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Preface

The present manuscript was written for my course Functional Analysis given
at the University of Vienna in winter 2004 and 2009. The second part are
the notes for my course Nonlinear Functional Analysis held at the University
of Vienna in Summer 1998, 2001, and 2018. The two parts are essentially in-
dependent. In particular, the first part does not assume any knowledge from
measure theory (at the expense of hardly mentioning LP spaces). However,
there is an accompanying part on Real Analysis [37], where these topics are
covered.

It is updated whenever I find some errors and extended from time to
time. Hence you might want to make sure that you have the most recent
version, which is available from

http://www.mat.univie.ac.at/ gerald/ftp/book-fa/

Please do not redistribute this file or put a copy on your personal
webpage but link to the page above.

Goals

The main goal of the present book is to give students a concise introduc-
tion which gets to some interesting results without much ado while using a
sufficiently general approach suitable for further studies. Still I have tried
to always start with some interesting special cases and then work my way
up to the general theory. While this unavoidably leads to some duplications,
it usually provides much better motivation and implies that the core ma-
terial always comes first (while the more general results are then optional).
Moreover, this book is not written under the assumption that it will be

vii
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viii Preface

read linearly starting with the first chapter and ending with the last. Con-
sequently, I have tried to separate core and optional materials as much as
possible while keeping the optional parts as independent as possible.

Furthermore, my aim is not to present an encyclopedic treatment but to
provide the reader with a versatile toolbox for further study. Moreover, in
contradistinction to many other books, I do not have a particular direction
in mind and hence I am trying to give a broad introduction which should
prepare you for diverse fields such as spectral theory, partial differential
equations, or probability theory. This is related to the fact that I am working
in mathematical physics, an area where you never know what mathematical
theory you will need next.

I have tried to keep a balance between verbosity and clarity in the sense
that I have tried to provide sufficient detail for being able to follow the argu-
ments but without drowning the key ideas in boring details. In particular,
you will find a show this from time to time encouraging the reader to check
the claims made (these tasks typically involve only simple routine calcula-
tions). Moreover, to make the presentation student friendly, I have tried
to include many worked out examples within the main text. Some of them
are standard counterexamples pointing out the limitations of theorems (and
explaining why the assumptions are important). Others show how to use the
theory in the investigation of practical examples.

Preliminaries

The present manuscript is intended to be gentle when it comes to required
background. Of course I assume basic familiarity with analysis (real and
complex numbers, limits, differentiation, basic (Riemann) integration, open
sets) and linear algebra (finite dimensional vector spaces, matrices).

Apart from this natural assumptions I also expect some familiarity with
metric spaces and point set topology. However, only a few basic things are
required to begin with. This and much more is collected in the Appendix
and I will refer you there from time to time such that you can refresh your
memory should need arise. Moreover, you can always go there if you are
unsure about a certain term (using the extensive index) or if there should
be a need to clarify notation or conventions. I prefer this over referring you
to several other books which might not always be readily available. For
convenience, the Appendix contains full proofs in case one needs to fill some
gaps. As some things are only outlined (or outsourced to exercises), it will
require extra effort in case you see all this for the first time.

On the other hand I do not assume familiarity with Lebesgue integration
and consequently LP spaces will only be briefly mentioned as the completion
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of continuous functions with respect to the corresponding integral norms in
the first part. At a few places I also assume some basic results from complex
analysis but it will be sufficient to just believe them.

The second part of course requires basic familiarity with functional anal-
ysis and measure theory (Lebesgue and Sobolev spaces). But apart from this
it is again independent form the first two parts.

Content

Below follows a short description of each chapter together with some
hints which parts can be skipped.

Chapter 1. The first part starts with Fourier’s treatment of the heat
equation which led to the theory of Fourier analysis as well as the develop-
ment of spectral theory which drove much of the development of functional
analysis around the turn of the last century. In particular, the first chap-
ter tries to introduce and motivate some of the key concepts and should be
covered in detail except for Section [I.8] which introduces some interesting
examples for later use.

Chapter 2 discusses basic Hilbert space theory and should be considered
core material except for the last section discussing applications to Fourier
series. They will only be used in some examples and could be skipped in
case they are covered in a different course.

Chapter 3 develops basic spectral theory for compact self-adjoint op-
erators. The first core result is the spectral theorem for compact symmetric
(self-adjoint) operators which is then applied to Sturm—Liouville problems.
Of course this application could be skipped, but this would reduce the didac-
tical concept to absurdity. Nevertheless it is clearly possible to shorten the
material as non of it (including the follow-up section which touches upon
some more tools from spectral theory) will be required in later chapters.
The last two sections on singular value decompositions as well as Hilbert—
Schmidt and trace class operators cover important topics for applications,
but will again not be required later on.

Chapter 4 discusses what is typically considered as the core results
from Banach space theory. In order to keep the topological requirements to
a minimum some advanced topics are shifted to the following chapters.

Chapter 5 develops spectral theory for bounded self-adjoint operators
via the framework of C* algebras. The last section contains some optional
results establishing the connection with the measure theoretic formulation
of the spectral theorem.

The next chapters contain selected advanced topics.
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Chapter 6 centers around convexity. Except for the geometric Hahn—
Banach theorem, which is a prerequisite for the other sections, the remaining
sections are independent of each other to simplify the selection of topics.

Chapter 7 presents some advanced topics from spectral theory: The
Gelfand representation theorem, spectral theory for compact operators in
Banach spaces and Fredholm theory. Again these sections are independent
of each other except for the fact that Section which contains the spec-
tral theorem for compact operators, and hence the Fredholm alternative for
compact perturbations of the identity, is of course used to identify compact
perturbations of the identity as premier examples of Fredholm operators.

Chapter 8 touches upon unbounded operators starting with the basic
results about closed operators. Since unbounded operators play an increasing
role in applications I felt it is appropriate to discuss at least some basics.

Finally, there is a part on nonlinear functional analysis.

Chapter 9 discusses analysis in Banach spaces (with a view towards
applications in the calculus of variations and infinite dimensional dynamical
systems).

Chapter 10 finally gives a brief introduction to operator semigroups.

Chapter 11 applies the results obtained so far to an ubiquitous example,
the nonlinear Schrodinger equation.

Chapter 12 and 13 cover degree theory and fixed point theorems in
finite and infinite dimensional spaces. Several applications to integral equa-
tions, ordinary differential equations and to the stationary Navier—Stokes
equation are given.

Chapter 14 provides some basics about monotone maps.

Sometimes also the historic development of the subject is of interest. This
is however not covered in the present book and we reefer to |21, 32, 33] as
good starting points.

To the teacher

There are a couple of courses to be taught from this book. First of
all there is of course a basic functional analysis course: Chapters 1 to 4
(skipping some optional material as discussed above) and perhaps adding
some material from Chapter 5 or 6. If one wants to cover Lebesgue spaces,
this can be easily done by including Chapters 1, 2, and 3 from [37]. In this
case one could cover Section 1.2 (Section 1.1 contains just motivation), give
an outline of Section 1.3 (by covering Dynkin’s 7-A theorem, the uniqueness
theorem for measures ,and then quoting the existence theorem for Lebesgue
measure), cover Section 1.5. The core material from Chapter 2 are the



Preface xi

first two sections and from Chapter 3 the first three sections. I think that
this gives a well-balanced introduction to functional analysis which contains
several optional topics to choose from depending on personal preferences and
time constraints.

The remaining material from the first part could then be used for a course
on advanced functional analysis. Typically one could also add some further
topics from the second part or some material from unbounded operators in
Hilbert spaces following [36] (where one can start with Chapter 2) or from
unbounded operators in Banach spaces following the book by Kato [18] (e.g.
Sections 3.4, 3.5 and 4.1).

The third part gives a short basis for a course on nonlinear functional
analysis.

Problems relevant for the main text are marked with a "*". A Solutions
Manual will be available electronically for instructors only.
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Part 1

Functional Analysis






Chapter 1

A first look at Banach
and Hilbert spaces

Functional analysis is an important tool in the investigation of all kind of
problems in pure mathematics, physics, biology, economics, etc.. In fact, it
is hard to find a branch in science where functional analysis is not used.

The main objects are (infinite dimensional) vector spaces with different
concepts of convergence. The classical theory focuses on linear operators
(i.e., functions) between these spaces but nonlinear operators are of course
equally important. However, since one of the most important tools in investi-
gating nonlinear mappings is linearization (differentiation), linear functional
analysis will be our first topic in any case.

1.1. Introduction: Linear partial differential equations

Rather than listing an overwhelming number of classical examples I want to
focus on one: linear partial differential equations. We will use this example
as a guide throughout our first three chapters and will develop all necessary
tools for a successful treatment of our particular problem.

In his investigation of heat conduction FourieIEI was led to the (one di-
mensional) heat or diffusion equation

0 0?
au(t,x) = Wu(t,x). (1.1)

Here u : [0,00) x [0,1] — R is the temperature distribution in a thin rod at
time ¢ > 0 at the point x € [0, 1]. It is usually assumed, that the temperature

1Joseph Fourier| (1768-1830), French mathematician and physicist
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4 1. A first look at Banach and Hilbert spaces

at x = 0 and = = 1 is fixed, say u(¢,0) = a and u(t,1) = 8. By considering
u(t,z) = u(t,x)—a—(f—a)z it is clearly no restriction to assume o = 3 = 0.
Moreover, the initial temperature distribution u(0, ) = ug(x) is assumed to
be known as well.

Since finding the solution seems at first sight unfeasible, we could try to
find at least some solutions of . For example, we could make an ansatz
for u(t, z) as a product of two functions, each of which depends on only one
variable, that is,

u(t,z) == w(t)y(z). (1.2)
Plugging this ansatz into the heat equation we arrive at
w(t)y(z) =y (@)w(t), (1.3)

where the dot refers to differentiation with respect to ¢ and the prime to
differentiation with respect to . Bringing all ¢,  dependent terms to the
left, right side, respectively, we obtain

w(t) _ y'(z)

w(t)  ylz)
Accordingly, this ansatz is called separation of variables.

(1.4)

Now if this equation should hold for all ¢ and x, the quotients must be
equal to a constant —\ (we choose — A\ instead of A for convenience later on).
That is, we are led to the equations

—w(t) = Aw(t) (1.5)
and
—y'(@) =My(@),  y(0)=y(1)=0, (1.6)
which can easily be solved. The first one gives
w(t) =ae M (1.7)

and the second one
y(z) = beos(VAz) + esin(vVx). (1.8)

Here a, b, c are arbitrary real constants and since we are only interested in
the product w1y, we can choose a = 1 without loss of generality. Moreover,
y(x) must also satisfy the boundary conditions y(0) = y(1) = 0. The first
one y(0) = 0 is satisfied if b = 0 and the second one yields (¢ = 0 only leads
to the trivial solution)

sin(VA) = 0, (1.9)
which holds if A = (7n)2, n € N (in the case A < 0 we get sinh(v/—\) = 0,
which cannot be satisfied and explains our choice of sign above). In summary,
we obtain the solutions

Un(t, ) := cpe— ()t sin(nmx), n € N. (1.10)
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So we have found a large number of solutions, but we still have not dealt
with our initial condition u(0,z) = wug(z). This can be done using the
superposition principle which holds since our equation is linear: Any finite
linear combination of the above solutions will again be a solution. Moreover,
under suitable conditions on the coefficients we can even consider infinite
linear combinations. In fact, choosing
oo
u(t,x) = Z cpe” ()t sin(nrx), (1.11)
n=1
where the coefficients ¢,, decay sufficiently fast (e.g. absolutely summable),
we obtain further solutions of our equation. Moreover, these solutions satisfy

u(0,z) = Z cp sin(nmz) (1.12)
n=1

and expanding the initial conditions into a Fourier sine series
oo
uo(z) = Z Ug,pn, sin(nme), (1.13)
n=1

we see that the solution of our original problem is given by ((1.11]) if we choose
¢n = Uo .y (cf. Problem .

Of course for this last statement to hold we need to ensure that the series
in (1.11) converges and that we can interchange summation and differentia-
tion. You are asked to do so in Problem [[.1]

In fact, many equations in physics can be solved in a similar way:

e Reaction-Diffusion equation:

2
%u(t,x) — %u(t, x) 4+ q(z)u(t,z) =0,
u(0,x) = up(z),
u(t,0) = u(t,1) = 0. (1.14)

Here u(t, z) could be the density of some gas in a pipe and ¢(z) > 0 describes
that a certain amount per time is removed (e.g., by a chemical reaction).

¢ Wave equation:

2 2
@u(t,x) — Wu(t,x) =0,
u(0, ) = uole), H(0,) = wo(a)
u(t, 0) = uft, 1) = 0. (1.15)

Here u(t, x) is the displacement of a vibrating string which is fixed at z =0
and x = 1. Since the equation is of second order in time, both the initial
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displacement wug(x) and the initial velocity vo(z) of the string need to be
known.

e Schrédinger equationﬂ
. 0?
1%”(75’ ZL‘) - —@U(@ l‘) + q(x)u(t, IL‘),

u(0,x) = ug(x),
u(t,0) = u(t,1) = 0. (1.16)

Here |u(t,z)|? is the probability distribution of a particle trapped in a box
x € [0,1] and ¢(z) is a given external potential which describes the forces
acting on the particle.

All these problems (and many others) lead to the investigation of the
following problem

Ly(x) = \y(x), L:= a2 +q(x), (1.17)

subject to the boundary conditions

y(a) = y(b) = 0. (1.18)

Such a problem is called a Sturm—Liouville boundary value problemﬂ
Our example shows that we should prove the following facts about Sturm—
Liouville problems:

(i) The Sturm-Liouville problem has a countable number of eigenval-
ues E, with corresponding eigenfunctions u,, that is, u, satisfies
the boundary conditions and Lu, = E,u,.

(ii) The eigenfunctions w, are complete, that is, any nice function u
can be expanded into a generalized Fourier series

u(z) = Z Cnlin, ().
n=1

This problem is very similar to the eigenvalue problem of a matrix and we
are looking for a generalization of the well-known fact that every symmetric
matrix has an orthonormal basis of eigenvectors. However, our linear opera-
tor L is now acting on some space of functions which is not finite dimensional
and it is not at all clear what (e.g.) orthogonal should mean in this context.
Moreover, since we need to handle infinite series, we need convergence and
hence we need to define the distance of two functions as well.

Hence our program looks as follows:

2Erwin Schrodinger| (1887-1961), Austrian physicist
3Jacques Charles Frangois Sturm (1803-1855), French mathematician
3Joseph Liouville (1809-1882), French mathematician and engineer
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e What is the distance of two functions? This automatically leads
us to the problem of convergence and completeness.

e If we additionally require the concept of orthogonality, we are led
to Hilbert spaces which are the proper setting for our eigenvalue
problem.

e Finally, the spectral theorem for compact symmetric operators will
provide the solution of our above problem.

Problem 1.1. Suppose > 7, |cy| < oco. Show that is continuous
for (t,x) € [0,00) x [0,1] and solves the heat equation for (t,z) € (0,00) X
[0,1]. (Hint: Weierstmjﬁ M-test. When can you interchange the order of
summation and differentiation?)

Problem 1.2. Show that for n,m € N we have

1, n=m,

1
2/ sin(nrz) sin(mmrx)dx =
0 0, n#m.

Conclude that the Fourier sine coefficients are given by
1
Uon = 2/ sin(nmx)ug(z)dz
0

provided the sum in (1.13) converges uniformly. Conclude that in this case
the solution can be expressed as

1
ult, z) = / K(t,a,p)uoly)dy, ¢ >0,
0

where
K(t,z,y):=2 Z e~ ()t sin(nmz) sin(nmry)
n=1
1 T—Y . Tty .
= 5(19( Jimt) — Y( ,imt)).
Here

Iz, T) := Zei””QT“”i"Z =1+2 Z ™ cos(2mnz), Im(r) > 0,
nez neN

is the Jacobi theta functionf]

4Karl Weierstrass (1815-1897), German mathematician
5Carl Gustav Jacob Jacobi (1804-1851), German mathematician
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1.2. The Banach space of continuous functions

Our point of departure will be the set of continuous functions C(I) on a
compact interval I := [a,b] C R. Since we want to handle both real and
complex models, we will formulate most results for the more general complex
case only. In fact, most of the time there will be no difference but we will
add a remark in the rare case where the real and complex case do indeed

differ.

