The Continuum
Hypothesis, Part I

W. Hugh Woodin

Introduction

Arguably the most famous formally unsolvable
problem of mathematics is Hilbert’s first prob-
lem:

Cantor’s Continuum Hypothesis: Suppose that
X < R is an uncountable set. Then there exists a bi-
JectionTr : X — R.

This problem belongs to an ever-increasing list
of problems known to be unsolvable from the
(usual) axioms of set theory.

However, some of these problems have now
been solved. But what does this actually mean?
Could the Continuum Hypothesis be similarly
solved? These questions are the subject of this ar-
ticle, and the discussion will involve ingredients
from many of the current areas of set theoretical
investigation. Most notably, both Large Cardinal
Axioms and Determinacy Axioms play central roles.
For the problem of the Continuum Hypothesis, I
shall focus on one specific approach which has de-
veloped over the last few years. This should not
be misinterpreted as a claim that this is the only
approach or even that it is the best approach. How-
ever, it does illustrate how the various, quite dis-
tinct, lines of investigation in modern set theory
can collectively yield new, potentially fundamen-
tal, insights into questions as basic as that of the
Continuum Hypothesis.

The generally accepted axioms for set theory—
but I would call these the twentieth-century
choice—are the Zermelo-Fraenkel Axioms together
with the Axiom of Choice, ZFC. For a discussion
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of these axioms and related issues, see [Kanamori,
1994].

The independence of a proposition ¢ from the
axioms of set theory is the arithmetic statement:
ZFC does not prove ¢, and ZFC does not prove —¢.

Of course, if ZFC is inconsistent, then ZFC proves
anything, so independence can be established only
by assuming at the very least that ZFC is consis-
tent. Sometimes, as we shall see, even stronger as-
sumptions are necessary.

The first result concerning the Continuum
Hypothesis, CH, was obtained by Godel.

Theorem (Géodel). Assume ZFC is consistent. Then
so is ZFC + CH. O

The modern era of set theory began with Cohen’s
discovery of the method of forcing and his appli-
cation of this new method to show:

Theorem (Cohen). Assume ZFC is consistent. Then
s0 is ZFC + “CH is false”. O

I briefly discuss the methodology for estab-
lishing that a proposition is unsolvable, reviewing
some basic notions from mathematical logic. It is
customary to work within set theory, though ulti-
mately the theorems, fundamentally arithmetic
statements, can be proved in number theory.

L(%, €) denotes the formal language for set the-
ory; this is a countable collection of formulas. The
formulas of £(=, &) with no unquantified occur-
rences of variables are sentences. Both = and & are
simply symbols of this formal language with no
other a priori significance.

From elementary logic one has the notion of a
structure for this language. This is a pair
M= (M,E), where M is a nonempty set and
E < M X M is a binary relation on the set M. If ¢
is a sentence in the language L(5, €), then the
structure ‘M is a model of ¢, written “M = ¢p” if
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the sentence is true when interpreted as an as-
sertion within the structure (M, E), where the sym-
bol € is interpreted by the binary relation E and
= is interpreted by equality on M. Of course, one
could consider structures of the form (M, E, ~),
where ~ is an equivalence relation on M intended
as the interpretation of =, but then one could pass
to the quotient structure (M/ ~,E/ ~). So nothing
is really gained by this attempt at generality.

A theory is a set of sentences, and for a given
theory T, I write “(M,E) = T” to indicate that
(M,E) E ¢ for each sentence ¢ € T.

ZFC denotes a specific (infinite) theory. A model
of ZFC is simply a structure (M, E) such that

(M,E) |= ZFC.

This can be defined quite naturally without re-
course to formal logic. For example, one of the ax-
ioms of ZFC is the Axiom of Extensionality, which
is formally expressible as

VX1 VXx2(x12x2 < Vx3(x3&Ex] < x3EX2))

and which informally is just the assertion that two
sets are equal if they have the same elements.
Thus

(M, E) [ “Axiom of Extensionality”
if and only if for all a € M and for all b € M, if
{ceM|(c,a)e E}={ce M| (c,b) eE},

then a =b.
Therefore (R, <) |= “Axiom of Extensionality”;
but if we define E ¢ N x N by

E = {(n,m) | For some prime p,
pn+1 |m and pn+2 1, m}’

then (N, E) [ “Axiom of Extensionality”.

Continuing by examining the remaining axioms,
one can develop naturally the notion of a model
of ZFC.

