strokes, which are interpreted as single objects. A list of objects and their
attributes (location, size, etc.) is returned. The only missing attribute for an
object is its identity, which is determined using a classifier. The second step is to
apply some structural analysis technique to obtain a hierarchical structure of the
expression which describes the mathematical relationships among the symbols.

One important problem in structural analysis is the irregular writing of users,
which derives in layout problems affecting the recognition of the expression. This
difficulties can be overcome if the writer works with an editor which allows im-
mediate feedback and has undo-redo and visualization capabilities [7]. A very
different situation occurs when the recognition of mathematical expressions is

and Y.-B.Kwon(Eds.): GREC 2003, LNCS 3088, pp. 329–340, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
J. Lladós

330 E. Tapia and R. Rojas

used as an auxiliary tool embedded in another system [4, 8]. This limits the in-
teraction between the user and the recognition engine: structural analysis has to
be so flexible as possible. Zanibbi et al. [9] propose a system which handles hori-
zontal layout irregularities using a data structure which exploits the left-to-right
reading of mathematical expressions. Matsakis [6] developed a method for stroke
grouping called minimum spanning tree constraint, which bases the structural
analysis on the proximity of symbols. Combining both approaches, we devel-
oped a method, which handles symbol overlapping and argument association for
operators, besides horizontal layout irregularities.

This manuscript describes the structural analysis method we developed and
is organized as follows. Section 2 introduces the concepts we need for the rest of
the text. In Sect. 3 we describe the construction of the minimum spanning tree
based on symbol dominance. Section 4 concludes with some comments about
this work.

2 Structural Analysis of Mathematical Expressions

As mentioned in the previous section, the raw data considered in on-line recogni-
tion are points with time information. A stroke is a sequence of points generated
between pen-down and pen-up events. A symbol is a sequence of strokes con-
structed by applying some grouping heuristic or segmentation algorithm.

To simplify structural analysis of the expression, we consider as the basic
attributes of a symbol s its label and its bounding box. The label is obtained by
means of a classifier and the bounding box is defined by the minimum x and y
coordinates (xs, ys) of all points in the symbol, its height Hs, and weight Ws.

Once raw symbols are endowed with attributes, we collect them in ordered
attributed lists. The order of a symbol in a list is determined by its leftmost x
coordinate, i.e. if the list L is formed by the symbols (s1, . . . , sk), it means that
xsi ≤ xsj for i < j. The attributes of a list L are its label and its bounding box
attributes (xL, yL), HL and WL. The label of a symbol list is obtained during
the structural analysis process by the spatial and geometrical relations between
symbols, as described in Sect. 2.1.

2.1 Symbol Regions and Symbol Attributes

Relations and operator dominance in mathematical notation are defined explic-
itly or implicitly by the position and relative size of symbols in an expression.
The spatial regions top-left, above, superscript, right, subscript, below, below-
left and subexpression are used to determine such relations. For example, the
operands (numerator and denominator) of the horizontal bar (fraction operator)
are expected to lie in the regions above and below of the horizontal bar. See
Fig. 1.

By comparing symbol attributes, we can test whether or not a symbol be-
longs to a determined spatial region. The superscript threshold and the subscript
threshold are numeric attributes used to delimit the regions around symbols. The
centroid is a point attribute used to determinate the symbol’s location.

Recognition of On-line Handwritten Mathematical Expressions 331

Fig. 1. Regions, thresholds and centroids of different symbol types. From left to right:
non-scripted, horizontal bar, square root, scripted, sum-like and the product operator.
The regions marked with an asterisk determine the range of different symbol types

To determine this symbol’s attributes, we classify it as ascendent, descendent
or central, as shown in Table 1. The reason for doing so becomes clear if we
observe the layout differences in the subindex relation of the central symbol
x∗ and the descendent symbol y∗. The attributes for a symbol s are shown
in Table 2. After obtaining symbol attributes we can determine which region
symbols lie in. For example, given the symbols s and a we can define a boolean
function to determine if a lies in the above region of s, as follows:

Table 1. The symbols used in our system

scripted superscripted non-scripted sum-like

ascendent b d ∂ ∆ 0 1 2 3 4 5 6 7 8 9
descendent y
central a c x z) e π

√ + − ∗ / ↑ (∞ ∑ ∫ ∏

Table 2. Attributes for different symbol types

super threshold sub threshold centroid

ascendent ys + 0.8Hs ys + 0.2Hs (x+ 0.5Ws, y + 0.33Hs)
descendent ys + 0.9Hs ys + 0.6Hs (x+ 0.5Ws, y + 0.66Hs)
central ys + 0.8Hs ys + 0.2Hs (x+ 0.5Ws, ys + 0.5Hs)

liesInAboveRegion(s, a)
1. Return getMinX(s) ≤ getCentroidX(a) ≤ getMaxX(s) &&

getSuperThreshold(s) ≤ getCentroidY(a).

For other regions we proceed in a similar way.

2.2 Symbol Dominance

The range of an operator is the expected location of its operands, see Fig. 1.
Chang [3] defines dominance as follows. A symbol s dominates a symbol a, if a
is in the range of s, and s is not in the range of a. We say that symbols dominate
their arguments. Arguments have lower precedence than the dominant symbol.

332 E. Tapia and R. Rojas

We define dominates(s, a) as a boolean relation which depends on the set of
operator classes

T = {−,
√

, scripted, superscripted, non-scripted, sum-like operators},

the spatial regions and symbol attributes of s and a. The symbol ‘−’ represents
the horizontal bar and ‘√ ’ the square root. If dominates(s, a) is true, it means
that s dominates a.

To clarify the concept of dominance, we give some examples. Consider the
sum symbol in Fig. 2(a). It dominates the symbol ‘∞’, because the last is in the
range (superscript region) of the first and we do not expect any symbol lying on
some of the regions of ‘∞’. Analogously, the constant ‘e’ in Fig. 2(b) dominates
the symbols ‘−’ and ‘

∫
’. The horizontal bar lies in the superscript region of

‘e’, but the last does not lie above or below the symbol ‘−’. Observe that ‘e’
lies in the range of the integral, but the dominance in this case is resolved by
comparing their size. Figure 2(c) also shows a case where symbol dominance is
not clear. We cannot determine which one of the fraction lines dominates the
other, because both of them lie in the range of the other and have the same
size. We can avoid the confusion here by taking as the dominant fraction bar the
one with the greater centroid’s y-coordinate. Observe that we added some extra
conditions to the definition of Chang, namely comparison between symbol’s sizes
and attributes, to determine dominance and to resolve ambiguity.

(a) (b) (c)

Fig. 2. Examples of expressions where (a) dominance is determined by the range,
(b) dominance is determined by considering symbol sizes and (c) dominance between
fraction lines is hard to determine

As we can see in this examples, dominance can be established by convention
and can vary from an author to another. Different formulations of dominance
define diverse dialects of mathematical notation.

2.3 Baseline Representation of Expressions

We describe mathematical notation as a hierarchical structure of nested base-
lines [9]. A baseline is a list which represents a horizontal arrangement of sym-
bols in the expression. Each symbol has links to other baselines, which satisfy
the spatial relations mentioned in Sect. 2.2, relative to it. For example, the ex-
pression xij ∗y+ a+b

c is determined by the baselines (x, ∗, y, +, −), (i, j), (a, +, b)

Recognition of On-line Handwritten Mathematical Expressions 333

and (c). The last two baselines satisfy the relations above and below relative to
the horizontal bar, respectively.

This representation exploits the left-to-right reading of mathematical expres-
sions. When reading an expression, one normally searches for the leftmost dom-
inant symbol, then for the next leftmost dominant one and so on, until no more
symbols are found. Given an ordered symbol list L, we can determine the left-
most dominant symbol in L through the function getDominantSymbol, which is
defined as:

getDominantSymbol(L)
1. Let n = length(L).
2. If n == 1 return s1.
3. If sn dominates sn−1, remove sn−1 from L, in other case remove sn.
4. Return getDominantSymbol(L).