One way of declaring a distance, well-known from calculus, is the max-
imum norm of a function f € C(I):

Il = max | ()] (119)

It is not hard to see that with this definition C'(I) becomes a normed vector
space:

A normed vector space X is a vector space X over C (or R) with a
nonnegative function (the norm) ||.|| : X — [0, 00) such that

e ||[fll >0 for f # 0 (positive definiteness),

o ||af|l = |al||f]] for all & € C, f € X (positive homogeneity),
and

o |lf+gll <IfII+ llg] for all f,g € X (triangle inequality).

If positive definiteness is dropped from the requirements, one calls ||.|| a
seminorm.

From the triangle inequality we also get the inverse triangle inequal-
ity (Problem
A= Nlglll < 1Lf = gll, (1.20)

which shows that the norm is continuous.

Also note that norms are closely related to convexity. To this end recall
that a subset C' C X is called convex if for every f,g € C we also have
Af+ (1= X)g € C whenever A € (0,1). Moreover, a mapping F': C' — R is
called convex if F(Af+(1—X)g) < AF(f)+(1—X)F(g) whenever A € (0,1)
and f,g € C. In our case the triangle inequality plus homogeneity imply
that every norm is convex:

IAf+ @ =Ngll < AAT+ @ =Mllgll, A efo,1]. (1.21)

Moreover, choosing A = % we get back the triangle inequality upon using

homogeneity. In particular, the triangle inequality could be replaced by
convexity in the definition.

Once we have a norm, we have a distance d(f,g) := ||f — ¢g|| (in par-
ticular, every normed space is a special case of a metric space) and hence
we know when a sequence of vectors f,, converges to a vector f (namely if
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d(fn, f) — 0, that is, for every € > 0 there is some N such that d(f,, f) <e
for all n > N). We will write f,, — f or lim, o fnn = f, as usual, in
this case. Moreover, a mapping F' : X — Y between two normed spaces
is called continuous if for every convergent sequence f,, — f from X we
have F'(f,) — F(f) (with respect to the norm of X and Y, respectively). In
fact, the norm, vector addition, and multiplication by scalars are continuous

(Problem [1.4)).

Two normed spaces X and Y are called isomorphic if there exists a lin-
ear bijection T : X — Y such that T and its inverse 7! are continuous. We
will write X 2 Y in this case. They are called isometrically isomorphic
if in addition, T is an isometry, [|T'(f)|| = || f|| for every f € X.

In addition to the concept of convergence, we also have the concept of
a Cauchy sequenceﬁ A sequence f,, is Cauchy if for every € > 0 there is
some N such that d(fy, fi) < € for all n,m > N. Of course every convergent
sequence is Cauchy but the converse might not be true in general. Hence a
normed space is called complete if every Cauchy sequence has a limit. A
complete normed space is called a Banach space

Example 1.1. By completeness of the real numbers, R as well as C with
the absolute value as norm are Banach spaces. o

Example 1.2. The space ¢!(N) of all complex-valued sequences a = (a;)524
for which the norm

o0
lally = lay| (1.22)
j=1

is finite is a Banach space.

To show this, we need to verify three things: (i) #!(N) is a vector space,
that is, closed under addition and scalar multiplication, (ii) ||.||; satisfies the
three requirements for a norm, and (iii) ¢*(N) is complete.

First of all, observe
k k k

D lag+bil <> lagl+ D> Ibsl < llalli + [1bllx

j=1 j=1 j=1
for every finite k. Letting k — oo, we conclude that ¢!(N) is closed under
addition and that the triangle inequality holds. That ¢!(N) is closed under
scalar multiplication together with homogeneity as well as positive definite-
ness are straightforward. It remains to show that ¢1(N) is complete. Let
a” = (a?)?‘;l be a Cauchy sequence; that is, for given € > 0 we can find
some N such that ||a™ —a™||; < e for m,n > N. This implies, in particular,
|a}“ — a?] < ¢ for every fixed j. Thus a} is a Cauchy sequence for fixed j

6Augustin—Louis Cauchy| (1789-1857), French mathematician
‘Stefan Banach| (1892-1945), Polish mathematician


http://en.wikipedia.org/wiki/Augustin-Louis Cauchy
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and, by completeness of C, it has a limit: a; := lim, aj. Now consider

Z;?:l a7 — a}| < e and take m — oc:

k
Z|aj—a?|§s, n > N.
j=1

Since this holds for all finite k, we even have ||a—a"||; < e. Hence (a—a") €

?Y(N) and since a" € (}(N), we finally conclude a = a" + (a — a") € £}(N).

By our estimate |ja—a"||; < e for n > N, our candidate a is indeed the limit

of a". o

Example 1.3. The previous example can be generalized by considering the

space (P(N) of all complex-valued sequences a = (aj);-";l for which the norm
1/p

oo
lally :== | D _lasl” | pell,o0), (1.23)
j=1

is finite. By |a; +b;[P < 2P max(|a;l, |b;])P = 2P max(|a;[?, |b;|P) < 2P(|a;|P +
|b;|P) it is a vector space, but the triangle inequality is only easy to see in the
case p = 1. (It is also not hard to see that it fails for p < 1, which explains
our requirement p > 1. See also Problem [1.18])

To prove the triangle inequality we need Young’s inequalityﬂ (Prob-

lem
1 1

1 1
al/pﬁl/q S —a+ 755 -+ - = ]-a avﬁ 2 07 (124)
p q P q
which implies Holder’s inequalityﬂ
lablly < [lall,[bllg (1.25)

for a € P(N), b € £4(N). In fact, by homogeneity of the norm it suffices to
prove the case ||al|, = ||b]| = 1. But this case follows by choosing o = |a;|?

and f = [b;|? in (1.24)) and summing over all j.
Now using |a; + b [P < |aj| |a; + b;[P~ +|b;| |a; + bj[P~L, we obtain from
Holder’s inequality (note (p — 1)q = p)
la+bll5 < llallyll(a+ )P~ g + (I8l (@ + 0)P "l
= (lallp + l1bll)lla + bl[H~".

Hence (P(N) is a normed space. That it is complete can be shown as in the

case p = 1 (Problem [1.10)).
The unit ball with respect to these norms in R? is depicted in Figure
One sees that for p < 1 the unit ball is not convex (explaining once more our

EWilliam Henry Young| (1863—-1942), English mathematician
90tto Holder (1859-1937), German mathematician


http://en.wikipedia.org/wiki/William Henry Young
https://en.wikipedia.org/wiki/Otto_H%C3%B6lder
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Figure 1.1. Unit balls for ||.||, in R?

restriction p > 1). Moreover, for 1 < p < oo it is even strictly convex (that
is, the line segment joining two distinct points is always in the interior). This
is related to the question of equality in the triangle inequality and will be

discussed in Problems [[.15] and [L.16] o

Example 1.4. The space ¢*°(N) of all complex-valued bounded sequences
a = (a;);2, together with the norm

lalleo := sup [a;] (1.26)
JEN

is a Banach space (Problem |1.11)). Note that with this definition, Holder’s
inequality ([1.25)) remains true for the cases p =1, ¢ = co and p = 00, ¢ = 1.
The reason for the notation is explained in Problem [I.17] o

By a subspace of a normed space, we mean a subset which is closed
under the vector operations. If it is also closed in a topological sense, we call
it a closed subspace. Warning: Some authors require subspaces to be closed.

Example 1.5. Every closed subspace of a Banach space is again a Banach
space. For example, the space co(N) C £>°(N) of all sequences converging to
zero is a closed subspace. In fact, if a € £°°(N)\co(N), then limsup,_,, |a;| =
e > 0 and thus a + b & co(N) for every b € £*°(N) with ||b]|o < €. Hence the
complement of ¢y(N) is open. o
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Now what about completeness of C(I)? A sequence of functions f,
converges to f if and only if

T [1f = falloo = lim max |(z) — fu(2)| = 0, (1.27)

That is, in the language of real analysis, f,, converges uniformly to f. Now
let us look at the case where f;, is only a Cauchy sequence. Then f,(z) is
clearly a Cauchy sequence of complex numbers for every fixed x € I. In
particular, by completeness of C, there is a limit f(z) for each 2. Thus we
get a limiting function f(z) := lim, 0 fn(z). Moreover, letting m — oo in

|fm(z) — fo(z)| <€ Vm,n > N., v €1, (1.28)

we see

[f(x) = fa(x)| < Yn >N, zel; (1.29)

that is, f,(z) converges uniformly to f(x). However, up to this point we
do not know whether f is in our vector space C(I), that is, whether it is
continuous. Fortunately, there is a well-known result from real analysis which
tells us that the uniform limit of continuous functions is again continuous:
Fix z € I and € > 0. To show that f is continuous we need to find a J such
that |z — y| < § implies |f(x) — f(y)| < e. Pick n so that ||f, — fllec < £/3
and ¢ so that | — y| < 0 implies |fn(x) — fn(y)| < €/3. Then |z —y| < o
implies

(@)= FW)] < |f (@)= fa@) |+ (@) = fu@)| F | fa(0) = F(y)] < s =42 =¢

as required. Hence f € C(I) and thus every Cauchy sequence in C(I)
converges. Or, in other words,

Theorem 1.1. Let I C R be a compact interval, then the continuous func-
tions C(I) with the mazimum norm form a Banach space.

For finite dimensional vector spaces the concept of a basis plays a crucial
role. In the case of infinite dimensional vector spaces one could define a
basis as a maximal set of linearly independent vectors (known as a Hamel
basisﬂ Problem [1.8). Such a basis has the advantage that it only requires
finite linear combinations. However, the price one has to pay is that such
a basis will be way too large (typically uncountable, cf. Problems and
4.4)). Since we have the notion of convergence, we can handle countable
linear combinations and try to look for countable bases. We start with a few
definitions.

ICGeorg Hamel (1877-1954)), German mathematician


http://en.wikipedia.org/wiki/Georg Hamel
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The set of all finite linear combinations of a set of vectors {up fneny € X
is called the span of {uy,}nen and denoted by

span{uy, }pen = {Z ajtn;nj € Nyaj € C;m € NY (1.30)
j=1

A set of vectors {uy, }nenr C X is called linearly independent if every finite
subset is. If {u,}Y_; € X, N € NU {0}, is countable, we can throw away
all elements which can be expressed as linear combinations of the previous
ones to obtain a subset of linearly independent vectors which have the same
span.

Let N € NU {oco} with N € N in case X is finite dimensional (and in
which case N equals the dimension of X) or N = oo in case X is infinite
dimensional. We will call a countable sequence of vectors (u,)_; from X
a Schauder basiﬂ if every element f € X can be uniquely written as a
countable linear combination of the basis elements:

N
f= Zanum a, = ay(f) € C, (1.31)
n=1

where the sum has to be understood as a limit if N = oo (the sum is not
required to converge unconditionally and hence the order of the basis el-
ements is important). Since we have assumed the coefficients oy, (f) to be
uniquely determined, the vectors are necessarily linearly independent. More-
over, one can show that the coordinate functionals f +— «,,(f) are continuous
(cf. Problem . A Schauder basis and its corresponding coordinate func-
tionals u) : X — C, f — a,(f) form a so-called biorthogonal system:
ut, (un) = O n, where

1, n=m
1) = ’ ’ 1.32
””” {0, n#m, (132)

is the Kronecker deltaB

Example 1.6. In a finite dimensional space every basis is also a Schauder
basis. Note that in this case continuity of the coordinate functionals is im-
mediate since linear maps on finite dimensional spaces are always continuous

(see Lemma below). o

Example 1.7. The sequence of vectors 6" = (0}, := 0p_m)men is a Schauder
basis for the Banach space P(N), 1 < p < oc.

M yuliusz Schauder] (1899-1943), Polish mathematician
121 e0pold Kronecker (1823-1891), German mathematician
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Let a = (a;)32; € £P(N) be given and set a™ := 3" | a,,6". Then

1/p
o0
la—a™l,=| > lal’] —0
j=m+1
since aj* = a; for 1 < j <m and aj" =0 for j > m. Hence

o
a= E and"
n=1

and (6™)2°, is a Schauder basis (uniqueness of the coefficients is left as an
exercise).

Note that (6™)22, is also Schauder basis for ¢o(N) but not for £>°(N) (try
to approximate a constant sequence). <o

A set whose span is dense is called total, and if we have a countable total
set, we also have a countable dense set (consider only linear combinations
with rational coefficients — show this). A normed vector space containing a
countable dense set is called separable.

Warning: Some authors use the term total in a slightly different way —

see the warning on page [125

Example 1.8. Every Schauder basis is total and thus every Banach space
with a Schauder basis is separable (the converse puzzled mathematicians
for quite some time and was eventually shown to be false by Enﬂﬂ. In
particular, the Banach space ¢P(N) is separable for 1 < p < oc.

However, ¢>°(N) is not separable (Problem [I.13])! o

While we will not give a Schauder basis for C(I) (Problem [1.22), we will
at least show that C'(I) is separable. We will do this by showing that every
continuous function can be approximated by polynomials, a result which is
of independent interest. But first we need a lemma.

Lemma 1.2 (Smoothing). Let u, be a sequence of nonnegative continuous
functions on [—1, 1] such that

/ up(z)de =1 and / up(z)dxr — 0, d§>0. (1.33)
lz]<1 6<a|<1

(In other words, u, has mass one and concentrates near x =0 as n — 00.)

Then for every f € C[—3%, 3] which vanishes at the endpoints, f(—3) =
f(%) =0, we have that

1/2
fulw)i= [ o = )7 )y (1.34)

~1/2

L3per Enflo (*1944), Swedish mathematician
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converges uniformly to f(x).

Proof. Since f is uniformly continuous, for given € we can find a § < 1/2
(independent of x) such that |f(z) — f(y)| < & whenever |z — y| < §. More-
over, we can choose n such that f s<|yl<1 un(y)dy < e. Now abbreviate

M :=max,e-1/21/29{1,[f(2)[} and note

1/2

1/2
) - / un(z — ) f(2)dy| = | f(@)[ |1 - / un( — y)dy| < Me.

—1/2 —1/2

In fact, either the distance of x to one of the boundary points :l:% is smaller
than ¢ and hence |f(z)| < € or otherwise [—6,d] C [x —1/2,2+ 1/2] and the
difference between one and the integral is smaller than e.

Using this, we have

1/2

fulz) — £(2)] < / (@ — D) F () — F(@)|dy + Me

-1/2

_/ un(z —y)|f(y) — f(2)|dy
ly|<1/2,|z—y|<S

+f unlio = )|/ (9) — £(@)ldy + Me
ly|<1/2,|z—y|=6
<e+2Me+ Me = (1+3M)e,

which proves the claim. O

Note that f,, will be as smooth as wu,, hence the title smoothing lemma.
Moreover, f, will be a polynomial if u,, is. The same idea is used to approx-
imate noncontinuous functions by smooth ones (of course the convergence
will no longer be uniform in this case).

Now we are ready to show:

Theorem 1.3 (Weierstrafs). Let I C R be a compact interval. Then the set
of polynomials is dense in C(I).

. . . b)—
Proof. Let f € C(I) be given. By considering f(z)— f(a) — W(m—a)
it is no loss to assume that f vanishes at the boundary points. Moreover,

without restriction, we only consider I = [—3, 1] (why?).

Now the claim follows from Lemma using the Landau kerneﬂ
1

Un(x) 1= E(l —zH",

My ev Landau (1908-1968), Soviet physicist


http://en.wikipedia.org/wiki/Lev Landau
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where (using integration by parts)

In::/l(l—xQ)”dx: n /1(1—x)”_1(1+m)”+1d:n

~1 n+1l/
292n+1

n! 2n+1:(n!) _ n!
(n+1)-(2n+1) Cn+D! 3G+ (3+n)

Indeed, the first part of (1.33) holds by construction, and the second part
follows from the elementary estimate

1

2
which shows f6<‘x|<1 up(z)dr < 2u,(8) < (2n +1)(1 — 63" — 0. O

1
— < I, <2,
n

Corollary 1.4. The monomials are total and hence C(I) is separable.