One can fairly easily define a model which sat-
isfies all of the axioms of ZFC except for the cru-
cial Axiom of Infinity. For example, let Ey denote
the binary relation on N just specified, and define
an equivalence relation ~¢ by i~qgj if
{k | (k,i) € Eo} = {k | (k,J) € Ep}. Define a binary
relation E; by (i,k) € Ey if (j,k) € Ey for some
j ~o i, and define ~; from E; as ~g was defined
from Ejp. Continue by induction to define increas-
ing sequences (~,: n € N) and (E, : n € N). Let

~w=U{~nl n € N},

and let E« = U{E, | n € N}. The quotient struc-
ture (N/ ~,Ex/ ~o) satisfies all of the axioms
of ZFC except the Axiom of Infinity. The Axiom of
Infinity fails to hold, since for each i € N the set
of equivalence classes {[j]~_ | (j,1) € Ex} is finite,

NOTICES OF THE AMS

for it is equal to the set {[j]~_ | (j,i) € Eo}, which
evidently has cardinality at most i.

Building New Models of ZFC
Is there amodel of ZFC? A consequence of Godel’s
Second Incompleteness Theorem is that one can-
not hope to prove the existence of a model of ZFC
working just from the axioms of ZFC. Nevertheless,
one can still study the problem of building new
(hopefully interesting) models of ZFC from given
models of ZFC.

Godel solved the substructure problem in 1938,
showing that if (M, E) |= ZFC, then there exists
M* c M such that

(M*,En(M* x M*)) |= ZFC + CH.

Over 25 years later Cohen, arguably the Galois
of set theory, solved the extension problem. The
weakest version of Cohen’s extension theorem is
actually formally equivalent to the statement of
Cohen’s theorem given at the beginning of this ar-
ticle. This weak version simply asserts that if
(M, E) |= ZFC, then there exists a structure

(M** E**) |= ZFC + “CH is false”,

such that Mc M** and
E=E**Nn(M x M).

Cohen’s method has turned out to be quite pow-
erful: it and its generalizations are the basic tools
for establishing independence. Moreover, essen-
tially no other effective method for building ex-
tensions of models of ZFC is known.

An important point is that neither Cohen’s
method of extension nor Godel’s method of re-
striction affects the arithmetic statements true in
the structures, so the intuition of a true model of
number theory remains unchallenged.

It seems that most mathematicians do believe
that arithmetic statements are either true or false.
No generalization of Cohen’s method has yet been
discovered to challenge this view. But this is not
to say that such a generalization will never be
found.

The empirical completeness of arithmetic cou-
pled with an obvious failure of completeness for
set theory has led some to speculate that the phe-
nomenon of independence is fundamental, in par-
ticular that the continuum problem is inherently
vague with no solution. It is in this view a ques-
tion that is fundamentally devoid of meaning, anal-
ogous to asking, “What is the color of 17"

Wherein lies the truth? I shall begin by de-
scribing some classical questions of Second Order
Number Theory—this is the theory of the integers
together with all sets of integers—which are also
not solvable from ZFC. Here I maintain there is a
solution: there are axioms for Second Order Num-
ber Theory which provide a theory as canonical as
that of number theory. These relatively new axioms
provide insights to Second Order Number Theory
which transcend those provided by even ZFC.

such that
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Can these axioms be extended to more compli-
cated sets in order to solve the continuum prob-
lem? This question will be the focus of the second
part of this article.

Some Preliminaries

For purposes of this article it is convenient to work
within set theory. This can initially be conceptu-
ally confusing, for we shall work within set theory
attempting to analyze set theory.

So let us assume that the universe of sets ex-
ists and that the axioms represent true assertions
about this universe. We shall initially assume just
the axioms of ZFC. Eventually we shall augment
these axioms by some modest large cardinal ax-
ioms. The discussion to take place simply refers
to objects in this universe.

Definition. A set X is transitive if each element of X
is also a subset of X. The transitive closure of a set
Xisthesetn{Y | Y istransitiveand X c Y}. O

Suppose that (M, E) is amodel of ZFC. Then the
model (M, E) is transitive if M is a transitive set
and

E={(a,b)|lae M,be M, and a € b},

so that € is interpreted by actual set member-
ship. Transitive models of ZFC are particularly
nice, but they are even harder to come by than ar-
bitrary models. The existence of a model of ZFC
does not imply the existence of a transitive model
of ZFC.

The theorems of Cohen and Godel on perturb-
ing models of ZFC are best understood when the
initial structure (M, E) is transitive and M is
countable. In the case that (M, E) is transitive, the
structure (M*,E*) produced by Godel’s con-
struction is again transitive. If (M, E) is transitive
and M is countable, then the structures
(M** E**) produced by Cohen’s method can,
without loss of generality, be assumed to also be
transitive.

The ordinals are those sets X which are transi-
tive and totally ordered by the membership
relation. Thus a transitive set X is an ordinal if and
onlyif foralla € X and forall b € X, if a # b, then
eithera € b orb € a. A consequence of the axioms
is that if (L, <) is a totally ordered set which is well
ordered (every (nonempty) subset of L has a < -least
element), then there is an ordinal X such that
the total orders (L, <) and (X, €) are isomorphic.
Collectively the ordinals are well ordered by the
membership relation, and this ordering is exactly
the ordering arising from the comparison of the
order types of well-orders.