Observe that this function uses the order of symbols in L.
In this way, given a list L, we construct its dominant baseline Db through

function:

getDominantBaseline(Db, L)
1. If Db is empty, then set Db = addSymbol(Db, getDominantSymbol(L)).
2. Set s = getLastSymbol(Db).
3. Constructs a list Hs = getRightNeighbors(s, L) of symbols in L which

are right horizontal neighbors of s.
4. If Hs is empty, return.
5. Find the dominant symbol of the horizontal neighbors,

sd = getDominantSymbol(Hs).
6. Set Db = addSymbol(Db, sd).
7. Use recursion: getDominantBaseline(Db, L).

We take special care in the definition of the function getRightNeighbors
(step 3), to handle irregular horizontal layouts.

Now, we are ready to construct the baseline tree of the mathematical expres-
sion described by the ordered symbols list L by finding recursively dominant
baselines. This is done by the function constructBaselineMST:

constructBaselineMST(L)
1. If L is empty, return.
2. Set Db = ∅.
3. getDominantBaseline(Db, L).
4. constructDominanceMST(Db, L)
5. For each symbol s ∈ Db, construct new symbols lists with its children

obtained in the MST step, depending which spatial relations they satisfy
and assign this lists to the corresponding links. The identity of this lists
corresponds to the spatial relation they satisfy.

6. Set L = Db.
7. For each symbol s ∈ Db, use recursion applying constructBaselineMST

to each of the child lists obtained in step 5.

Next section explains how this is done.

334 E. Tapia and R. Rojas

3 A Minimum Spanning Tree Construction and Symbol
Dominance

The minimum spanning tree (MST) constraint method [6], considers the centers
of the stroke bounding boxes as nodes of a completely connected weighted graph.
Although this approach seems to be robust for stroke grouping (based on the
minimization of a sum cost function), it lacks a robust method to carry out
structural analysis. Compare Fig. 3(a) and Fig. 3(d).

Our experiments show that we can avoid many shortcomings in structural
analysis if we use symbol dominance information to construct the MST. This
method is described in the next three sections.

3.1 Weight Calculation Based on Attractor Points

We consider the previously recognized symbols as the nodes of a totally con-
nected weighted graph. Then, we use Prim’s algorithm to construct its MST: a
new edge (st, sn) is added to the MST if its corresponding weight w(st, sn) is
the minimum of all edges, where st belongs to the MST and sn does not be-
long to the MST. The function constructMST(Db, L) constructs the MST of the
symbol list L. This is done by initializing the MST to {(s1, s2), . . . , (sk−1, sk)}
where the symbols si belong to the dominant baseline Db = (s1, . . . , sk). In our
method, the crucial step is the weight calculation of edges, where we use symbol
dominance.

If dominates(st, sn) is true, the weight w(st, sn) is the minimum distance
between attractor points of symbols st and sn. If dominates(st, sn) is false, the
weight corresponds to the distance between the centroids of st and sn. Finally,
if the relation right(st, sn) or right(sn, st) is true, the weight is the minimum
distance among their corresponding black points as shown in the second a of
Fig. 4. Figure 3(b) shows the first recursion step of constructMST without using
dominance analysis.

The attractor points are located in the boundary of the symbol bounding
box. The number of such points depends on the operator class. Figure 4 shows
the attractor points corresponding to the different symbol classes when the first
a and the integral (sum-like operators and square root) are dominated by x
(scripted) and 2 (superscripted), the second a is dominated by + (non-scripted)
and when the third a is dominated by sum-like operators and the horizontal bar.

3.2 Arguments to Special Operators

The range of symbols in the dominant baseline is not limited by the thresh-
old attributes alone but also by “neighbor” operators [9]. Figure 5 shows how
attractor points and symbol dominance help to define dominance regions. To
draw the regions, we proceed as follows. Firstly, we take a pixel from the whole
region and translate the symbol ‘a’, leftmost symbol in the region, such that
its centroid and the pixel coincide. Secondly, we associate each symbol in the

Recognition of On-line Handwritten Mathematical Expressions 335

(a)

(b)

(c)

(d)