Note that while the proof of Theorem [I.3] provides an explicit way of
constructing a sequence of polynomials f,(z) which will converge uniformly
to f(z), this method still has a few drawbacks from a practical point of
view: Suppose we have approximated f by a polynomial of degree n but our
approximation turns out to be insufficient for the intended purpose. First
of all, since our polynomial will not be optimal in general, we could try to
find another polynomial of the same degree giving a better approximation.
However, as this is by no means straightforward, it seems more feasible to
simply increase the degree. However, if we do this, all coefficients will change
and we need to start from scratch. This is in contradistinction to a Schauder
basis where we could just add one new element from the basis (and where it
suffices to compute one new coefficient).

In particular, note that this shows that the monomials are no Schauder
basis for C(I) since the coefficients must satisfy |, |||z||% = || fo— fa—1llcc —
0 and hence the limit must be analytic on the interior of I. This observation
emphasizes that a Schauder basis is more than a set of linearly independent
vectors whose span is dense.

We will see in the next section that the concept of orthogonality resolves
these problems.

Problem* 1.3. Let X be a normed space and f,g € X. Show that ||| f|| —
lglll < [1f =gl

Problem™* 1.4. Let X be a normed space. Show that the norm, vector
addition, and multiplication by scalars are continuous. That is, if f, — f,
gn = g, and an — «, then an” - Hf”: Jn+gn — f+g, and angn — ag.

Problem 1.5. Let X be a normed space and g € X. Show that || f|| <
max(|[f =gl [lf + gll)-
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Problem 1.6. Let X be a Banach space. Show that 322, || f;l| < oo implies

that
[o.¢] n
D fi=Jim > f
=1 j=1

exists. The series is called absolutely convergent in this case. Conversely,
show that a normed space is complete if every absolutely convergent series
converges.

Problem 1.7. While ¢*(N) is separable, it still has room for an uncountable
set of linearly independent vectors. Show this by considering vectors of the
form

a® = (1,0,02,...), a € (0,1).
(Hint: Recall the Vandermondﬂ determinant. See Problem for a gen-
eralization. )

Problem 1.8. A Hamel basis is a maximal set of linearly independent
vectors. Show that every vector space X has a Hamel basis {uq}aca. Show
that given o Hamel basis, every x € X can be written as a finite linear
combination x = 2?21 CjUa,, where the vectors ua,; and the constants c;
are uniquely determined. (Hint: Use Zorn’s lemma, Theorem to show
existence. )

Problem* 1.9. Prove Young’s inequality (1.24). Show that equality occurs
precisely if o« = 5. (Hint: Take logarithms on both sides.)

Problem* 1.10. Show that ?(N), 1 < p < 0o, is complete.
Problem* 1.11. Show that {>°(N) is a Banach space.

Problem 1.12. Is (}(N) a closed subspace of {*°(N) (with respect to the
|.lloc moTm)? If not, what is its closure?

Problem* 1.13. Show that (*°(N) is not separable. (Hint: Consider se-
quences which take only the value one and zero. How many are there? What
is the distance between two such sequences?)

Problem 1.14. Show that the set of convergent sequences ¢(N) is a Banach
space isomorphic to the set of convergent sequence co(N). (Hint: Hilbert’s

hotel.)

Problem™ 1.15. Show that there is equality in the Hélder inequality
for 1 < p < oo if and only if either a = 0 or |bj|? = ala;|P for all j € N.
Show that we have equality in the triangle inequality for £*(N) if and only if
ajb; >0 for all j € N (here the «’ denotes complex conjugation). Show that

15Alexandre—Théophile Vandermonde| (1735-1796), French mathematician, musician and
chemist
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we have equality in the triangle inequality for (P(N) with 1 < p < oo if and
only if a =0 or b = aa with o > 0.

Problem* 1.16. Let X be a normed space. Show that the following condi-
tions are equivalent.
() If ||z + y|| = ||lz|| + ||y|| then y = ax for some o >0 or z = 0.

(i) If ||lz|]| = |lyll =1 and = # y then [|[Ax + (1 — N)y|| < 1 for all
0<A<L

Gii) IF ol = Iyl = 1 and £ y then Ljz +y] < 1.
(iv) The function x — ||z||? is strictly convex.
A norm satisfying one of them is called strictly convex.
Show that ¢P(N) is strictly convex for 1 < p < oo but not for p =1, 0.

Problem 1.17. Show that py < p implies ¢P°(N) C £P(N) and ||a|l, < [|al|p,-
Moreover, show

limn lafl, = fla]o.

Problem 1.18. Formally extend the definition of ¢P(N) to p € (0,1). Show
that ||.||, does not satisfy the triangle inequality. However, show that it is a
quasinormed space, that is, it satisfies all requirements for a normed space
except for the triangle inequality which is replaced by

lla+ bl < K([|all + [|b]])
with some constant K > 1. Show, in fact,
la +bll, < 277 (lall, + [bll), P € (0,1).

Moreover, show that ||.||b satisfies the triangle inequality in this case, but
of course it is no longer homogeneous (but at least you can get an honest
metric d(a,b) = |la — b||h which gives rise to the same topology). (Hint:
Show a+ 8 < (aP + gP)/P < 2V/P=Y o+ B) for 0 <p <1 and o, 3 > 0.)

Problem 1.19. Let I be a compact interval and consider X := C(I). Which
of following sets are subspaces of X ? If yes, are they closed?

(i) monotone functions

(ii) even functions

(iii) polynomials

(v) continuous piecewise linear functions

(vi) CH(1)

)
)
(iv) polynomials of degree at most k for some fized k € Ny
)
) C
(vii) {f € C(I)|f(c) = fo} for some fixzed c € I and fy € R
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Problem 1.20. Let I be a compact interval. Show that the set Y := {f €
C(D)|f(z) > 0} is open in X := C(I). Compute its closure.

Problem 1.21. Compute its closure of the following subsets of £*(N): (i)
By :={a € EI(N)|Zj€N\aj\2 < 1}. (ii) Bx = {a € ﬁl(N)|ZjeN\aj\2 <
Problem™ 1.22. Show that the following set of functions is a Schauder
basis for C[0,1]: We start with ui(t) = t, ua(t) = 1 — ¢ and then split
[0,1] into 2" intervals of equal length and let ugnipi1(t), for 1 < k < 27,

be a piecewise linear peak of height 1 supported in the k’th subinterval:
Ugn i py1(t) := max(0,1 — 2"t — 2k +1]) forn € Ny and 1 < k < 2",

1.3. The geometry of Hilbert spaces

So far it looks like C'(I) has all the properties we want. However, there is
still one thing missing: How should we define orthogonality in C(I)? In
Euclidean space, two vectors are called orthogonal if their scalar product
vanishes, so we would need a scalar product:

Suppose $) is a vector space. A map (.,..) : H x H — C is called a
sesquilinear form if it is conjugate linear in the first argument and linear
in the second; that is,

<alfl+a2f27g> = ai<flvg>+a§<f2ag>a
(f,a1g1 +a2g2) = ai(f,g1) + a(f, 92),

where ‘x’ denotes complex conjugation. A symmetric

(fr9) =(9, /)" (symmetry)

sesquilinear form is also called a Hermitian fornﬂ and a positive definite

(f.f)>0for f#0  (positive definite),

a1, ag € C, (1.35)

Hermitian form is called an inner product or scalar product. Note that
positivity already implies symmetry in the complex case (Problem [1.27)).
Associated with every scalar product is a norm

If1F:= /(S 1) (1.36)

Only the triangle inequality is nontrivial. It will follow from the Cauchy—
Schwarz inequality below. Until then, just regard as a convenient
shorthand notation.

Warning: There is no common agreement whether a sesquilinear form
(scalar product) should be linear in the first or in the second argument and
different authors use different conventions.

16Charles Hermite (1822-1901), French mathematician
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The pair (£, (.,..)) is called an inner product space. If § is complete
(with respect to the norm (1.36)), it is called a Hilbert spaceﬂ

Example 1.9. Clearly, C"" with the usual scalar product
(a,b) ==Y _a’b; (1.37)
j=1

is a (finite dimensional) Hilbert space. o

Example 1.10. A somewhat more interesting example is the Hilbert space
£2(N), that is, the set of all complex-valued sequences

{(aj);?o:l) > lajl? < oo} (1.38)
j=1
with scalar product
(a,0) := Y _a’b;. (1.39)
j=1

That this sum is (absolutely) convergent (and thus well-defined) for a,b €
?2(N) follows from Hélder’s inequality (1.25]) in the case p = ¢ = 2.

Observe that the norm |ja| = +/(a,a) is identical to the norm |al|2
defined in the previous section. In particular, ?(N) is complete and thus
indeed a Hilbert space. o

A vector f € § is called normalized or a unit vector if | f| = 1.
Two vectors f,g € $ are called orthogonal or perpendicular (f L g) if
(f,g9) = 0 and parallel if one is a multiple of the other.

If f and g are orthogonal, we have the Pythagorean theoremﬂ

If + gl = A7+ llgl®, fLg, (1.40)

which is one line of computation (do it!).

Suppose u is a unit vector. Then the projection of f in the direction of
u is given by

fii = (u, flu, (1.41)
and f,, defined via
fiL=f—{(u, fHu, (1.42)
is perpendicular to u since (u, f1) = (u, f — (u, fHu) = (u, f) — (u, f){u,u) =
0.

1TDavid Hilbert (1862-1943), German mathematician
18 Pythagoras| (c. 570—c. 495 BC), ancient Ionian Greek philosopher
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fi

Taking any other vector parallel to u, we obtain from ([1.40))
If = aull® = [IfL + (fy — aw)l* = L7 +{u, ) - of? (1.43)

and hence f is the unique vector parallel to u which is closest to f.
As a first consequence we obtain the Cauchy—Bunyakovsky—Schwarzm
inequality:

Theorem 1.5 (Cauchy-Bunyakovsky—Schwarz). Let 9 be an inner product
space. Then for every f,g € H9 we have

Kol < fIHgll (1.44)
with equality if and only if f and g are parallel.

Proof. It suffices to prove the case ||g|| = 1. But then the claim follows
from || f[I* = [{g, £)I* + I fLI* O

We will follow common practice and refer to (1.44]) simply as Cauchy—
Schwarz inequality. Note that the Cauchy—Schwarz inequality implies that
the scalar product is continuous in both variables; that is, if f, — f and

gn — g, we have (fn, gn) — (f,9).

As another consequence we infer that the map ||.|| is indeed a norm. In
fact,

1F +gli* = 112+ (F. 9) + (9. £) + gll” < (IF1 + NlglD?. (1.45)

But let us return to C'(I). Can we find a scalar product which has the
maximum norm as associated norm? Unfortunately the answer is no! The
reason is that the maximum norm does not satisfy the parallelogram law

(Problem [1.26]).

Theorem 1.6 (Jordan—von NeumannEI). A norm is associated with a scalar
product if and only if the parallelogram law

1f + gl + 11 = glI* = 2II£II* + 2llg]? (1.46)

19viktor Bunyakovsky (1804-1889), Russian mathematician

20Hermann Schwarz (1843 —1921), German mathematician

21pascual Jordan (1902-1980), German theoretical and mathematical physicist

2136hn von Neumann (1903-1957), Hungarian-American mathematician, physicist, computer
scientist, and engineer
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holds.

In this case the scalar product can be recovered from its norm by virtue
of the polarization identity

(o9 =3 (1F + 02 = IF — gl +illf gl il +igl?).  (147)

Proof. If an inner product space is given, verification of the parallelogram
law and the polarization identity is straightforward (Problem |1.27)).

To show the converse, we define

s(7,9) = 3 (1 + 0 ~ 17 = oI +illF ~igll? ~ilf +ig]1?)

Then s(f, f) = [|f]|*> and s(f,g9) = s(g, f)* are straightforward to check.
Moreover, another straightforward computation using the parallelogram law

shows
g+h

s(f,g) +s(f,h) = 2s( ’T)'

Now choosing h = 0 (and using s(f,0) = 0) shows s(f, g) = 2s(f, ) and thus
s(f,9)+s(f,h) = s(f,g+h). Furthermore, by induction we infer Fs(f, g) =
s(f, gwg); that is, as(f,g) = s(f,ag) for a dense set of positive rational
numbers «. By continuity (which follows from continuity of the norm) this
holds for all & > 0 and s(f, —g) = —s(f, g), respectively, s(f,ig) =is(f,g),
finishes the proof. (|

In the case of a real Hilbert space, the polarization identity of course
simplifies to (f,9) = z(If +gl* = If — gII*).

Note that the parallelogram law and the polarization identity even hold
for sesquilinear forms (Problem .

But how do we define a scalar product on C(I)? One possibility is

b
(f. ) = / F*(2)g(x)dz. (1.48)

The corresponding inner product space is denoted by £2,,,(I). Note that we
have

1< V16— alll flloo (1.49)

and hence the maximum norm is stronger than the £2,,, norm.

Suppose we have two norms ||.||; and .||z on a vector space X. Then
||.]|2 is said to be stronger than ||.||; if there is a constant m > 0 such that

[flle < ml[fl2- (1.50)
It is straightforward to check the following.

Lemma 1.7. If ||.||2 is stronger than ||.||1, then every ||.||2 Cauchy sequence
is also a ||.||1 Cauchy sequence.
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Hence if a function F' : X — Y is continuous in (X, ||.|1), it is also
continuous in (X, [.||2), and if a set is dense in (X ||.]|2), it is also dense in
(X 01-11)-

In particular, £2,, is separable since the polynomials are dense. But is
it also complete? Unfortunately the answer is no:

Example 1.11. Take I = [0, 2] and define

0, 0<z<1-1
fa(z) =1 +n(x-1), 1—%§a:§1,
1, 1<z<2.

Then f,(z) is a Cauchy sequence in £2,, but there is no limit in £2,,!

Clearly, the limit should be the step function which is 0 for 0 < x < 1 and
1 for 1 <z < 2, but this step function is discontinuous (Problem [1.30)! ¢

Example 1.12. The previous example indicates that we should consider
(1.48) on a larger class of functions, for example on the class of Riemann@
integrable functions

R(I):={f: 1 — C|f is Riemann integrable}

such that the integral makes sense. While this seems natural it implies
another problem: Any function which vanishes outside a set which is neg-
ligible for the integral (e.g. finitely many points) has norm zero! That is,
Ifll2 = (f;|f(x)?dz)*/? is only a seminorm on R(I) (Problem . To
get a norm we consider N'(I) := {f € R(I)|||f|l2 = 0}. By homogeneity and
the triangle inequality N(I) is a subspace and we can consider equivalence
classes of functions which differ by a negligible function from N (I):

Li(1) = R(I)/N(I).

Since || f|l2 = |lg|l2 for f — g € N(I) we have a norm on £%,(I). Moreover,
since this norm inherits the parallelogram law we even have an inner prod-
uct space. However, this space will not be complete unless we replace the
Riemann by the Lebesguﬁ integral. Hence we will not pursue this further
at this point. o

This shows that in infinite dimensional vector spaces, different norms
will give rise to different convergent sequences. In fact, the key to solving
problems in infinite dimensional spaces is often finding the right norm! This
is something which cannot happen in the finite dimensional case.

Theorem 1.8. If X is a finite dimensional vector space, then all norms are
equivalent. That is, for any two given norms ||.||1 and ||.||2, there are positive

22Bernhard Riemann (1826-1866), German mathematician
23Henri Lebesgue| (1875-1941), French mathematician
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constants mi1 and ms such that

£l < 15 < £l (151)

Proof. Choose a basis {uj}i<j<n such that every f € X can be writ-
ten as f = Zj ajuj. Since equivalence of norms is an equivalence rela-
tion (check this!), we can assume that ||.||2 is the usual Euclidean norm:
[fll2 == 1225 eyujlle = (325 laj|?)1/2. Then by the triangle and Cauchy—
Schwarz inequalities,

<D leglllugl < > lusliF 1112
j j

and we can choose ma = /> |lull3.