The first three ordinals are &, {@}, {QD, {D}}.
The finite ordinals are the nonnegative integers; w
denotes the least infinite ordinal, and w; denotes
the least uncountable ordinal. Finally, an ordinal
k is a cardinal if there is no bijection of k with «
for any ordinal « < k. The finite ordinals are
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cardinals, as are w and w;. The assertion that a
set X has cardinality X1 is the assertion that there
exists a bijection of X with w. Similarly, X has car-
dinality 2%, or c, if there is a bijection of X with
P(N), powerset of N, which is the set of all subsets
of N.

The ordinals measure height in the universe of
sets. Suppose that M is a transitive set and that
(M, €) = ZFC. Then it follows that the set

{aeM|(M,e) ="“ais an ordinal”}

is precisely the set of all ordinals, « € M. Moreover,
this is an initial segment of the ordinals. Thus the
height of M is precisely the ordinal M n Ord, where
Ord denotes the class of all ordinals.

Definition. Suppose k is an infinite cardinal. H(k)
denotes the set of all sets X whose transitive clo-
sure has cardinality less than k. O

Every set belongs to H(k) for sufficiently large
cardinals k. This in the context of the other axioms
is equivalent to the Axiom of Choice.

The answer to the continuum problem lies in
understanding H(w3?), where w> is the smallest
cardinal greater than w;. This suggests an
incremental approach. One attempts to under-
stand in turn the structures H(w), H(w1), and
then H(w?>). A little more precisely, one seeks to
find the relevant axioms for these structures. Since
the Continuum Hypothesis concerns the structure
of H(w3»), any reasonably complete collection of
axioms for H(w>) will resolve the Continuum
Hypothesis.

The first of these structures, H(w), is a
familiar one in disguise: (N, +, -). In fact, it can
be shown that the structures (H(w), €) and
(N/ ~00,Eco/ ~o) are isomorphic, where the latter
is defined in the discussion immediately preced-
ing the discussion of building new models of ZFC.
Thus number theory is simply set theory in the
presence of the negation of the Axiom of Infinity.

The next structure, H(w1), is also a familiar
one. It is essentially just the structure
(P(N),N, +, -, €), which is the standard structure
for Second Order Number Theory.

Of course, neither (N, +, -) nor (P(N),N, +, -, €)
is a structure for the language £(=, &), but each is
naturally a structure for a specific formal language
which is easily defined.

There are natural questions about H(w1) which
are not solvable from ZFC. However, there are ax-
ioms for H(w;i) which resolve these questions,
providing a theory as canonical as that of number
theory, and which are clearly true. But the truth of
these axioms became evident only after a great deal
of work. For me, a remarkable aspect of this is that
it demonstrates that the discovery of mathemati-
cal truth is not a purely formal endeavor.

The second part of this article will focus on the
attempt to find a generalization of these axioms
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for H(w>). Here is where the answer to the
continuum problem lies, for the Continuum Hy-
pothesis is expressible as a proposition about
H(w?»). The surprising answer is that there are
generalizations but that any generalization which
yields a theory which is strongly canonical in a cer-
tain specific sense must imply that CH is false.
In the course of this discussion I will have to de-
fend the claim that (H(w?), €), rather than
(P(R),R,+, -, €), is the correct immediate gener-
alization of the structure (H(w1), €) (or, equiva-
lently, of (P(N),N,+, -,€)). The structure
(P(R),R,+, -, €), which is naturally given by the
powerset of R, has more traditionally been
viewed as the next stop on the journey into the
transfinite. The method used to analyze the
possibilities for strongly canonical theories for
(H(w?), €) actually shows that there can be no
strongly canonical theory for (P(R),R,+, -, €). If
CH holds, then these two structures, (H(w?), €)
and (P(R), R, +, -, €), are in essence the same (each
can be interpreted in the other), just as are the
structures (H(w1), €) and (P(N),N, +, -,€).If CH
fails, then these two structures can be very dif-
ferent, with the former structure possibly being
fundamentally simpler than the latter structure.

The First Step, H(w)
Consider the following basic operations for sub-
sets of R"; these generate the projective sets from
the closed sets.
(Projection) Suppose X < R™*!. The projec-
tion of X to R" is the image of X under the
projection map,

T R}’Hl - Rn
defined by r(ay,... ,an, ans1)=(ai,... ,an).

(Complements) Suppose X < R". The com-
plement of X is the set

X*={(ay,...,an) | (a1,...,an) ¢ X}.

Definition (Luzin). A set X < R" is a projective set
if for some integer k it can be generated from a
closed subset of R in finitely many steps, ap-
plying the basic operations of taking projections
and complements.