Fig. 3. (a) Minimum spanning tree of strokes. MST of the first recursion step of our
method (b) without using dominance analysis and (c) using dominance analysis. (b)
Final tree of spatial relations

baseline (x,−, y,
∑

, z,
∏

) with different grey tones. Finally, the pixel is colored
with the grey tone corresponding to the “nearest” symbol of the baseline, in
terms of the edge weight used in the MST construction. Figure 5(a) shows the

336 E. Tapia and R. Rojas

Fig. 4. Above: Attractor points of symbols not belonging to the MST. Below: Attractor
points of symbols and operators belonging to the MST

regions for each symbol, using the distance between centroids as edge weights.
We can appreciate in Fig. 5(b) that using symbol dominance to delimit regions,
corresponds to the expected range of symbol operators.

Figure 5(d) shows how the range can be extended during MST construction.
In this example, the regions of the symbols z and a are merged in such a way
that the new symbol b lies in their range and ambiguities arising from argument
association with

∏
are overcome. The regions were found as described before,

but in this case we use the symbol b instead of a.
It can be seen why using the MST construction allows more flexibility to

handle irregular layouts. For example, this is the case when we change an ex-
pression by adding some super indexes after entering it. The same applies when
associating arguments to non-standard operators as

∗
∗

∏∗
∗ as shown in Fig. 3.

Our method encounters problems when scripted symbols lie too close to the
arguments of fraction or sum-like operators. The horizontal baselines of dom-
inated symbols are merged incorrectly, when they are written too far away
from operators and the last are written to close to each other. See Fig. 5(c)
and Fig. 6(a) for an example of this. To avoid the problem, we multiply the
corresponding weight by a factor 0 < α < 1 during MST construction, when the
symbol in the dominant baseline is a sum-like operator or a fraction line. See
Fig. 6(b).

3.3 Recognition of Matrices and Tabular Arrangements

The symbol ‘[’ and ‘]’ were taken as reserved symbols to construct matrices. The
range of the symbol ‘[’ is the bounding box which contains it and its correspond-
ing closing square bracket.

After building the MST, we check for each s ∈ Db whether it is an open
square bracket or not. If it is, we proceed to identify row structures in the child

Recognition of On-line Handwritten Mathematical Expressions 337

(a)

(b)

(c)

(d)

Fig. 5. Regions defined (a) using only the centroids, (b) using the attractor points and
symbol dominance without distance factor and (d) with distance factor. (d) Growing
regions in the MST construction

338 E. Tapia and R. Rojas

(a) (b)

Fig. 6. The result of the MST construction (a) without using the α factor in weight
calculation and (b) using the factor

list Ds of symbols dominated by s (found by the countructMST function). To
this purpose, we define the area projection function f as

f(y) =
∑

s∈Ds
ys≤y≤ys+Hs

WsHs, (1)

where yDs ≤ y ≤ yDs + HDs. We use the local maxima of a smoothed version
of f , located at yi, i = 1, . . . , n, to define the attractor points (xDs, yi) of s
(see Fig. 7). The next step is to construct the MST of s and Ds using the
“dynamically” constructed attractor points. Because we want to find rows in
the symbol list, we multiply the x-coordinates of attractor points and centroids
by a factor 0 < β < 1 and we re-calculate the weights of the graph with this
modification. This is a way to contract horizontally the distance between symbols
in Ds and give more weight to the vertical variations of symbol’s positions.
Finally, we assign rows to the corresponding children lists of s, locate spaces in
the rows and apply the method recursively to those lists.

Fig. 7. The area projection function and the MST found in the matrix mode

Recognition of On-line Handwritten Mathematical Expressions 339

4 Comments and Further Work

We presented a method for the structural analysis of on-line handwritten mathe-
matical expressions based on a minimum spanning tree construction and symbol
dominance. Our experiments showed that our method is robust to handle some
layout irregularities. Our method handles non-standard layouts, like

∗
∗

∏∗
∗. This

can be easily extended to recognize expression which contains operators like
nCk, or other operators which similar layouts. We also consider a method for
the recognition of tabular arrangements, which can be easily extended to rec-
ognize stacked arguments of sum-like operators, like the one used in (1). This
two characteristics are not found in other systems for on-line recognition. Fig. 8
shows some examples of expressions recognized by the current system.