In particular, if f,, is convergent with respect to ||.||2, it is also convergent
with respect to ||.||1. Thus ||.||1 is continuous with respect to ||.||2 and attains
its minimum m > 0 on the unit sphere S := {u|||ul|2 = 1} (which is compact
by the Heine—Borel theorem, Theorem . Now choose m; = 1/m. O

Finally, I remark that a real Hilbert space can always be embedded into
a complex Hilbert space. In fact, if ) is a real Hilbert space, then $ x £ is
a complex Hilbert space if we define

(f1, f2)+(91,92) = (fi+g1, fatg2), (a+iB)(f1, f2) = (af1_5f2>04f2‘|(‘5f1§
1.52
and

((f1, f2), (91, 92)) = (f1,91) + (f2, 92) +1((f1,92) — (f2, 91))- (1.53)

Here you should think of (f1, f2) as fi1 +1if2. Note that we have a conjugate
linear map C' : § x H — H x 9, (f1, f2) = (f1, —f2) which satisfies C? =1
and (Cf,Cg) = (g, f). In particular, we can get our original Hilbert space
back if we consider Re(f) = 1(f + Cf) = (f1,0).

Problem 1.23. Which of the following bilinear forms are scalar products on
R™?

(1) s(z,y) =371 (z; +yj5).

(il) s(z,y) = >0 ) ajzjy;, a € R™.

Problem 1.24. Show that the norm in a Hilbert space satisfies || f + g|| =
WfIl + |lgll if and only if f = ag, o >0, or g = 0. Hence Hilbert spaces are

strictly convez (cf. Problem .
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Problem 1.25 (Generalized parallelogram law). Show that, in a Hilbert

space,
o= HIPHE DS HIP=n D 5P

1<j<k<n 1<j<n 1<j<n
for every n € N. The case n = 2 is (|1.46]).

Problem 1.26. Show that the mazimum norm on C[0,1] does not satisfy
the parallelogram law.

Problem* 1.27. Suppose 9 is a complex vector space. Let s(f,g) be a

sesquilinear form on Q and q(f) := s(f, f) the associated quadratic form.
Prove the parallelogram law
a(f +9)+a(f —9) = 24(f) + 24(9) (1.54)
and the polarization identity
1 . . . .
s(fo9) =7 (a(f +9) —a(f —g) +ig(f —ig) —iq(f +ig)).  (1.55)

Show that s(f,g) is symmetric if and only if q(f) is real-valued.
Note, that if Q is a real vector space, then the parallelogram law is un-

changed but the polarization identity in the form s(f,g) = *(q(f +g) —a(f —
g)) will only hold if s(f,g) is symmetric.

Problem 1.28. A sesquilinear form on a complex inner product space is
called bounded if
sl == sup [s(f,9)|
I £lI=llgll=1
is finite. Stmilarly, the associated quadratic form q is bounded if

lgll := sup |q(f)]
I£ll=1
is finite. Show
lall < lisll < 2llqll

with ||q|| = ||s|| if s is symmetric. (Hint: Use the polarization identity from
the previous problem. For the symmetric case look at the real part.)

Problem* 1.29. Suppose Q is a vector space. Let s(f,g) be a sesquilinear
form on Q and q(f) := s(f, f) the associated quadratic form. Show that the
Cauchy—Schwarz inequality

[s(f,9)| < a(f)q(9)"?
holds if q(f) > 0. In this case q(.)'/? satisfies the triangle inequality and
hence is a seminorm.
(Hint: Consider 0 < q(f + ag) = q(f) + 2Re(a s(f,9)) + |al?q(g) and
choose a =t s(f,g9)*/|s(f,g)| witht € R.)

Problem™* 1.30. Prove the claims made about f,, in Example|1.11].
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1.4. Completeness

Since £2,,,(I) is not complete, how can we obtain a Hilbert space from it?
Well, the answer is simple: take the completion.

If X is an (incomplete) normed space, consider the set of all Cauchy
sequences X. Call two Cauchy sequences equivalent if their difference con-
verges to zero and denote by X the set of all equivalence classes. It is easy
to see that X (and X) inherit the vector space structure from X. Moreover,

Lemma 1.9. If z,, is a Cauchy sequence in X, then ||z, is also a Cauchy
sequence and thus converges.

Consequently, the norm of an equivalence class [(z,,)22 ] can be defined
by [[(zn)p4]|l == limp—eo ||zn|| and is independent of the representative
(show this!). Thus X is a normed space. It contains X as a subspace by
virtue of the embedding = — [(x)22 ] which identifies  with the constant
sequence T, := .

Theorem 1.10. X is a Banach space containing X as a dense subspace if
we identify x € X with the equivalence class of all sequences converging to
x.

Proof. (Outline) To see that constant sequences are dense, note that we
can approximate [(z,)2% ] by the constant sequence [(zp,)52 ] as ng — .
It remains to show that X is complete. Let &, = [(#5,5)724] be a Cauchy
sequence in X. Without loss of generality (by dropping terms) we can choose
the representatives x,, ; such that |z, ;j — z, x| < % for j,k > n. Then it is

not hard to see that £ = [(z;,;)72,] is its limit. O

Notice that the completion X is unique. More precisely, every other
complete space which contains X as a dense subset is isomorphic to X. This
can for example be seen by showing that the identity map on X has a unique
extension to X (compare Theorem below).

In particular, it is no restriction to assume that a normed vector space
or an inner product space is complete (note that by continuity of the norm
the parallelogram law holds for X if it holds for X).

Example 1.13. The completion of the space £2,,,(I) is denoted by L?(I).
While this defines L?(I) uniquely (up to isomorphisms) it is often inconve-
nient to work with equivalence classes of Cauchy sequences. A much more
convenient characterization can be given with the help of the Lebesgue inte-
gral (see Chapter [3|from [37] if you are familiar with basic Lebesgue integra-

tion; Theorem from [37] will establish equivalence of both approaches).
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Similarly, we define LP(I), 1 < p < oo, as the completion of C(I) with

respect to the norm
b 1/p
5= ([ 1rpas)

The only requirement for a norm which is not immediate is the triangle
inequality (except for p = 1,2) but this can be shown as for ¢ (cf. Prob-

lem . o

Problem 1.31. Provide a detailed proof of Theorem [I.10}

Problem 1.32. For every f € L'(I) we can define its integral

/cd f(x)dx

as the (unique) extension of the corresponding linear functional from C(I) to

LY(I) (by Theorem below). Show that this integral is linear and satisfies

/Ce f(x)dx = /cdf(a:)d:v + /de f(x)dz, /cdf(a:)dx

Problem* 1.33. Show the Hélder inequality

1 1
I£glly < I fllpllglla, 2+ 2 =1, 1<pg<oo,

< [

for f € LP(I), g € LY(I) and conclude that |.||, is a norm on C(I). Also
conclude that LP(I) C LY(I).

1.5. Compactness

In analysis, compactness is one of the most ubiquitous tools for showing
existence of solutions for various problems. In finite dimensions relatively
compact sets are easily identified as they are precisely the bounded sets by
the Heine-Borel theorem (Theorem [B.22). In the infinite dimensional case
the situation is more complicated. Before we look into this, please recall
that for a subset U of a Banach space (or more generally a complete metric
space) the following are equivalent (see Corollary and Lemma :

e U is relatively compact (i.e. its closure is compact)
e every sequence from U has a convergent subsequence

e U is totally bounded (i.e. it has a finite e-cover for every ¢ > 0)

Example 1.14. Consider the bounded sequence (6™)2°; in ¢P(N). Since
|6 — 6™, = 2Y/P for n # m, there is no way to extract a convergent
subsequence. o



28 1. A first look at Banach and Hilbert spaces

In particular, the Heine-Borel theorem fails for ¢P(N). In fact, it turns
out that it fails in any infinite dimensional space as we will see in Theo-
rem [£:31] below. Hence one needs criteria when a given subset is relatively
compact. Our strategy will be based on total boundedness and can be out-
lined as follows: Project the original set to some finite dimensional space
such that the information loss can be made arbitrarily small (by increasing
the dimension of the finite dimensional space) and apply Heine—Borel to the
finite dimensional space. This idea is formalized in the following lemma.

Lemma 1.11. Let X be a metric space and K some subset. Assume that
for every € > 0 there is a metric space Yg, a surjective map P. : X — Y,
and some 6 > 0 such that P.(K) is totally bounded and d(x,y) < € whenever
x,y € K with d(P:(x), P-(y)) <. Then K is totally bounded.

In particular, if X is a Banach space the claim holds if P- can be chosen a
linear map onto a finite dimensional subspace Yz such that P-(K) is bounded,
and ||(1 — P:)z|| < e forx € K.

Proof. Fix ¢ > 0. Then by total boundedness of P.(K) we can find a 0-
cover {Bs(y;)}jL, for P-(K). Now if we choose z; € P 1({y;}) N K, then
{Be(x;)}}— is an e-cover for K since P7Y(Bs(y;)) N K C B(z;).

For the last claim consider P./3 and note that for § := ¢/3 we have
lz=yll < 1(1=Peya)al+ 1 Peys(z =) |+ (1= Pya)yll <eforz,ye K. O

The first application will be to /#(N).

Theorem 1.12 (Fréche@. Consider (P(N), 1 < p < oo, and let Pya =
(a1,...,an,0,...) be the projection onto the first n components. A subset
K C P(N) is relatively compact if and only if
(i) 4t is pointwise bounded, sup,cx |a;| < M; for all j € N, and
(i) for every e > 0 there is some n such that ||(1 — Py)al|, < & for all
a€k.

In the case p = oo conditions (i) and (i) still imply that K is relatively
compact, but the converse only holds for IC C co(N).

Proof. Clearly (i) and (ii) is what is needed for Lemma [1.11]

Conversely, if K is relatively compact it is bounded. Moreover, given
6 we can choose a finite d-cover {Bs(a’)}2; for K and some n such that
(1 = Pp)al||p, <0 forall 1 < j < m (this last claim fails for £*°(N)). Now

given a € K we have a € Bs(a’) for some j and hence ||(1 — Py)all, <
(1= Py)(a—a)|,+ (1 = Py)a’|, <26 as required. O

24Maurice René Fréchet (1878-1973), French mathematician
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Example 1.15. Fix a € (P(N) if 1 < p < 0o or a € ¢p(N) if p = co. Then
IC .= {b] |bj| < |a;j|} C P(N) is compact. o

The second application will be to C'(I). A family of functions F' C C(I)
is called (pointwise) equicontinuous if for every ¢ > 0 and every z € [
there is a § > 0 such that

|f(y) = f(z)| <e whenever |y—uz|<d, VfePF (1.56)
That is, in this case ¢ is required to be independent of the function f € F.

Theorem 1.13 (ArzelafAscolﬁ). Let FF C C(I) be a family of continuous
functions. Then F' is relatively compact if and only if F' is equicontinuous
and the set { f(xo)|f € F'} is bounded for one xy € I. In this case F is even
bounded.

Proof. Suppose F' is equicontinuous and bounded for a fixed zg. Fix ¢ > 0.
By compactness of I there are finitely many points x1,...,x, € I such
that the balls By, (xj) cover I, where ¢; is the ¢ corresponding to z; as
in the definition of equicontinuity. Now first of all note that, since I is
connected and since xg € B(;j (xj) for some j, we see that F' is bounded:
|f(2)] < supgep | f(zo)| + 2ne.

Next consider P : C(I) — C", P(f) = (f(x1),..., f(zpn)). Then P(F)
is bounded and ||f — gllooc < 3¢ whenever ||P(f) — P(g)|lcc < €. Indeed,
just note that for every x there is some j such that z € Bs,(z;) and thus
(@) —g(@)| < |F(@) = Flay)| + £ () — 9(a;)] + g(a;) — g(a)] < 3. Hence
F is relatively compact by Lemma [1.11

Conversely, suppose F' is relatively compact. Then F' is totally bounded
and hence bounded. To see equicontinuity fix € I, € > 0 and choose a
corresponding e-cover {B.(f;)}7_; for F'. Pick § > 0 such that y € Bs(z)
implies |f;(y) — fj(z)| < eforalll1 <j <n. Then f € B.(f;) for some j and
hence |£(y) — f(2)| < 1£(y) — F0)| + 1£5(0) — f5(@) + | () — f(2)] < 3e,
proving equicontinuity. ([l

Example 1.16. Consider the solution f,(z) of the initial value problem
f=sin(nf),  F0)=1.

(Assuming this solution exists — it can in principle be found using separation
of variables.) Then |f](z)| < 1 and hence the mean value theorem shows
that the family { f,} € C([0, 1]) is equicontinuous. Hence there is a uniformly
convergent subsequence. o

Problem 1.34. Find a compact subset of £>°(N) which does not satisfy (ii)
from Theorem [1.13

25Cesare Arzela (1847-1912), Italian mathematician
25Giulio Ascoli (1843-1896), Italian mathematician
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Problem 1.35. Show that a subset KK C co(N) is relatively compact if and

only if there is a nonnegative sequence a € c¢o(N) such that |b,| < a, for all
neNandallbe K.

Problem 1.36. Find a sequence in C[0,1] which is bounded but has no
convergent subsequence.

Problem 1.37. Find a family in C[0,1] that is equicontinuous but not
bounded.

Problem 1.38. Which of the following families are relatively compact in
Clo,1]¢
(i) F={feC0,1]][Ifl <1}
(i) F:={f € CHO, ][ /'lloc < 1}
(iii) F = {f € CHO A [[floo < L, [If']l2 < 1}

1.6. Bounded operators

Given two normed spaces X and Y, a linear map
A:DA)CX Y (1.57)
will be called a (linear) operator. The linear subspace ©(A) on which A
is defined is called the domain of A and is frequently required to be dense.
The kernel (also null space)
Ker(A) :={x € ®(A)|Az =0} C X (1.58)
and range
Ran(A) := {Az|z € D(A)} = AD(A) CY (1.59)
are again linear subspaces. Note that a linear map A will be continuous if
and only if it is continuous at 0, that is, x,, € D(A) — 0 implies Ax,, — 0.

The operator A is called bounded if the operator norm

|Al :== sup |Az|ly = sup || Az|ly (1.60)
2€D(A),|Jxf| x <1 z€D(A),[lz]|x=1
is finite. This says that A is bounded if the image of the closed unit ball
B{¥(0)ND(A) is contained in some closed ball BY (0) of finite radius r (with
the smallest radius being the operator norm). Hence A is bounded if and
only if it maps bounded sets to bounded sets.
Note that if you replace the norm on X or Y, then the operator norm
will of course also change in general. However, if the norms are equivalent
so will be the operator norms.

By construction, a bounded operator satisfies

[Azlly <[ Allllzllx, = eD(A), (1.61)
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and hence is Lipschitﬂ continuous, that is, ||Ax — Ay|ly < ||A||||x —y||x for
z,y € D(A). Note that ||A]| could also be defined as the optimal constant
in the inequality ((1.61)). In particular, it is continuous. The converse is also
true:

Theorem 1.14. A linear operator A is bounded if and only if it is continu-
ous.

Proof. Suppose A is continuous but not bounded. Then there is a sequence
of unit vectors z,, € D(A) such that || Az,||y > n. Then y, := Lz, converges
to 0 but ||Ayn|ly > 1 does not converge to 0. O

Of course it suffices to check continuity at one point in X, say at 0, since
continuity at all other points will then follow by a simple translation.

If X is finite dimensional, then every linear operator is bounded:

Lemma 1.15. Let X, Y be normed spaces with X finite dimensional. Then
every linear operator A : D(A) C X — Y is bounded.