I caution that because we are working in the
Euclidean spaces, it generally requires three
applications of our basic operations to reach anything
interesting. The projection of a closed subset of
R"*2 yields a subset of R"*! which is easily seen to
be expressible as a countable union of closed sets.
Complementing and projecting again take one
beyond the Borel sets and into the analytic sets. More
formally, a set X < R" is an analytic set if there
exists a closed set C = R"*2 such that X is the pro-
jection of R"*1\Y, where Y is the projection of C.
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Why consider the projective sets? The answer
is simply that the structure of H(w1) can be
reinterpreted as the structure of the projective
sets. More formally, the projective sets correspond
to sets A € H(w1) for which there is a formula
¢(x1,x2) of L(%,&) and an element a € H(w1)
such that

A={b € H(w1) | (H(w1), €) = ¢pla,bl}.

Such sets A are definable, from parameters, in the
structure (H(w1), €). This is a common method of
logic: study a structure by studying the sets and
relations which can be defined in the structure.

The Axiom of Choice implies the existence of
many bizarre sets. A well-known example is the
Banach-Tarski Paradox: there exists a finite parti-
tion of the unit ball of R3 into pieces from which
two copies of the unit ball can be manufactured
using only rigid motions. Such a partition is a
paradoxical partition.

To guide our discussion, consider the following
question.

Question. Can there be a paradoxical partition of
the unit ball of R3 into pieces, each of which is a
projective set?

Every analytic subset of R" is Lebesgue mea-
surable; this was first proved by Luzinin 1917. As
a corollary there can be no paradoxical partition
of the unit ball of R3 into pieces, each of which is
in the o-algebra generated by analytic sets. This
is because any paradoxical partition must include
pieces which are not Lebesgue measurable.

Of course, our pilot question on projective
paradoxical partitions really suggests the more
fundamental question:

Question. Are the projective sets Lebesgue
measurable?

By the 1920s the difficulty of this question was
apparent:

[Luzin, 1925] one does not know and
one will never know |[of the projective
sets whether or not they are each
Lebesgue measurable.]

Curiously, Godel’s basic method of showing the
(relative) consistency of CH with ZFC yielded a
surprising bonus to which Godel himself attached
a significance comparable to that of his results on
CH.

Theorem (Goédel). Assume ZFC is consistent.
Then so is ZFC + “There is a nonmeasurable
projective set”. O

In fact, an immediate corollary of the proof of

this theorem is the (relative) consistency with the
axioms of set theory of the statement:
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There exists a paradoxical partition of
the unit ball of R3 into pieces, each of
which is the projection of the comple-
ment of an analytic set.

So Luzin’s theorem on the Lebesgue measurabil-
ity of the analytic sets was in fact the strongest
theorem one could hope to prove working just
from the axioms ZFC.

The consistency with ZFC that every projective
set is Lebesgue measurable, while true, cannot
be proved assuming just the consistency of ZFC.
Nevertheless, an immediate corollary of Solovay’s
results on the measure problem for the projective
sets is that if ZFC is consistent, then so is ZFC,
together with the statement

There is no paradoxical partition of the
unit ball of R3 into pieces, each of which
is a projective set.

Thus already at H(w1) there are natural struc-
tural questions which are formally unsolvable. The
resolution of these questions, if indeed they can
be resolved, requires the discovery of new axioms.

Both Godel’s method of restriction and Cohen’s
method of extension can alter H(w1) in the sense
of the models, even in the case that the initial and
final models are transitive. Informally, restricting
generally deletes sets of integers, and new sets of
integers can appear in a Cohen extension. Thus it
is not at all obvious that these questions about the
projective sets are any more tractable than the
Continuum Hypothesis.

[Godel, 1947] There might exist axioms
so abundant in their verifiable conse-
quences, shedding so much light upon
awhole discipline, and furnishing such
powerful methods for solving given
problems (and even solving them, as far
as possible, in a constructivistic way)
that quite irrespective of their intrinsic
necessity they would have to be as-
sumed at least in the same sense as
any established physical theory.

I now discuss one candidate for such an axiom.

Determinacy

Fix A < [0, 1]. I define the game G4, which is an
infinite game with two players.

Player I and Player II alternate choosing

€; € {0, 1},
so that Player I chooses €; for i odd, and Player II
chooses ¢; for i even. Player I begins by choosing

€1; Player II then picks €2 and so forth.
Player I wins if

Z ei2_i € A;
i=1

otherwise Player II wins.
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Let SEQ be the set of all finite binary sequences.
A strategy T is a function

T:SEQ - {0,1}.

A run (€;:i € N) of the game is generated
according to T by Player I if €; = 7(&) and for all
k € N,

€2k+1 = T(E€1, - - - , €2k).