√
zuQ√

ωx

θ7ψ+ P
M

(∫ b

a+g
xm

2−x
dx

)3
x2

+
−b± √

cx

p (x) + a3−x

∫ ∫ √
2−u

−∞ e−x2dx

√
6−a

x7

σ2
dx+

ψA

2

√
8
7

β
∑∞
n=0 zαn∑
m=1

xm

1
2

⎡
⎣a

2 b 0
0 −c 1
0 1 0

⎤
⎦

⎡
⎣xy
z

⎤
⎦

Fig. 8. Some expressions recognized by our current system

The recognition of on-line handwritten symbols is done using support vector
machines and neural networks [8]. It is clear that some classification errors can
occur. This could be problematic, for example, when recognizing the operator
‘
∫

’ as ‘5’, because our structure analysis assumes perfect symbol recognition. To
avoid it, we can use an interface similar to the one we developed in [7], which
allows immediate feedback and has undo-redo and visualization capabilities.

Determining heuristic values for α and β as described in the previous section,
requires some experimentation. We have obtained satisfactory results by using
the values α = 1/4 and β = 1/15. We plan to construct a benchmark of on-line
handwritten mathematical expression to determine the optimal values of the

340 E. Tapia and R. Rojas

parameters α and β and the other ones required by our algorithm, as well as to
obtain a numerical estimation of recognition rates.

The motivation of this research is to incorporate formula and gesture recog-
nition capabilities in the electronic chalk board (E-Chalk), a multimedia system
for distance-teaching [4, 8]. At present, E-chalk can convert the stored lectures
into PDF format. One of our objectives is that lectures will be converted also
into some electronic format like LATEX.

Acknowledgments

The authors like to thank the anonymous reviewers for a variety of suggestions
that helped to improve this paper. Ernesto Tapia thanks the Mexican National
Council for Science and Technology (CONACyT) for its financial support during
his Ph.D. studies via the credit-scholarship number 154901.

References

1. D. Blostein and A. Grbavec. Recognition of Mathematical Notation. In P. S. P.
Wang and H. Bunke, editors, Handbook on Optical Character Recognition and Doc-
ument Analysis. World Scientific Publishing Company, 1996.

2. Kam-Fai Chan and Dit-Yan Yeung. Mathematical Expression Recognition: a Survey.
International Journal on Document Analysis and Recognition (IJDAR), 3(1):3–15,
2000.

3. S. Chang. A Method for the Structural Analysis of Two-Dimensional Mathematical
Expressions. Information Sciences, 2:253–272, 1970.

4. G. Friedland, L. Knipping, and R. Rojas. E-Chalk Technical Description. Technical
Report B-02-11, Freie Universität Berlin, Institut für Informatik, 2002.

5. H. J. Lee and J. S. Wang. Design of a Mathematical Expression Undrestanding
System. In Proceedings of the Third International Conference on Document Analysis
and Recognition (ICDAR), pages 1084–1087, 1995.

6. N. Matsakis. Recognition of Handwritten Mathematical Expressions. Master’s
thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1999.

7. E. Tapia. JMathNotes: A Java-Based Editor for On-Line Handwritten Mathematical
Expressions, January 2004. http://www.inf.fu-berlin.de/~tapia/JMathNotes.

8. E. Tapia and R. Rojas. Recognition of On-Line Handwritten Mathematical Formu-
las in the E-Chalk System. In Proceedings of the Seventh International Conference
on Document Analysis and Recognition (ICDAR), August 2003.

9. R. Zanibbi, D. Blostein, and J. Cordy. Recognizing Mathematical Expressions Us-
ing Tree Transformation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(11), November 2002.

	Introduction
	Structural Analysis of Mathematical Expressions
	Symbol Regions and Symbol Attributes
	Symbol Dominance
	Baseline Representation of Expressions

	A Minimum Spanning Tree Construction and Symbol Dominance
	Weight Calculation Based on Attractor Points
	Arguments to Special Operators
	Recognition of Matrices and Tabular Arrangements

	Comments and Further Work