Proof. Choose a basis {z;}]_; for D(A) such that every x € D(A) can be
written as x = Z?zl a;z;. By Theorem there is a constant m > 0 such

that (37, laj|?)Y/? < ml|z| x. Then

n
[Az]ly < logl[|Azylly <m
j=1

> Az 3l x

7j=1

and thus Al < m(X7_, ||Az;||2)V/2. =

In the infinite dimensional case an operator can be unbounded. More-
over, one and the same operation might be bounded (i.e. continuous) or
unbounded, depending on the norm chosen.

Example 1.17. Let X := ¢P(N) and a € ¢*°(N). Consider the multiplication
operator A : X — X defined by

(Ab)] = ajbj.

Then [(Ab);| < |la|loo|bj| shows [|A]| < ||a]|sc. In fact, we even have ||Al =
|lal|so (show this). Note also that that the sup in (1.60) is only attained if a
attains its supremum.

If a is unbounded we need a domain D(A) := {b € P(N)|(ajb;)jen €
P(N)} and A will be unbounded (show this). o

26Rudolf Lipschitz (1832-1903), German mathematician


http://en.wikipedia.org/wiki/Rudolf Lipschitz

32 1. A first look at Banach and Hilbert spaces

Example 1.18. Consider the vector space of differentiable functions X :=
C10,1] and equip it with the norm (cf. Problem |1.46)

- /
7o = max. |f(@)] + max. |f'(2)].

)

Let Y := C[0, 1] and observe that the differential operator A = % X =Y
is bounded since

Afllso = max |f’ < ma + max |f’ = ol

47 e = s [7/0)] < e 1]+ s 17'0)] = [
However, if we consider A = 4 : D(4) C Y — Y defined on D(A) =
C'[0,1], then we have an unbounded operator. Indeed, choose u,(z) :=
sin(nmz) which is normalized, ||un|/cc = 1, and observe that

Aup(z) = ul,(z) = nm cos(nmz)

is unbounded, ||Aupllc = nm. Note that ©(A) contains the set of polyno-
mials and thus is dense by the Weierstraf approximation theorem (Theo-
rem |1.3]). o

If A is bounded and densely defined, it is no restriction to assume that
it is defined on all of X.

Theorem 1.16 (extension principle). Let A: D(A) C X — Y be a bounded
linear operator between a normed space X and a Banach space Y. If D(A)
is dense, there is a unique (continuous) extension of A to X which has the
same operator norm.

Proof. Since ®(A) is dense, we can find a convergent sequence x,, — x from
D(A) for every x € X. Moreover, since A is bounded, Az, is also Cauchy
and has a limit since Y is assumed complete. Consequently, this extension
can only be given by

Az = lim Az, Ty, € D(A), ze€X.

n—o0

To show that this definition is independent of the sequence xz,, — x, let
Yn — x be a second sequence and observe

[Azn — Ayn = [|A(zn — yn)[| < [|A[l[l2n — ynll = 0.

Since for z € D(A) we can choose z,, := z, we see that Az = Az in this
case, that is, A is indeed an extension. From continuity of vector addition
and scalar multiplication it follows that A is linear. Finally, from continuity
of the norm we conclude that the operator norm does not increase. ([l

The set of all bounded linear operators from X to Y is denoted by
Z(X,)Y). If X =Y, we write Z(X) := Z(X, X). An operator in .Z(X,C)
is called a bounded linear functional, and the space X* := Z(X,C) is
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called the dual space of X. The dual space takes the role of coordinate
functions in a Banach space.

Example 1.19. Let X be a finite dimensional space and {u;}7_; a basis.
Then every x € X can be uniquely written as x = ZFI ajuj and we can
consider the dual functionals defined via uj(z) := a; for 1 < j < n. The
biorthogonal system {u;" ?:1 (which are continuous by Lemma } form
a dual basis since any other linear functional £ € X* can be written as

€= L(uj)u;. In particular, X and X* have the same dimension. o
Example 1.20. Let X := ¢P(N). Then the coordinate functions

lj(a) == a;
are bounded linear functionals: |¢;(a)| = |a;| < ||lal, and hence ||¢;]] = 1

(since equality is attained for a = §7). More general, let b € ¢9(N) where
% + % = 1. Then

)= bja;
j=1

is a bounded linear functional satisfying ||4,|| < ||b]|, by Holder’s inequality.
In fact, we even have ||(p|| = ||b||4 (Problem[4.17)). Note that the first example

is a special case of the second one upon choosing b = ¢7. o
Example 1.21. Consider X := C(I). Then for every zp € I the point
evaluation £, (f) := f(xo) is a bounded linear functional. In fact, ||fy,]| = 1

(show this).
However, note that /., is unbounded on £2,,(I)! To see this take
fa(@) == {/22 max(0,1 — n|z — zo|) which is a triangle shaped peak sup-

ported on [zg — n ™!, 29 + n~!] and normalized according to ||f,|l2 = 1 for
n sufficiently large such that the support is contained in I. Then ¢, (f) =

fn(xo) = 3—” — 00. This implies that ¢,, cannot be extended to the com-

pletion of Econt( ) in a natural way and reflects the fact that the integral
cannot see individual points (changing the value of a function at one point
does not change its integral). o

Example 1.22. Consider X := C(I) and let g be some continuous function.
Then

b
Mﬂ:/g@ﬂwm

is a linear functional with norm |[|¢,|| = ||g|[1. Indeed, first of all note that

r</w |m<mu/g )|z
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shows ||[{g|| < ||g]l1. To see that we have equality consider f. = ¢*/(|g| + ¢)
and note

b 2 b 2 _ 2
g\r glz)|* —¢
1€y (f)l = g@I" g, > ls@P =&, _ lglli — (b= a)e.
o lg()]+e o lg(@)|+e
Since ||f:|| <1 and € > 0 is arbitrary this establishes the claim. o

Theorem 1.17. The space £(X,Y) together with the operator norm (|1.60))
is a normed space. It is a Banach space if Y is.

Proof. That is indeed a norm is straightforward. If Y is complete
and A, is a Cauchy sequence of operators, then A,x converges for every
x. Define a new operator A via Ax := lim, .. Apx. By continuity of
the vector operations, A is linear and by continuity of the norm ||Az| =
lim, o0 [[Anz]| < (limp—eo ||An]])||z]|, it is bounded (recall that ||A,] is
Cauchy by the inverse triangle inequality). Furthermore, given £ > 0, there
is some N such that ||A4,, — A, || < e for n,m > N and thus ||A,z — Apz|| <
el fll. Taking the limit m — oo, we see ||Apz — Az| < ¢||z|; that is,
|An, — Al < e and hence A4,, — A. O

In particular, note that the dual space X* is always a Banach space, even
if X is not complete. Moreover, by Theorem the completion X satisfies
X* = X~

The Banach space of bounded linear operators .Z(X) even has a multi-
plication given by composition. Clearly, this multiplication is distributive

(A+B)C =AC+BC, A(B+C)=AB+BC, A/B,Cec Z(X), (1.62)
and associative
(AB)C = A(BC), a(AB) = (a¢A)B = A(aB), «ac€C. (1.63)
Moreover, it is easy to see that we have
|AB| < || A]1B]. (1.64)

In other words, Z(X) is a so-called Banach algebra. However, note that
our multiplication is not commutative (unless X is one-dimensional). We
even have an identity, the identity operator I, satisfying ||I|| = 1.

Problem 1.39. Show that two norms on X are equivalent if and only if they
give rise to the same convergent sequences.

Problem 1.40. Show that a finite dimensional subspace M C X of a normed
space s closed.

Problem 1.41. Consider X = C" and let A € £(X) be a matriz. Equip
X with the norm (show that this is a norm)

2]lo0 = g]agxn\fcjl
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and compute the operator norm ||A|| with respect to this norm in terms of
the matriz entries. Do the same with respect to the norm

lzlli:= Y -
1<j<n

Problem 1.42. Let X := C[0,1]. Investigate if the following operators
A: X — X are linear and, if yes, compute the norm.

(1) f(@) = (1 - 2)z f(2?).
(ii) f(z) = (1 —2)z f(2)*
(i) f(x) = Jo (1= @)y fy)dy.
Problem 1.43. Let X := C]0,1]. Investigate the operator A : X — X,

f(z) = z f(x). Show that this is a bounded linear operator and compute its
norm. What is the closure of Ran(A)?

Problem 1.44. Let X := C0,1]. Show that ¢(f) := fol f(z)dz is a linear
functional. Compute its norm. Is the norm attained? What if we replace X
by Xo := {f € C[0,1]|f(0) = 0} (in particular, check that this is a closed
subspace)?

Problem 1.45. Show that the integral operator

1
(K f)(z) = /O K () (v)dy.

where K(x,y) € C([0,1] x [0,1]), defined on D(K) := CI0,1], is a bounded
operator both in X := C[0,1] (maz norm) and X := L£2,,,(0,1). Show that
the norm in the X = C|0, 1] case is given by

1
K| = K (z,v)|dy.
1K1 = max [ K (e )lay

Problem™ 1.46. Let I be a compact interval. Show that the set of dif-
ferentiable functions C(I) becomes a Banach space if we set ||f|ls1 =

maxges | f(z)| + maxzer | f/(2)].

Problem* 1.47. Show that |AB| < ||A||||B|| for every A,B € Z(X).
Conclude that the multiplication is continuous: A, — A and B, — B imply
A, B, — AB.

Problem 1.48. Let A € Z(X) be a bijection. Show
AT = nf - [JAS].

z€X,||z]|=1
Problem* 1.49. Suppose B € £ (X) with ||B|| < 1. Then I+ B is invertible
with
o

(I+B)"'=> (-1)"B™

n=0
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Consequently for A, B € £ (X,Y), A+ B is invertible if A is invertible and
1Bl < 1A~

Problem* 1.50. Let
m .
F2) =317, |z <R,
=0

be a convergent power series with radius of convergence R > 0. Suppose X is
a Banach space and A € £ (X) is a bounded operator with limsup,, || A"||/" <
R (note that by [|A™]| < [|A||™ the limsup is finite). Show that

FA) =D f;40
=0

exists and defines a bounded linear operator. Moreover, if f and g are two
such functions and a € C, then

(f +9)(A) = F(A) +9(A), (af)(A) =af(a), (f9)(A)= f(A)g(A).
(Hint: Problem[1.6)

Problem* 1.51. Show that a linear map ¢ : X — C is continuous if and
only if its kernel is closed. (Hint: If { is not continuous, we can find a
sequence of normalized vectors x,, with |{(x,)| — 0o and a vector y with

ty)=1.)

1.7. Sums and quotients of Banach spaces

Given two normed spaces X; and X3 we can define their (direct) sum
X = X1 ® Xy as the Cartesian product X; x X5 together with the norm
|(z1,z2)|| := [|z1]| + [Jz2]. Clearly X is again a normed space and a se-
quence in X converges if and only if the components converge in X; and
Xo, respectively. Hence X7 @ X9 will be complete iff both X; and X, are
complete.

Moreover, since all norms on R? are equivalent (Theorem , we could
equivalently take the norms || (z1, 22)||, := (|21 ][P+]x2][P)/P or ||(x1, 22)]|c0 :=
max(||z1]], [|z2]]). We will write X; @, X if we want to emphasize the norm
used. In particular, in the case of Hilbert spaces the choice p = 2 will
ensure that X is again a Hilbert space associated with the scalar product
(1, 22), (Y1, 92)) = (x1,91) + (T2, 2).

Note that X; and X5 can be regarded as closed subspaces of X7 x Xo
by virtue of the obvious embeddings =1 — (21,0) and z2 — (0,z2). It
is straightforward to generalize this concept to finitely many spaces (Prob-

lem .
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If A; : ©(A4;) € X; =Y, j = 1,2, are linear operators, then A, @ A, :
@(Al) X @(AQ) C X190 X9 — Y @Y, is defined as A; @ Ag(wl,l'g) =
(Ajz1, Agxg). Clearly A; & Ay will be bounded if and only if both A; and
Aj are bounded and ||A; & Az|| = max(|| A1, || Az2]|)-

Note that if A; : X; — Y, j = 1,2, there is another natural way o
defining an associated operator X1 ® Xo — Y given by A1 As(z1, 22) :
A1z + Agxg. In particular, in the case Y = C we get that (X7 @, X2)*
Xi ®y X5 for 3+ 1 =1 via the identification (¢1,£2) € X7 @y X5 — (1Dl
(X1 @®p X2)*. It is not hard to see that this identification is bijective and
preserves the norm (Problem [1.53).

Given two subspaces M, N C X of a vector space, we can define their sum
asusual: M + N :={z+y|r € M,y € N}. In particular, the decomposition
x+y with x € M, y € N is unique iff M N N = {0} and we will write
M + N in this case. It is important to observe, that M + N is in general
not isomorphic to M @ N since both have different norms. In fact, M + N
might not even be closed (no problems occur if one of the spaces is finite

dimensional — see Corollary below).

Example 1.23. Consider X := (P(N) with 1 < p < co. Let M := {a €
Xlag, = 0} and N := {b € X|by,_1 = n®bg,}. Then both subspaces are
closed and M NN = {0}. Moreover, if ¢ = a +b with a € M and b € N,
then b, = c2, (and by, 1 = n3coy,) as well as ag,_1 = 2,1 — n3coy, (and
as, = 0). Hence there is such a splitting for ¢ if and only if n3co, € ¢P(N).
In particular, this works for all sequences with compact support and thus
M 4 N is dense. However, it is not all of X since ¢,, = 7712 ¢ M+ N. Indeed,
by the above analysis we had by, = ﬁ and hence by,_1 = %, contradicting
be N C X. What about the case p = c0? o

-

m R

A closed subspace M is called complemented if we can find another
closed subspace N with M NN = {0} and M + N = X. In this case every
x € X can be uniquely written as x = x1 + x2 with 1 € M, z9 € N and
we can define a projection P : X — M, x + x;. By definition P> = P
and we have a complementary projection @ := I — P with Q : X — N,
x +— xo. Moreover, it is straightforward to check M = Ker(Q) = Ran(P)
and N = Ker(P) = Ran(Q). Of course one would like P (and hence also
Q) to be continuous. If we consider the linear bijection ¢ : M & N — X,
(w1, 22) = 21+, then this is equivalent to the question if ¢! is continuous.
By the triangle inequality ¢ is continuous with ||¢|| < 1 and the inverse
mapping theorem (Theorem will answer this question affirmative. In
summary, we have M & N = X.

It is important to emphasize, that it is precisely the requirement that N
is closed which makes P continuous (conversely observe that N = Ker(P)
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is closed if P is continuous). Without this requirement we can always find
N by a simple application of Zorn’s lemma (order the subspaces which have
trivial intersection with M by inclusion and note that a maximal element has
the required properties). Moreover, the question which closed subspaces can
be complemented is a highly nontrivial one. If M is finite (co)dimensional,
then it can be complemented (see Problems and .

Given a subspace M of a linear space X we can define the quotient
space X /M as the set of all equivalence classes [z] = z + M with respect to
the equivalence relation x = y if x —y € M. It is straightforward to see that
X/M is a vector space when defining [z]+[y] = [z+y] and a|z] = [az] (show
that these definitions are independent of the representative of the equivalence
class). The dimension of X/M is known as the codimension of M.

In particular, for a linear operator A : X — Y the linear space Coker(A) :=
Y/ Ran(A) is know as the cokernel of A.

Lemma 1.18. Let M be a closed subspace of a normed space X. Then X /M
together with the norm

:=dist(x, M) = inf ||z — 1.65
I []]] ist(z, M) ylél”Hx yll (1.65)
is a normed space. It is complete if X is.