Similarly the run is generated according to T by
Player Il if for all k € N, €xi = T(€1, - - - , €2k—1)-

A strategy T is a winning strategy for Player I if
every run of the game generated according to T by
Player I is winning for Player I. Similarly, T is a
winning strategy for Player II if every run of the
game generated according to T by Player II is
winning for Player IIL

Definition. Suppose that A < [0, 1]. The game G4
is determined—Dbriefly, A is determined—if there
is a winning strategy for one of the players. [

The Axiom of Choice yields a set A such that
G4 is not determined. This is a simple diagonal-
ization argument. There are only 2% many
possible strategies, and for each strategy T the
assertion that T is a winning strategy for one of
the players in the game G4 effectively makes 2%0
many predictions about membership in A.

However, the undetermined set given by the
Axiom of Choice is not in general a projective set.
This (essentially, Mycielski-Steinhaus, 1962) sug-
gests the following axiom:

Projective Determinacy: Suppose that
A is a projective subset of [0, 1]. Then
the game G4 is determined.

It has to be acknowledged at this point in our
discussion that the axiom Projective Determinacy
is not only not obviously true, it is not even
obviously consistent. It is, however, a fruitful
axiom, but (alogician’s joke) so is the axiom 0 = 1.

In this article, the first of a two-part series,
my main objective is to present some of the
compelling evidence that the axiom Projective
Determinacy is the “right axiom” for the projective
sets. The evidence I present is really a small frac-
tion of what is now available. The subject of the
projective sets has expanded in ways not foreseen
or even imagined by its founders.

In 1964 Mycielski and Swierczkowski proved
that if the axiom Projective Determinacy holds,
then every projective set is Lebesgue measurable.
Consequently, this axiom implies that there is
no paradoxical partition of the unit ball of R3 into
projective pieces.

The axiom also implies that every uncountable
projective set has cardinality 2%, In fact much
more is true. Davis proved, again shortly after the
axiom was introduced, that the axiom implies
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that every uncountable projective set contains an
uncountable closed subset.

This establishes that there is no formal coun-
terexample to CH to be found among the projec-
tive sets (assuming Projective Determinacy).

Surprisingly, the actual relationship between
CH and the projective sets is quite subtle, even
assuming Projective Determinacy. This will be the
starting point for the second part of this article.

One can also naturally analyze versions of the
Axiom of Choice for the projective sets.

Suppose that A < R2. For each x € R let

Ax={y eR | (x,y) € A}

be the section of A at x.
Let B be the projection of A, B={x | Ax # @}.
A functionf : B — R uniformizes the set A if for
each x € B, f(x) € Ay; see the figure below. The

[ A

function f is projective if its graph is a projective
subset of R2.

In 1930 Luzin asked if every projective subset
of the plane can be uniformized by a projective
function. Nearly half a century later Moschovakis
proved that the answer is affirmative if Projective
Determinacy holds.

Thus, assuming Projective Determinacy, one
has a complete analysis of the Axiom of Choice at
the projective level, which can be summarized as
follows. For this summary it is convenient to
generalize the notion of a projective subset of R"
to the notion of a general projective set. So let’s
say that a set A is a general projective set if there
exists a surjection 1 :R — M, where M is the
transitive closure of {A}, such that

{x,y) | Tx) € T(y)}

is a projective subset of R?. The two notions co-
incide for subsets of R"; a set A < R" is a general
projective set if and only if it is a projective set.

Projective sets are by definition subsets of R";
general projective sets can be ordinals, functions,
etc. Here is the promised summary.

NOTICES OF THE AMS

1. The Axiom of Choice fails projectively in that
there is no projective well-ordering of the reals.

2. The Axiom of Choice holds projectively in that
if F:R — V is a general projective set, then
there is a choice function for F which is also
a general projective set.

Projective Determinacy and Large Cardinals
One might attempt to analyze Projective Deter-
minacy incrementally.

In 1953 Gale-Stewart proved that every open
subset of [0, 1] is determined, and they boldly
asked whether every Borel set is determined. Two
decades later, in a technical tour de force, Martin
proved the answer is affirmative. A remarkable
aspect of Martin’s proof is that Friedman
[Friedman, 1971] had previously shown that the
determinacy of all Borel sets could not be proved
in Zermelo set theory with the Axiom of Choice.
This is the axiom system ZC, i.e., ZFC without the
Axiom(s) of Replacement. Most mathematicians,
realizing it or not, work in this restricted axiom
system.

Roughly, Martin’s method was to associate to a
Borel set A, by induction on the Borel rank of A,
an open set A* c ZN where Z is discrete. A* is
constructed so that from the determinacy of the
game associated to A* (here the players play
elements of Z), one infers the determinacy of A.
The Gale-Stewart Theorem applies to show that A*
is determined, and so one obtains the determi-
nacy of A. As A ranges over the possible Borel sets,
the associated sets Z range over

{P*R) | @ < w1},

increasing in cardinality with the Borel rank of A.
Here P%(R) denotes the x-th iterated powerset of R,
which is defined by induction as follows, where
for each set X, P(X)={Y |Y < X}. P(X) is the
powerset of X. PO(R) = R, P**1(R) = P(PX(R)), and

PXR) = L{PPR) | B < o}

if « > 0 and « is a limit ordinal.