Proof. First of all we need to show that is indeed a norm. If ||[z]|| = 0
we must have a sequence y; € M with y; — —x and since M is closed we
conclude = € M, that is [x] = [0] as required. To see ||a[z]|| = |al||[z]| we
use again the definition

= = 1 f = 1 f
lefe]| = lllaa]ll = inf flaz +y[ = inf oz + ayl|
ol inf Jlo+yl = ladl=]]

The triangle inequality follows with a similar argument

= :.f p— .f
(] + 1) = o+ 91l = inf [lo+y+2] = inf o+ 20 +y+ 2l

1,

< jof flo+z|+ nf ly+zf =[]+l

Thus is a norm and it remains to show that X/M is complete if X is.
To this end let [z,,] be a Cauchy sequence. Since it suffices to show that some
subsequence has a limit, we can assume ||[x,+1] — [25]]| < 27" without loss of
generality. Moreover, by definition of we can chose the representatives
xy, such that ||x,+1 —x,|| < 27" (start with 21 and then chose the remaining
ones inductively). By construction z,, is a Cauchy sequence which has a limit
x € X since X is complete. Moreover, by ||[z,,]—[z]|| = [|[zn—2]|| < ||zn—x]|
we see that [z] is the limit of [x,,)]. O
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Observe that dist(z, M) = 0 whenever z € M and hence we only get a
semi-norm if M is not closed.
Example 1.24. If X := C[0,1] and M := {f € X|f(0) = 0} then X/M =
C. In fact, note that every f € X can be written as f(x) = g(x) + o with
g(z) = f(x) — f(0) € M and o := f(0) € C. o
Example 1.25. If X := ¢(N), the convergent sequences, and M := ¢y(N),
the sequences converging to 0, then X/M = C. In fact, note that every
sequence x € ¢(N) can be written as z = y + ae with y € ¢(N), e :=
(1,1,1,...), and «a := lim, o0 x, € C its limit. o

The quotient map 7 : X — X/M, x — [z] is a linear surjective map

with Ker(7) = M. By ||[z]]| < ||z|| the quotient map 7 : X — X/M, x > [z]
is bounded with norm at most one. As a small application we note:

Corollary 1.19. Let X be a normed space and let M, N C X be two closed
subspaces with one of them, say N, finite dimensional. Then M + N s also
closed.

Proof. If 7 : X — X/M denotes the quotient map, then M + N =
7 1(7(N)). Moreover, since 7(N) is finite dimensional it is closed and hence
771 (7(N)) is closed by continuity. O

Problem* 1.52. Let X, j = 1,...,n, be Banach spaces. Let X := ®Z,j=1 X;
be the Cartesian product X1 X --- X X, together with the norm

n 2\ P
(oo lasl?) ™ 1 <p <o,

max;=1,.nll7ll, p=oc.

H(xlv"' 7xn)||p =

Show that X is a Banach space. Show that all norms are equivalent and that
this sum is associative (X1 ®p Xo2) ®p Xz = X1 ®) (X2 ®)p X3).

Problem* 1.53. Let X;, j =1,...,n, be Banach spaces. Using the notation
from the previous problem, show that (@Z,j:l X)) = @ZJ:l X3, where 5 +
% = 1. (Hint: Hélder’s inequality in C™ and note that equality is attained.)
Problem 1.54. Let X, j € N, be Banach spaces. Let X := GaijN X be
the set of all elements v = (xj)jen of the Cartesian product for which the

norm

» 1/p
(Syenllsli?) ™, 1 <p <o,

max;en ||z, P = 00,

[l =

is finite. Show that X is a Banach space. Show that for 1 < p < oo the
elements with finitely many nonzero terms are dense and conclude that X is
separable if all X; are.
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Problem 1.55. Let X := (?(N) and M := {a € Xlag, = 0}, N := {a €
X|nag, = agn-1}. Is M + N closed?

Problem 1.56. Let £ be a nontrivial linear functional. Then its kernel has
codimension one.

Problem 1.57. Consider X := ¢*°(N) and M := c¢y(N). Show dist(a, M) =
lim sup; [a|.

Problem 1.58 (Complexification). Given a real normed space X its com-
plexification is given by Xc := X x X together with the (complex) scalar
multiplication a(z,y) = (Re(a)z — Im(a)y, Re(a)y + Im(«)z). By virtue of
the embedding x — (z,0) you should of course think of (x,y) as x + iy.
Show that
|z +3ylic = max || cos(t)x + sin(t)y])

defines a norm on Xc which satisfies ||x||c = ||z| and
max([lz[l, [y]]) < llz +iylle < (] + ly*[)"/?

In particular, this norm is equivalent to the product norm on X ® X.

If X is a Hilbert space, then the above norm will in general not give
rise to a scalar product. However, any bilinear form s : X x X — R gives
rise to a sesquilinear form sc(x1 + iyi, x2 + iy2) = s(x1,z2) + s(y1, y2) +
i(s(z1,y2) — s(y1,22)). If s is symmetric or positive definite, so will be sc.
The corresponding norm satisfies (x + iy,x + iy)c = |z||* + ||ly||* and is
equivalent to the above one since 3(||z|? + [ly[|?) < |z +iy|2 < ||lz|> + ||y]|*

Given two real normed spaces X, Y, every linear operator A : X — Y
gives rise to a linear operator Ac : Xc — Yo via Ac(x + iy) = Az + iAy.
Show [|Acl| = [|A].

Problem* 1.59. Suppose A € Z(X,Y). Show that Ker(A) is closed.
Suppose M C Ker(A) is a closed subspace. Show that the induced map
A:X/M =Y, [2] = Az is a well-defined operator satisfying | A| = || Al
and Ker(A) = Ker(A)/M. In particular, A is injective for M = Ker(A).

Problem* 1.60. Show that if a closed subspace M of a Banach space X has
finite codimension, then it can be complemented. (Hint: Start with a basis
{[z;]} for X/M and choose a corresponding dual basis {{} with (i ([x;]) =

Ojik-)
1.8. Spaces of continuous and differentiable functions

In this section we introduce a few further sets of continuous and differen-
tiable functions which are of interest in applications. Let I be some compact
interval, then we can make C'(I) into a Banach space by (Problem [1.46)
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by introducing the norm ||f|l1.00 := ||fllcc + I/ lco. By a straightforward
extension we can even get (cf. Problem |1.63))

Theorem 1.20. Let I C R be some interval. The space CE(I) of all func-
tions whose partial derivatives up to order k are bounded and continuous
form a Banach space with norm

k

1£llkoe == sup | f9(x)]. (1.66)

=0 zel

Note that the space CF(I) could be further refined by requiring the
highest derivatives to be Holder continuous. Recall that a function f: I — C
is called uniformly Hélder continuous with exponent vy € (0, 1] if

f@) = f(y)
[f]y == sup LA 5 | (1.67)
xF#yel ‘iL‘ - y‘
is finite. Clearly, any Holder continuous function is uniformly continuous
and, in the special case v = 1, we obtain the Lipschitz continuous func-
tions. Note that for v = 0 the Holder condition boils down to boundedness
and also the case v > 1 is not very interesting (Problem [1.61]).

Example 1.26. By the mean value theorem every function f € C{(I) is
Lipschitz continuous with [f]y < || f/[|oc. o
Example 1.27. The prototypical example of a Hoélder continuous function
is of course f(z) := 27 on [0,00) with v € (0,1]. In fact, without loss of
generality we can assume 0 <z <y and set t = € [0,1). Then we have

Yy’ —x7 1-—t7 11—t
(y—a) = (L=t "1t

1.

From this one easily gets further examples since the composition of two
Holder continuous functions is again Holder continuous (the exponent being
the product). o

It is easy to verify that this is a seminorm and that the corresponding
space is complete.

Theorem 1.21. Let I C R be an interval. The space Cf’v(f) of all functions
whose partial derivatives up to order k are bounded and Hoélder continuous
with exponent v € (0,1] form a Banach space with norm

1F o0 2= I llkoo + LF O], (1.68)

As already noted before, in the case v = 0 we get a norm which is equiv-
alent to || f|loo,r and we will set C’f’o(I) := CF(I) for notational convenience
later on.
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Note that by the mean value theorem all derivatives up to order lower
than k are automatically Lipschitz continuous. Moreover, every Holder con-
tinuous function is uniformly continuous and hence has a unique extension
to the closure I (cf. Theorem . In this sense, the spaces Cg”(]) and

Cl? "7(I) are naturally isomorphic. Finally, since Holder continuous functions
on a bounded domain are automatically bounded, we can drop the subscript
b in this situation.

Theorem 1.22. Suppose I C R is a compact interval. Then C%72(I)
CO(I) C C(I) for 0 < v1 < v2 < 1 with the embeddings being compact.

N

Proof. That we have continuous embeddings follows since |z — y|™" =
|z —y| =72+t (2=7) < (2)7277 |2 —9y| 72 if r denotes the length of I. Moreover,
that the embedding €% (I) C C(I) is compact follows from the Arzela-
Ascoli theorem (Theorem [1.13). To see the remaining claim let f,, be a
bounded sequence in C%71(I), explicitly || finllco < C and [f],, < C. Hence
by the Arzela—Ascoli theorem we can assume that f,, converges uniformly to
some f € C(I). Moreover, taking the limit in |fp,(z) — fi(y)| < Clz — y|™
we see that we even have f € C%71(I). To see that f is the limit of f,, in
C%72(I) we need to show [gm]y, — 0, where gp, = fm — f. Now observe
that

|gm () — gm(y)| |gm () — gm(y)|

[9mly, = sup sup
e cF#yel:|z—y|>e |.%' - y|’Y2 rF#yel|z—y|<e ’.CC - y|72

< 2/lgmllooe ™™ + [gmlpu€™ 7 < 2l gmlloce ™2 +2CeM T2,

implying imsup,,, o [gm]y, < 2Ce7 772 and since € > 0 is arbitrary this
establishes the claim. O

As pointed out in Example the embedding C}(I) C Cl?’l(f) is

continuous and combining this with the previous result immediately gives

Corollary 1.23. Suppose I C R is a compact interval, ki,ko € Ny, and
0 < 71,72 < 1. Then C*272(1) C CF 1 (I) for ky +v1 < kg + yo with the
embeddings being compact if the inequality is strict.

For now continuous functions on intervals will be sufficient for our pur-
pose. However, once we delve deeper into the subject we will also need
continuous functions on topological spaces X. Luckily most of the results
extend to this case in a more or less straightforward way. If you are not
familiar with these extensions you can find them in Section [B.§

Problem 1.61. Let I be an interval. Suppose f: I — C is Hélder continu-
ous with exponent v > 1. Show that f is constant.
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Problem 1.62. Let I := [a,b] be a compact interval and consider C*(I).
Which of the following is a norm? In case of a morm, is it equivalent to

H-Hl,oo?
(1) 1 lloo
(i) 1o
(iii) [f(a)] + [ f"llo
(iv) |f(a) = FO) + 1]l

) [21f(@)ldz + || fll

Problem* 1.63. Suppose X is a vector space and ||.||;, 1 < j < n, is a
finite family of seminorms. Show that ||z|| := %, ||lz[|; is a seminorm. It
is a norm if and only if ||x||; = 0 for all j implies x = 0.

Problem 1.64. Let I. Show that the product of two bounded Hélder contin-
uwous functions is again Hélder continuous with

[F9ly < 1 fllclgly + [f15 119l oo






Chapter 2

Hilbert spaces

The additional geometric structure of Hilbert spaces allows for an intuitive
geometric solution of many problems. In fact, in many situations, e.g. in
Quantum Mechanics, Hilbert spaces occur naturally. This makes them the
weapon of choice whenever possible. Throughout this chapter £ will be a
(complex) Hilbert space.

2.1. Orthonormal bases

In this section we will investigate orthonormal series and you will notice
hardly any difference between the finite and infinite dimensional cases. As
our first task, let us generalize the projection into the direction of one vector.

A set of vectors {u;} is called an orthonormal set if (uj,u;) = 0
for j # k and (uj,uj) = 1. Note that every orthonormal set is linearly
independent (show this).

Lemma 2.1. Suppose {uj}?zl s a finite orthonormal set in a Hilbert space
5. Then every f € H can be written as

n

F=RH+fe  f=) (u, Hu, (2.1)

j=1
where f| and f1 are orthogonal. Moreover, (uj, f1) =0 for all1 < j < n.
In particular,

1P =D g, AP+ I1FLIP. (2.2)
j=1

Furthermore, every f in the span of {uj};-‘zl satisfies

1F = Fl = el (2.3)
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with equality holding if and only z'ff = fj- In other words, f is uniquely
characterized as the vector in the span of {uj}?zl closest to f.

Proof. A straightforward calculation shows (uj, f — f|) = 0 and hence fj
and f := f — f are orthogonal. The formula for the norm follows by
applying (1.40)) iteratively.

Now, fix a vector f := Z?Zl aju; in the span of {u;}7_;. Then one
computes

If = FIP =g+ fo = FIP = £+ 1fy - A1
= LIP+ D lay = (uy, )P
j=1

from which the last claim follows. O

From ([2.2) we obtain Bessel’s inequalityﬂ
n
D i HP < IFIP (2.4)
j=1

with equality holding if and only if f lies in the span of {u;}}_;.

Of course, since we cannot assume $) to be a finite dimensional vec-
tor space, we need to generalize Lemma to arbitrary orthonormal sets
{u;j}jes. We start by assuming that J is countable. Then Bessel’s inequality
(2.4) shows that

> lu NP (2.5)
JjeJ
converges absolutely. Moreover, for any finite subset K C J we have
1> g, fyugl® = [y, £ (2.6)
jEK jEK
by the Pythagorean theorem and thus ) je g{uj, fluj is a Cauchy sequence
if and only if > ., |(uj, £)|? is. Now let J be arbitrary. Again, Bessel’s
inequality shows that for any given € > 0 there are at most finitely many

j for which [(uj, f)| > € (namely at most || f||/e). Hence there are at most
countably many j for which |(u;, f)| > 0. Thus it follows that

> Ky, 1P (2.7)

jedJ

IFriedrich Bessel (1784-1846), German astronomer, mathematician, physicist, and geodesist
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is well defined (as a countable sum over the nonzero terms) and (by com-
pleteness) so is
>y, flug. (2.8)
jeJ
Furthermore, it is also independent of the order of summation.
In particular, by continuity of the scalar product we see that Lemma [2.]
can be generalized to arbitrary orthonormal sets.

Theorem 2.2. Suppose {u;}jey is an orthonormal set in a Hilbert space $).
Then every f € $) can be written as

F=hH+fn  f=) (u, Hu, (2.9)
Jj€J
where f| and fi are orthogonal. Moreover, (uj, f1) =0 for all j € J. In
particular,
A2 =D Hug P+ 1P (2.10)
jeJ
Furthermore, every f € span{u;}jes satisfies

1F = Fl = el (2.11)
with equality holding if and only sz = f|- In other words, f| is uniquely

characterized as the vector in span{u;} ey closest to f.

Proof. The first part follows as in Lemma[2.1] using continuity of the scalar
product. The same is true for the last part except for the fact that every
f € span{u;},cs can be written as f = ZjeJ ajuj (i.e., f = f)). To see this,
let fn € span{u;}jes converge to f. Then || f—ful* = || fy—ful >+ fLI* — O
implies f, — fj and fi =0. U

Note that from Bessel’s inequality (which of course still holds), it follows
that the map f — f| is continuous.

Of course we are particularly interested in the case where every f € §
can be written as Zjej<uj, f)u;j. In this case we will call the orthonormal
set {u;}jes an orthonormal basis (ONB).

If $) is separable it is easy to construct an orthonormal basis. In fact, if
$ is separable, then there exists a countable total set { f; }5\7:1 Here N € N
if $) is finite dimensional and N = oo otherwise. After throwing away some
vectors, we can assume that f,,+1 cannot be expressed as a linear combination
of the vectors fi, ..., fn. Now we can construct an orthonormal set as
follows: We begin by normalizing f;:

f
uq .

=Tl (2.12)
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Next we take fo and remove the component parallel to u; and normalize
again:

y = f2 — (u1, fa)u (2.13)

e = (un, fo)uall”

Proceeding like this, we define recursively

S i g fa)y
This procedure is known as Gram—Schmidt orthogonalizationﬂ Hence
we obtain an orthonormal set {u; }jvzl such that span{u;}7_; = span{f;}]_,
for any finite n and thus also for n = N (if N = c0). Since {fj}j.vzl is total,
S0 is {uj}é\/:1 Now suppose there is some f = f + f € $ for which f, # 0.
Since {uj}j-vzl is total, we can find a f in its span such that ||f — f|| < ||fL]],
contradicting (2.11). Hence we infer that {u; }évzl is an orthonormal basis.