In Zermelo set theory one cannot prove that
PY(R) even exists, and so as Friedman’s theorem
predicted, Martin’s proof cannot be implemented
assuming just the axioms ZC.

The determinacy of all analytic sets A < [0, 1]
cannot be proved in ZFC. This is because the
theory ZFC is simply not strong enough. Thus
Martin’s theorem on the determinacy of all Borel
sets is the strongest theorem one can hope to
prove without appealing to new axioms. Here enter
large cardinal axioms, which informally are ax-
ioms which assert the existence of “large” cardi-
nals. Perhaps best known among these is the axiom
which asserts the existence of a measurable car-
dinal. An uncountable cardinal k is a measurable
cardinal if there exists a nonprincipal ultrafilter U
on the subsets of k which is k-complete; i.e., if
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X c U and X has cardinality less than «, then
N{ACK|AeX}el.

Around 1970, almost five years before he proved
all Borel sets are determined, Martin proved that
if there is a measurable cardinal, then all analytic
sets are determined (every Borel set is an analytic
set, and so this also established that all Borel sets
are determined, but not in the theory ZFC).

But Solovay showed that one cannot hope to
prove Projective Determinacy from just the
existence of a measurable cardinal. The reason,
as before, is a lack of strength: ZFC + “Projec-
tive Determinacy’’ implies the consistency of
ZFC + “There is a measurable cardinal”. There-
fore, by Godel’s Second Incompleteness Theorem
one cannot infer Projective Determinacy from the
existence of a measurable cardinal. Still stronger
axioms are necessary, and the special case of
proving the determinacy of all ;% subsets of [0, 1]
became a central problem (the X} sets are those
projective sets which can be represented as the
projection of the complement of an analytic set).
Some speculated that no large cardinal axiom
known was sufficient in strength to imply this
fragment of Projective Determinacy. In 1978
Martin succeeded in proving the determinacy of
all g% sets by using essentially the strongest large
cardinal hypothesis known at the time. Finally, in
1983 I proved the determinacy of all projective sets
using large cardinal axioms in a natural hierarchy
which begins with the large cardinal axiom used
by Martin to establish the determinacy of all §;12
sets.

The natural character of these determinacy
proofs suggested that essentially optimal large
cardinal assumptions were being used. But this
picture, though quite appealing (at least to Martin
and me), was completely wrong. The large cardi-
nal axioms used to prove Projective Determinacy,
including the axiom used by Martin to prove the
determinacy of all g% sets, were far stronger than
necessary. The first indications that the picture was
incorrect came from a surprising direction:
the evidence was discovered by Foreman-
Magidor-Shelah in their seminal work on Martin’s
Maximum, a maximal forcing axiom which I shall
discuss below. This ultimately led to the following
theorem from 1984.

Theorem (Shelah-Woodin). Assume there exist
infinitely many Woodin cardinals. Then every
projective set is Lebesgue measurable. O

I shall not give the definition of a Woodin
cardinal, but instead simply note that this large
cardinal axiom is much weaker than those used in
the determinacy proofs just discussed.

The Inner Model Program attempts to general-
ize Godel’s substructure construction to models
satisfying various large cardinal axioms (and the
stronger the axiom, the harder the problem). More
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precisely, fixing a large cardinal axiom ¥, for each
model (M, E) of ZFC + ¥ one seeks a substructure
(M*,En(M* x M*)) which is also a model of
ZFC + ¥ and which satisfies various sentences true
in Godel’s substructure. For example, if ¥ is the
large cardinal axiom “There is a Woodin
cardinal”, simply requiring that in the substructure
produced, the sentence “There is a projective
set which is not Lebesgue measurable” holds yields
a difficult problem. For stronger large cardinal
axioms there are generalizations of this require-
ment which yield similarly nontrivial problems.

For the large cardinal axiom “There is a mea-
surable cardinal”, the correct generalization of
Godel’s construction was discovered by Solovay
and then further analyzed in work of Kunen and
Silver. With these results the Inner Model Program
began.

The fact that from infinitely many Woodin car-
dinals one can prove the projective sets are
Lebesgue measurable is strong evidence that from
the same assumption one should be able to prove
Projective Determinacy. In 1985, using techniques
developed in the Inner Model Program, Martin-Steel
succeeded in doing this. Surprisingly, the
combinatorial properties of Woodin cardinals
responsible for their discovery—for example,
those aspects yielding the measurability of all
projective sets—play no role in this determinacy
proof.

Theorem (Martin-Steel). Assume there exist
infinitely many Woodin cardinals. Then every
projective set is determined. O

How are large cardinals used in determinacy
proofs? The basic strategy is the same as for
Martin’s proof of the determinacy of all Borel sets,
though Martin’s proof of the determinacy of all
analytic sets from the existence of a measurable
cardinal is a more accurate prototype. Given a set
A < [0, 1], one again associates to the set A an
open set A* ¢ ZN, where Z is a discrete set care-
fully constructed such that from the determinacy
of the game naturally associated to A*, one obtains
the determinacy of the initial set A. The Gale-
Stewart Theorem shows that A* is determined,
and so as before one obtains the determinacy of A.
For a typical projective set A the associated set Z
is very large, of cardinality on the order of the
large cardinals one is assuming to exist.

The connection between Projective Determi-
nacy and large cardinal axioms is fundamental.
This claim is supported by the following theorem
from 1987, which shows that this time the picture
is correct.

Theorem (Woodin). The following are equivalent:
1. Projective Determinacy.

2. For each k € N there exists a countable tran-
sitive set M such that
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(M,€) EZFC + “There exist k Woodin
cardinals”

and such that M is countably iterable. O

The notion that M is countably iterable is a
technical one from the Inner Model Program.

The Core Model Program, which is more
ambitious than the Inner Model Program,
originates in seminal work of Dodd and Jensen. It
is more ambitious simply because it attempts to
build the substructures of the Inner Model Program
without necessarily assuming that the (relevant)
large cardinal axioms even hold in the initial
structure.

The extension of the Core Model Program to
the realm of Woodin cardinals is due primarily to
Steel [Steel, 1996], and with this development it
has become clear that Projective Determinacy is
actually implied by a vast number of seemingly
unrelated combinatorial propositions. Projective
Determinacy is ubiquitous in set theory.

In fact, this is an instance of a more pervasive
phenomenon where propositions are calibrated,
on the basis of consistency, by large cardinal
axioms. There are now numerous examples of
this phenomenon. Many early results of this kind
were proved using Jensen’s Covering Lemma. In
fact, using the Covering Lemma, one can prove
the determinacy of all analytic sets from a perhaps
bewildering array of propositions. I refer the reader
to [Kanamori, 1994] for further details.

A recent example where methods from the Core
Model Program are used to establish Projective
Determinacy involves axioms which attempt to
solve the continuum problem by explicitly making
the Continuum Hypothesis false.

Forcing Axioms
Forcing Axioms are in essence axioms asserting
generalizations of the Baire Category Theorem.
The connection lies in the technical aspects of
Cohen’s method of constructing extensions of
models of ZFC.

Suppose that (M, E) = ZFC. The Cohen exten-
sions associated to the structure (M, E) correspond
to complete Boolean algebras in the sense of (M, E),
i.e., to elements b € M such that

(M,E) E “b is a complete Boolean algebra”.

If b is trivial, for example, if
(M, E) = “b is a finite Boolean algebra”,
then the associated extension is simply (M, E).
But if
(M, E) = “b is the measure algebra1
of the product space [ [[0,1]”,

w32

LThe Boolean algebra of Borel subsets modulo null sets.
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then the Continuum Hypothesis necessarily fails
in the associated extension. Another quite
interesting feature of this extension is that in this
extension there exists a countably additive
measure on R3, extending Lebesgue measure,
which measures all projective sets and which is
invariant under rigid motions. So in this exten-
sion the following statement holds:

There is no paradoxical partition of the
unit ball of R3? into projective pieces.

This extension, first defined and analyzed by
Solovay, is sometimes referred to as a Solovay
extension.

If Q is a compact Hausdorff space, then the
regular open algebra of Q) is the complete Boolean
algebra given by the lattice of regular open subsets
of Q (open sets O < Q which are the interior of
their closure) ordered by set inclusion. Forcing ax-
ioms are naturally motivated by the following
feature of Cohen’s original extension; this exten-
sion is defined from b € M such that

(M,E) | “b is the regular open algebra
of the product space | [[0,1]”.

w2
The interesting feature of this extension is that
in it the following generalization of the Baire
Category Theorem holds:

The unit interval [0, 1] is not the N;
union of meager sets.

A compact Hausdorff space Q is ccc if every
collection of pairwise disjoint open subsets of Q
is countable.

Martin’s Axiom (w1): Suppose that Q
is a compact Hausdorff space which is
ccc. Then Q is not the union of X1 many
meager subsets of Q.

A simple motivation for such an axiom is that if
CH is to be false, then sets of cardinality &1 should
behave, as much as possible, like countable sets.

One can attempt to strengthen the axiom, al-
lowing a larger class of compact Haudorff spaces.
But one cannot allow arbitrary compact Hausdorff
spaces. The maximum possible class was identified
by Foreman-Magidor-Shelah. The definition
involves the notion of a closed unbounded subset
of wi: a cofinal set C c w; is closed and un-
bounded if it is closed in the order topology of w1.

Suppose that B is a complete Boolean algebra.
Every set S € B has a greatest lower bound,
denoted by A S, and a least upper bound which is
denoted by V/ S.