(2.14)

Un

Theorem 2.3. FEvery separable Hilbert space has a countable orthonormal
basis.

Example 2.1. The vectors {0"},cn form an orthonormal basis for £2(N). o

Example 2.2. In £2,(—1,1), we can orthogonalize the monomials f,,(z) :=
™ (which are total by the Weierstraff approximation theorem — Theo-
rem [1.3]). The resulting polynomials are up to a normalization known as

Legendre polynomialsﬁ

32?2 — 1

Py(z) =1, Pi(z)=2z, P(z)= xT’ (2.15)

(which are normalized such that P,(1) = 1). o
Example 2.3. The set of functions

1 inx

Up(T) := —=e"", n € Z, 2.16

@) = (2.16)

forms an orthonormal basis for $ := £2,(0,27). The corresponding or-

thogonal expansion is just the ordinary Fourier series. We will discuss this

example in detail in Section [2.5] o

The following equivalent properties also characterize a basis.

Theorem 2.4. For an orthonormal set {u;}jecs in a Hilbert space $), the
following conditions are equivalent:

(i) {u;}jes is a mazimal orthogonal set.
2J¢rgen Pedersen Gram| (1850-1916), Danish actuary and mathematician

2Erhard Schmidt (1876-1959), Baltic German mathematician
3 Adrien-Marie Legendre| (1752-1833), French mathematician
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(ii) For every vector f € $) we have

f=> (uj, fHu;. (2.17)

jeJ
(iii) For every vector f € $) we have Parseval’s relatiorﬁ

IF1% =D 1wy, N (2.18)
JjeJ

(iv) (uj, f) =0 for all j € J implies f = 0.

Proof. We will use the notation from Theorem 2.2

(i) = (ii): If fi # 0, then we can normalize f| to obtain a unit vector f
which is orthogonal to all vectors u;. But then {u;};ecs U {f.} would be a
larger orthonormal set, contradicting the maximality of {u;};c.

(ii) = (iii): This follows since (ii) implies f; = 0.

(iii) = (iv): If (f,u;) = 0 for all j € J, we conclude ||f||*> = 0 and hence
f=0.

(iv) = (i): If {u;};es were not maximal, there would be a unit vector g such
that {u;};es U{g} is a larger orthonormal set. But (u;,g) =0 for all j € J
implies g = 0 by (iv), a contradiction. O

By continuity of the norm it suffices to check (iii), and hence also (ii),
for f in a dense set. In fact, by the inverse triangle inequality for £2(N) and
the Bessel inequality we have

ZHujﬂfHQ—Z‘(uj?gHQ < Z|<Uj7f_g>‘2 Z‘<Uj7f+g>|2

JjeJ Jj€J JjeJ Jj€J
< If = glllf + gl (2.19)
implying ZjeJ | (g, fa)l? = ZjeJ [(uj, Pt fo— f.

It is not surprising that if there is one countable basis, then it follows
that every other basis is countable as well.

Theorem 2.5. In a Hilbert space $) every orthonormal basis has the same
cardinality.

Proof. Let {u;}jcs and {vi}rex be two orthonormal bases. We first look
at the case where one of them, say the first, is finite dimensional: J =
{1,...,n}. Suppose the other basis has at least n elements {1,...,n} C
K. Then v, = 2?21 Uk juj, where Uy ; = (uj,vg). By 6 = (vj,v5) =
>o1e1 UfyUky we see 300 Uy jop = uj; showing that vi,..., v, span §) and
hence K cannot have more than n elements.

4Marc-Antoine Parseval (1755-1836), French mathematician
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Now let us turn to the case where both J and K are infinite. Set K; =
{k € K|(uvg,uj) # 0}. Since these are the expansion coefficients of u; with
respect to {vp}rek, this set is countable (and nonempty). Hence the set
K = Ujes K; satisfies |K| < |J x N| = |J| (Theorem |A.9). But k € K \ K
implies v, = 0 and hence K = K. So |K| < |J| and reversing the roles of .J
and K shows |K| = |J| (Theorem |A.3)). O

The cardinality of an orthonormal basis is also called the Hilbert space
dimension of §.

It even turns out that, up to unitary equivalence, £2(N) is the only sep-
arable infinite dimensional Hilbert space:

A bijective linear operator U € Z($1,$2) is called unitary if U pre-
serves scalar products:

<Ungf>2:<g7f>1a gvfeyjl- (220)
By the polarization identity, (1.47)) this is the case if and only if U preserves
norms: |Ufl|l2 = ||f]j1 for all f € H; (note that a norm preserving linear

operator is automatically injective). The two Hilbert spaces $; and $)2 are
called unitarily equivalent in this case.

Let $ be a separable infinite dimensional Hilbert space and let {u;} en
be any orthogonal basis. Then the map U : § — (2(N), f — ((uj, f))jen is
unitary. Indeed by Theorem (iii) it is norm preserving and hence injective.
To see that it is onto, let a € £2(N) and observe that by || > iem aju;? =
> iem la;j|? the vector f := > jenaju; is well defined and satisfies a; =
(uj, f). In particular,

Theorem 2.6. Any separable infinite dimensional Hilbert space is unitarily
equivalent to £2(N).

Of course the same argument shows that every finite dimensional Hilbert
space of dimension n is unitarily equivalent to C™ with the usual scalar
product.

Finally we briefly turn to the case where $) is not separable.

Theorem 2.7. Every Hilbert space has an orthonormal basis.

Proof. To prove this we need to resort to Zorn’s lemma (Theorem: The
collection of all orthonormal sets in §) can be partially ordered by inclusion.
Moreover, every linearly ordered chain has an upper bound (the union of all
sets in the chain). Hence Zorn’s lemma implies the existence of a maximal
element, that is, an orthonormal set which is not a proper subset of every
other orthonormal set. This maximal element is an ONB by Theorem
(1). O
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Hence, if {u;} ;e is an orthogonal basis, we can show that ) is unitarily
equivalent to ¢2(.J) and, by prescribing .J, we can find a Hilbert space of any
given dimension. Here ¢2(.J) is the set of all complex-valued functions (a;) ;e
where at most countably many values are nonzero and ) jed |aj|? < o0.

Example 2.4. Define the set of almost periodic functions AP(R) as the
closure of the set of trigonometric polynomials

n
ft) = Zakeiekt, a € C, 0, € R,
k=1

with respect to the sup norm. In particular AP(R) C Cy(R) is a Banach
space when equipped with the sup norm. Since the trigonometric polynomi-
als form an algebra, it is even a Banach algebra. Using the Stone—Weierstrafs
theorem one can verify that every periodic function is almost periodic (make
the approximation on one period and note that you get the rest of R for free
from periodicity) but the converse is not true (e.g. et +eV2? is not periodic).

It is not difficult to show that

1 (T 1, #=0,
lim — / edt =
T—oo 2T - 0, 0 ;é O’
and hence one can conclude that every almost periodic function has a mean
value

Note that |[M(f)| < || f]]co-

Next one can show that

(f,9) = M(f*g)

defines a scalar product on AP(R). To see that it is positive definite (all other
properties are straightforward), let f € AP(R) with || f||*> = M(|f]?) = 0.
Choose a sequence of trigonometric polynomials f,, with || f — fn|lcc — 0. By
I Il <l flleo we also have || f — fn|| — 0. Moreover, by the triangle inequality
(which holds for any nonnegative sesquilinear form — Problem we have
[l S U+ = fall = [If = fall < 1If = fallo = 0, and thus f = 0.

Abbreviating eg(t) = ' we see that {eg}ger is an uncountable orthonor-
mal set and

F(£) = £(0) = (eo, f) = M(e—p)
maps AP(R) isometrically (with respect to |.||) into ¢2(R). This map is
however not surjective (take e.g. a Fourier series which converges in mean

square but not uniformly — see later) and hence AP(R) is not complete
with respect to ||.]|. o
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Problem 2.1. Given some vectors fi,..., fn we define their Gram deter-
minant as

F(f1, ceey fn) = det (<fjv fk>)1§j,k§n :

Show that the Gram determinant is nonzero if and only if the vectors are
linearly independent. Moreover, show that in this case

. Q_F(flv"'vfnvg)
dist(g, span{fi,..., fu})* = —F(fh---,fn)

and
D(f, o f) < TSI
j=1

with equality if the vectors are orthogonal. (Hint: First establishT'(f1,. .., fj+
afiy..oys fn) =T(f1,..., fn) forj # k and use it to investigate how I changes
when you apply the Gram—Schmidt procedure?)

Problem 2.2. Let {u;} be some orthonormal basis. Show that a bounded
linear operator A is uniquely determined by its matriz elements Aj, =
(uj, Aug) with respect to this basis.

Problem 2.3. Give an example of a nonempty closed bounded subset of a
Hilbert space which does not contain an element with minimal norm. Can
this happen in finite dimensions? (Hint: Look for a discrete set.)

Problem 2.4. Show that the set of vectors {c® := (1,n=t,n=2...)}>, is

total in (*(N). (Hint: Use that for any a € (*(N) the functions f(z) :=
> jeN a;jz?~1 is holomorphic in the unit disc.)

2.2. The projection theorem and the Riesz representation
theorem

Let M C $ be a subset. Then M=+ := {f|(g,f) = 0,Vg € M} is called
the orthogonal complement of M. By continuity of the scalar prod-
uct it follows that M~ is a closed linear subspace and by linearity that
(span(M))*+ = M+. For example, we have §* = {0} since any vector in H*
must be in particular orthogonal to all vectors in some orthonormal basis.

Theorem 2.8 (Projection theorem). Let M be a closed linear subspace of a
Hilbert space §). Then every f € $) can be uniquely written as f = fj + f1L
with f € M and f, € M, where || is uniquely characterized as the vector
in M closest to f. One writes

M@MJ- — 57) (2.21)

i this situation.
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Proof. Since M is closed, it is a Hilbert space and has an orthonormal
basis {u;}jcs. Hence the existence part follows from Theorem To see
uniqueness, suppose there is another decomposition f = f + fi. Then
fi — fH = fL—fL e Mn M = {0} (since g € M N M* implies ||g||> =
(9,9) =0). 0

Corollary 2.9. Every orthogonal set {u;}jc; can be extended to an orthog-
onal basis.

Proof. Just add an orthogonal basis for ({u;};ec/)*. O

The operator Py f := f) is called the orthogonal projection corre-
sponding to M. Note that we have

Ph=Py  and  (Pyg.f) = (g, Puf) (2.22)
since (Pmg, f) = (g, fy)) = (9,Puf). Clearly we have Py f = f —

Py f = fi. Furthermore, (2.22) uniquely characterizes orthogonal projec-
tions (Problem [2.8).

Moreover, if M is a closed subspace, we have Py;i1 = 1 — Py =
I — (I — Py) = Pyy; that is, M+ = Ran(Py,1.) = Ran(Py;) = M. If M is
an arbitrary subset, we have at least

M+ = span(M). (2.23)
Note that by $ = {0} we see that M+ = {0} if and only if M is total.

Next we turn to linear functionals, that is, to operators ¢ : $§ — C. By
the Cauchy-Schwarz inequality we know that ¢, : f — (g, f) is a bounded
linear functional (with norm ||g|[). In turns out that, in a Hilbert space,
every bounded linear functional can be written in this way.

Theorem 2.10 (Rieszﬂ representation theorem). Suppose £ is a bounded
linear functional on a Hilbert space $. Then there is a unique vector g € $

such that £(f) = (g, f) for all f € $.

In other words, a Hilbert space is equivalent to its own dual space H* = §
via the map f > (f,.) which is a conjugate linear isometric bijection between

£ and H*.

Proof. If £ = 0, we can choose g = 0. Otherwise Ker(¢) = {f|¢(f) =0} isa
proper subspace and we can find a unit vector § € Ker(¢)*. For every f € $
we have ¢(f)g — £(g)f € Ker(¢) and hence

0=1(9,£(f)g—£@)f) = €(f) — £(9)(9, [)-

5Frigyes Riesz (1880-1956), Hungarian mathematician
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In other words, we can choose g = £(§)*g. To see uniqueness, let g1, go be

two such vectors. Then (g1 — g2, f) = (91, ) — (92, f) = £(f) — £(f) = O for
every f € §, which shows g — g2 € H+ = {0}. O

In particular, this shows that $* is again a Hilbert space whose scalar
product (in terms of the above identification) is given by ((f,.), (g,.))s* =
(f,9)"

We can even get a unitary map between $ and $H* but such a map is
not unique. To this end note that every Hilbert space has a conjugation C'
which generalizes taking the complex conjugate of every coordinate. In fact,
choosing an orthonormal basis (and different choices will produce different
maps in general) we can set

Cf = Suj fy"uy =Y {f,u;)u;.
Jj€J JjeJ

Then C is conjugate linear, isometric |Cf| = ||f||, and idempotent C? = 1.
Note also (C'f,Cg) = (f,g)*. As promised, the map f — (Cf,.) is a unitary
map from ) to H*.

Finally, we remark that projections cannot only be defined for subspaces
but also for closed convex sets (of course they will no longer be linear in this
case).

Theorem 2.11 (Hilbert projection theorem). Let $) be a Hilbert space and
K a nonempty closed convex subset. Then for every f € $\ K there is a
unique Py (f) € K such that |Px(f) — f|| = infger || f — gl|. If we extend
Pr : 9 — K by setting Px(g) = g for g € K then Px will be Lipschitz
continuous: || P (f) — Pr(g)ll < |If —gll, f,9 € 9.

Proof. Fix f € §\ K and choose a sequence f, € K with ||f, — f|| = d :=
infger || f — gl|. Then applying the parallelogram law to the vectors f, — f
and f,, — f we obtain

fo = Fnll® = 201LF = Full®> + 1 = fnl®) = 4l f = 5(Fn + fu) |12
<2(If = Full® + I1f = Fimll?) — 4,
which shows that f,, is Cauchy and hence converges to some point in K which
we call P(f). By construction ||P(f) — f|| = d. If there would be another
point P(f) with the same property, we could apply the parallelogram law

to P(f) — f and P(f) — f giving ||P(f) — P(f)||> < 0 and hence P(f) is
uniquely defined.

Next, let f € ), g € K and consider g = (1—t)P(f)+tg € K, t € [0,1].
Then

0> [If = P(OI? = IIf = gl = 2tRe((f = P(f).g — P()) — t*llg = P(H)|?
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for arbitrary ¢ € [0, 1] shows Re({f — P(f), P(f) — g)) > 0. Consequently
we have Re({f — P(f),P(f) — P(g))) > 0 for all f,g € $. Now reverse
to roles of f,g and add the two inequalities to obtain ||P(f) — P(g)||*> <
Re(f—g,P(f)—P(9)) < |If —9gllllP(f)— P(g)||.- Hence Lipschitz continuity
follows. g

If K is a closed subspace then this projection will of course coincide with
the orthogonal projection defined before. By inspection of the proof, note
that Pr(f) is alternatively characterized by Re((f — Px(f),9— Px(f))) <0
for all g € K.

Problem 2.5. Show that {(a) = 3772, (IJJ;# defines a bounded linera func-

tional on X := (*(N). Compute its norm.

Problem 2.6. Suppose U : $ — $ is unitary and M C $. Show that
UM+ = (UM)*.

Problem 2.7. Show that an orthogonal projection Pyy # 0 has norm one.
Problem* 2.8. Suppose P € £ () satisfies
P*=P  and (Pf,9)={(f,Pyg)

and set M = Ran(P). Show

o Pf=f for fe M and M is closed,

e Ker(P) = M+
and conclude P = Pyy.
Problem 2.9. Compute Py for the closed unit ball K := B1(0).