Definition (Foreman-Magidor-Shelah). Suppose
that B is a complete Boolean algebra. The Boolean
algebra B is stationary set preserving if the
following holds. Suppose that b is a nonzero ele-
ment of B and that (b4 : @ < w1) is a sequence of
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elements of B. Then there exist 0 < c < b such
that either ¢ A by =0 for sufficiently large « or
there exists a closed unbounded set C C w; such
that forally € C

CA (/\0(<y <\/o<<n<y b’?)) _T'[ 0. U

The class of compact Hausdorff spaces whose
regular open algebras are stationary set preserv-
ing is the largest class for which one can hope to
generalize Martin’s Axiom(w1).

Theorem (Foreman-Magidor-Shelah). Suppose
that Q is a compact Hausdorff space and that for
each open, nonempty set O < Q the set O is not
the union of X1 many meager subsets of Q. Then
the regular open algebra of Q is stationary set
preserving. O

This suggests the definition of Martin’s
Maximum. The main theorem of [Foreman-
Magidor-Shelah, 1988] is that the consistency of
this axiom with ZFC follows from the consistency,
with ZFC, of (suitable) large cardinal axioms; in
other words, this maximum can be realized.

Martin’s Maximum: Suppose that Q is
a compact Hausdorff space whose reg-
ular open algebra is stationary set pre-
serving. Then Q is not the union of 83
many meager subsets of Q.

Forcing Axioms by design imply that the
Continuum Hypothesis is false. In fact, Martin’s
Maximum (as opposed to the weaker Martin’s
Axiom(w1)) gives quite a bit more information
about the cardinality of the continuum.

Theorem (Foreman-Magidor-Shelah). Suppose
that the axiom Martin’s Maximum holds. Then
280 = N>, O

Subsequent investigations have revealed that
this theorem actually holds for almost any forcing
axiom which is nontrivially stronger than Martin’s
Axiom(w1). So, curiously, insisting that sets of
cardinality 81 resemble countable sets necessi-
tates that 2% = N».

The large cardinal axioms used to establish the
consistency of Martin’s Maximum are far stronger
than the large cardinal axioms used to prove
Projective Determinacy. It is therefore natural to
speculate that Martin’s Maximum might imply
Projective Determinacy, even though Martin’s Max-
imum is not alarge cardinal axiom in the accepted
sense of what a large cardinal axiom is.

Inoted that the work of Foreman-Magidor-Shelah
on Martin’s Maximum inspired the discovery of
the correct large cardinal axioms for Projective
Determinacy. The next theorem is therefore perhaps
a fitting conclusion to this part of the story. I state
a slightly stronger version involving a weakening
of Martin’s Maximum. The weakening is Martin’s
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Maximum(c), which is the axiom that Martin’s
Maximum holds for all compact Hausdorff spaces
Q) whose regular open algebra is stationary set
preserving and for which there is a base for the
topology of Q with cardinality at most c. Thus
Martin’s Maximum(c) is an axiom concerned with
only relatively “small” compact Hausdorff spaces.

Theorem (Woodin). Suppose that the axiom Martin’s
Maximum(c) holds. Then Projective Determinacy
holds. O

There is no known direct proof of this theorem.
The method of the proof is to use machinery
developed in the Core Model Program to show,
assuming Martin’s Maximum(c), that for each
n < w there exists a countable transitive set M
such that

(M, €) EZFC + “There exist n Woodin cardinals”

and such that M is (countably) iterable.

One obtains Projective Determinacy from the
existence of these sets by, essentially, the theorem
unifying Projective Determinacy with Large Car-
dinals. This methodology can and has been used
to prove Projective Determinacy from a large
number of combinatorial statements, many of
which, like Martin’s Maximum, have no obvious
relationship to the projective sets. Hence the claim:
Projective Determinacy is ubiquitous in set theory.

To summarize the current state of affairs for the
theory of the projective sets:

* Projective Determinacy is the correct axiom
for the projective sets; the ZFC axioms are
obviously incomplete and, moreover, incom-
plete in a fundamental way.

+ Assuming Projective Determinacy, there are no
essential uses of the Axiom of Choice in the
analysis of the structure (H(w1), €) (or, equiv-
alently, in the analysis of (P(N), N, +, -, €), the
standard structure for Second Order Number
Theory).

* The only known examples of unsolvable prob-
lems about the projective sets, in the context
of Projective Determinacy, are analogous to
the known examples of unsolvable problems
in number theory: Godel sentences and con-
sistency statements.

In brief, one has the following analogy of axioms
for structures:?

Peano Axioms

(N, +, )

Projective Determinacy + Peano Axioms
(P(N),N, +, -, €) )

Can the understanding of the structure
(H(w1), €), achieved through the discovery of the

2Here the precise formulation of Projective Determinacy
incorporates 39-Comprehension.
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correct axioms for this structure, be extended to
an understanding of the structure (H(w3?),€)?
This question will be the main topic of the second,
and final, part of this article.
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