2.3. Operators defined via forms

One of the key results about linear maps is that they are uniquely deter-
mined once we know the images of some basis vectors. In fact, the matrix
elements with respect to some basis uniquely determine a linear map. Clearly
this raises the question how this results extends to the infinite dimensional
setting. As a first result we show that the Riesz lemma, Theorem [2.10] im-
plies that a bounded operator A is uniquely determined by its associated
sesquilinear form (g, Af). In fact, there is a one-to-one correspondence be-
tween bounded operators and bounded sesquilinear forms:

Lemma 2.12. Let 1, $H2 be Hilbert spaces. Suppose s : o x H1 — C is a
bounded sesquilinear form; that is,

15(9, /)l < Cliglla, 1115, (2.24)
Then there is a unique bounded operator A € £ ($1,$2) such that

5(9,f) = (9, Af )92 (2.25)
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Moreover, the norm of A is given by

A=~ sup (g, Af)s,| < C. (2.26)
lgllso=I1£15,=1

Proof. For every f € $)1 we have an associated bounded linear functional
ls(g) :== s(g, f)* on H2. By Theorem there is a corresponding h € $9
(depending on f) such that £¢(g) = (h,g)s,, that is s(g, f) = (g9, h)s, and
we can define A via Af := h. It is not hard to check that A is linear and
from
IAfI3, = (Af. Af)a, = s(Af, f) < ClAf 6.1 Il

we infer ||Af]ls, < C||f|ls,, which shows that A is bounded with ||A| < C.
Equation is left as an exercise (Problem [2.12). O

Note that if {u; }rex € $H1 and {vj}jcs C $H2 are some orthogonal bases,
then the matrix elements A;j := (v;, Auy)g, for all (j, k) € J x K uniquely
determine (g, Af)g, for arbitrary f € 1, g € 92 (just expand f,g with
respect to these bases) and thus A by our theorem.

Example 2.5. Consider ¢?(N) and let A € .Z(¢*(N)) be some bounded
operator. Let Aj, = (67, A6*) be its matrix elements such that

(Aa); = Ajrax.

k=1
Since Ajj, are the expansion coefficients of A*¢7 (see ([2.27)) below), we have
oo |Ajkl* = ||A*67]|? and the sum is even absolutely convergent. o

Moreover, for A € Z($)) the polarization identity (Problem |1.27)) implies
that A is already uniquely determined by its quadratic form g4 (f) := (f, Af).

As a first application we introduce the adjoint operator via Lemma[2.12]
as the operator associated with the sesquilinear form s(f, g) := (Af, 9)s,-

Theorem 2.13. Let $1, $Ho be Hilbert spaces. For every bounded operator
A € Z($H1,92) there is a unique bounded operator A* € £($2,91) defined

via

(£, A%9)sn, = (Af, 9)5,- (2.27)

A bounded operator A € Z(9) satisfying A* = A is called self-adjoint.
Note that ga-(f) = (Af, f) = qa(f)* and hence

Lemma 2.14. Let $ be a complex Hilbert space. A bounded operator is
self-adjoint if and only if its quadratic form is real-valued.

Warning: This result fails in a real Hilbert space.

Example 2.6. If H = C™ and A := (ajk)1§j7k§n, then A* = (GZj)lﬁj,kSn'
Clearly A is self-adjoint if and only if a;, = ay;. o
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Example 2.7. If [ € Z(9) is the identity, then I* = 1. o
Example 2.8. Consider the linear functional ¢ : $§ — C, f — (g, f). Then
by the definition (f,(*a) = £(f)*a = (f,ag) we obtain £* : C — $, a —
ag. o
Example 2.9. Let § := ¢*(N), a € (°°(N) and consider the multiplication
operator

(Ab)] = ajbj.
Then
o o0
(Abc) = (ajbj)*e; = > bi(ale;) = (b, A%c)
j=1 j=1
with (A*c); = ajc;, that is, A* is the multiplication operator with a*. In
particular, A is self-adjoint if and only if a is real-valued. o

Example 2.10. Let $ := ¢?(N) and consider the shift operators defined via
(Sia)j = Q541
with the convention that ag = 0. That is, S~ shifts a sequence to the right
and fills up the left most place by zero and S shifts a sequence to the left
dropping the left most place:
S_(ala az,as, - ) = (07 ay,ag, - - )7 S+(a17a27a31 ot ) — (0,2, as, a4, - - )
Then

(S7a,b) = Za;,lbj = Za;bj_i,_l = {a,STh),
3=2 j=1

which shows that (S7)* = ST. Using symmetry of the scalar product we
also get (b, S~a) = (STh,a), that is, (ST)* = S~.

Note that ST is a left inverse of S—, STS~ = I, but not a right inverse
as S~ S* # I. This is different from the finite dimensional case, where a left
inverse is also a right inverse and vice versa. o

Example 2.11. Suppose U € Z($1,92) is unitary. Then U* = U~!. This
follows from Lemma since (f,9)9, = (Uf,Ug)q, = (f,U*Ug)s, implies
U*U = I,. Since U is bijective we can multiply this last equation from the
right with U~! to obtain the claim. Of course this calculation shows that
the converse is also true, that is U € Z($1,$2) is unitary if and only if
Us=U"1 o

A few simple properties of taking adjoints are listed below.
Lemma 2.15. Let A, B € £(91,92), C € £($2,93), and a € C. Then
(i) (A+ B)* = A* 4+ B*, (aA)* = a*A¥,
(il) A™ = A,
(iii) (CA)* = A*C*,
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(iv) [ A" = [|A]l and [|A]]* = [|A*A]| = [ AA*||.

Proof. (i)isobvious. (ii) follows from (g, A** f)g, = (A*g, f)o, = (9. Af)s,-
(iii) follows from (g, (CA)f)a, = (C*g, Af)g, = (A*C*g, f)g,. (iv) follows
using ([2.26) from

A" = sup [(f, A%g)e, | = sup (Af, g)s,|
115, =llglls,=1 11y =llglls,=1

= sup [{g, Af)s,| = (Al
17115, =llglloy =1

and
|AA| = sup [(f, A" Ag)s,| = sup [(Af, Ag)s, |
19, =llgll9y=1 Il o, =lgllsy=1
= sup [JAf]? = |A|7,
1fll9,=1

where we have used that [(Af, Ag)g,| attains its maximum when Af and Ag
are parallel (compare Theorem [1.5). Finally, [[AA*| = ||A**A*|| = ||A*|? =
1A% 0

Note that ||A|| = ||A*|| implies that taking adjoints is a continuous op-
eration. For later use also note that (Problem [2.14))

Ker(A*) = Ran(A4)™. (2.28)

For the remainder of this section we restrict to the case of one Hilbert
space. A sesquilinear form s : x$ — Cis called nonnegative if s(f, f) > 0
and it is called coercive if

Re(s(f, f)) = |l fI*- (2.29)

We will call A € Z($)) nonnegative, coercive if its associated sesquilinear
form is. We will write A > 0 if A is nonnegative and A > Bif A— B > 0.
Observe that nonnegative operators are self-adjoint (as their quadratic forms
are real-valued — here it is important that the underlying space is complex;
in case of a real space a nonnegative form is required to be symmetric).

Example 2.12. For any operator A the operators A*A and AA* are both
nonnegative. In fact (f, A*Af) = (Af, Af) = |Af||> > 0 and similarly
(f, AA*f) = [[A*f|]> > 0. o

Lemma 2.16. Suppose A € Z($) satisfies ||Af|| > e||f]| for some ¢ > 0.
Then Ran(A) is closed and A : $ — Ran(A) is a bijection with bounded
inverse, ||A7Y| < 1. If we have the stronger condition |(f, Af)| > e||f||%
then Ran(A) = 9.
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Proof. Since Af = 0 implies f = 0 our operator is injective and thus for
every g € Ran(A) there is a unique f = A~'g. Moreover, by ||[A7lg| =
Il < e Y AFf|| = e !|g|| the operator A~! is bounded. So if g,, € Ran(A)
converges to some g € §), then f, = A~ g, converges to some f. Taking
limits in g, = Af, shows that ¢ = Af is in the range of A, that is, the range
of A is closed.

By ¢||£11? < |{f, A < |IfIIlAf]| the second condition implies the first.
To show that Ran(A) = £ we pick h € Ran(A)L. Then 0 = (h, Ah) > | h|?
shows h = 0 and thus Ran(A4)* = {0}. O

As a consequence we obtain the famous Lax—Milgram theorenﬁ which
plays an important role in theory of elliptic partial differential equations.

Theorem 2.17 (Lax—Milgram). Let s : ) x $ — C be a sesquilinear form
on a Hilbert space $ which is

e bounded, |s(f,9)| < C|f| llgll, and
o satisfies |s(f, f)| > el f||* for some e > 0.

Then for every g € §) there is a unique f € $ such that
Moreover, ||f]| < tlgl-

Proof. Let A be the operator associated with s by Lemma[2.12] Then A is
a bijection by Lemma and f = A~ lg has the required properties. O

Instead of the second condition one frequently requires that s is coercive,
which is clearly weaker.

Note that (2.30) can also be phrased as a minimizing problem if s is
nonnegative — Problem [2.16]

Example 2.13. Consider $) = /2(N) and introduce the operator
(Aa)j = —aj541 + 2aj —aj—1
which is a discrete version of a second derivative (discrete one-dimensional
Laplace operator). Here we use the convention ag := 0, that is, (Aa); =
—ag + 2a;1. In terms of the shift operators ST we can write
A=-ST42-8 =(ST-1)(S™ —1)
and using (S*)* = ST we obtain
o0
sa(a,b) = ((S7 = Da, (57 = 1b) = Y _(aj-1— ;)" (bj-1 — by).

Jj=1

6Peter Lax (*1926), American mathematician of Hungarian origin
6 Arthur Milgram| (1912-1961), American mathematician


http://en.wikipedia.org/wiki/Peter Lax
http://en.wikipedia.org/wiki/Arthur Milgram

60 2. Hilbert spaces

In particular, this shows A > 0. Moreover, we have |sa(a,b)| < 4]/a||2]|b]2
or equivalently ||A]| < 4.

Next, let
(Qa); = gja;
for some sequence ¢ € ¢*°(N). Then

sg(a,b) = Z gja;bj
j=1

and [sg(a,b)| < ||qllssllall2][b]|2 or equivalently ||Q]] < ||¢|loo. If in addition
q; > € >0, then sa1g(a,b) = sa(a,b) + sg(a, b) satisfies the assumptions of
the Lax-Milgram theorem and

(A+Q)a=b
has a unique solution a = (A4 + Q)~!b for every given b € ¢?(N). Moreover,
since (A + Q)~! is bounded, this solution depends continuously on b. o

Problem* 2.10. Let $1, o be Hilbert spaces and let u € H1, v € Ho. Show
that the operator

Af = <U,f>'l}

is bounded and compute its norm. Compute the adjoint of A.

Problem 2.11. Show that under the assumptions of Problem [1.5( one has
FA)* = fF(A") where f7(2) = f(2*)".

Problem™ 2.12. Prove (2.26). (Hint: Use ||f|| = supg=1 [{g, f)| — com-
pare Theorem[1.5])

Problem 2.13. Suppose A € £($1,$2) has a bounded inverse A1 €
g(f)g,ﬁl). Show (Ail)* = (A*)fl.

Problem* 2.14. Show (2.28).

Problem* 2.15. Show that every operator A € £ ($)) can be written as the
linear combination of two self-adjoint operators Re(A) := (A + A*) and
Im(A) := %(A — A*). Moreover, every self-adjoint operator can be written
as a linear combination of two unitary operators. ﬁnt For the last part

consider f1(z) =z +iv1 — 22 and Problems y,

Problem 2.16 (Abstract Dirichlet problem). Show that the solution of
(2.30) is also the unique minimizer of

hs Re(%s(h, h) — (h,g>)

if s is nonnegative with s(w,w) > e||wl||? for all w € $.
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2.4. Orthogonal sums and tensor products

Given two Hilbert spaces )1 and £, we define their orthogonal sum $; ®
2 to be the set of all pairs (f1, f2) € $H1 X $H2 together with the scalar
product

((91,92), (f1, f2)) = (g1, f1)5, + (92, [2) 92 (2.31)

It is left as an exercise to verify that $; @ £ is again a Hilbert space.
Moreover, $); can be identified with {(f1,0)|f1 € 1}, and we can regard $;
as a subspace of 1 @ 2, and similarly for $o. With this convention we have
N1 = Ho. It is also customary to write fi @ fo instead of (f1, f2). In the
same way we can define the orthogonal sum @;‘:1 $); of any finite number
of Hilbert spaces.

Example 2.14. For example we have @?:1 C = C" and hence we will write
@?:1 ﬁ = ﬁn o

More generally, let §;, j € N, be a countable collection of Hilbert spaces
and define

j=1 j=1 Jj=1

which becomes a Hilbert space with the scalar product

o )= {9 fi)s, (2.33)
j=1  j=1 j=1
Example 2.15. (2, C = /2(N). o

Similarly, if $ and § are two Hilbert spaces, we define their tensor prod-
uct as follows: The elements should be products f @ f of elements f € §
and f € $. Hence we start with the set of all finite linear combinations of
elements of § x 5:3

F®,9) =D ai(fi, I3, f5) € 9 x 9, a; € C. (2.34)

j=1

Since we want (fi+ f2)® f = i@ f+ oo f, f@(fi+f) = f@fi+ [ fa,
and (af) @ f = f @ (af) = a(f @ f) we consider F($,9)/N (9, ), where

N($,9) :=span{ Y a;Bu(f, fr) = O aif;, Y Brfr)} (2.35)
j=1 k=1

7,k=1

and write f ® f for the equivalence class of (f, f) By construction, every
element in this quotient space is a linear combination of elements of the type

f&ef.
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Next, we want to define a scalar product such that

(fofg0g) = {f9s(f 05 (2.36)
holds. To this end we set

n

sO (£, 1), Brlgr k) = Y 3Bl o)s(fi )g,  (2:37)
j=1 k=1

J,k=1

which is a symmetric sesquilinear form on F(,$). Moreover, one verifies
that s(f,g) = 0 for arbitrary f € F(,9) and g € N (£, $) and thus
n ~ n n ~

O aifi0f5Y ok @dr) = Y aiBlfinon)n(fydr)y (238

j=1 k=1 jik=1
is a symmetric sesquilinear form on F (£, $) /N ($, $). To show that this is in
fact a scalar product, we need to ensure positivity. Let f =", a; fi ® fi #£0
and pick orthonormal bases u;, @, for span{ f;}, span{ fl}, respectively. Then

f= Zaijj ® U, Q= Z%‘(%‘; fi)s (tg, fz)fa (2.39)

7.k i
and we compute

()= laul* > 0. (2.40)
7,k

The completion of ]:(5’),5;))//\/'(,@,6) with respect to the induced norm is
called the tensor product H ® $ of H and .

Lemma 2.18. If u;, 1, are orthonormal bases for $), 333, respectively, then
uj ® Uy, is an orthonormal basis for $H ® 5.

Proof. That u; ® @y, is an orthonormal set is immediate from (2.36]). More-
over, since span{u;}, span{u} are dense in ), $), respectively, it is easy to
see that u; ® 4y is dense in F($,9)/N($,$). But the latter is dense in

H®HN. O

Note that this in particular implies dim($) ® $) = dim($)) dim($).
Example 2.16. We have $ @ C"* = $H™. o

Example 2.17. A quantum mechanical particle which can only attain two
possible states is called a qubit. Its state space is accordingly C? and the
two states, usually written as |0) and |1), are an orthonormal basis for C2.
The state space for two qubits is given by the tensor product C? @ C? = C*.
An orthonormal basis is given by |00) := |0) ® |0), |01) := |0) ® |1), |10) :=
|1) ® |0), and |11) := |1) ® |1). The state space of n qubits is the n fold
tensor product of C? (isomorphic to C2"). o
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Example 2.18. We have ¢?(N) ® £2(N) = /(N x N) by virtue of the identi-
fication (ajk) — >y, ;167 ® 6% where ¢/ is the standard basis for ¢2(N). In
fact, this follows from the previous lemma as in the proof of Theorem[2.6] ©

It is straightforward to extend the tensor product to any finite number
of Hilbert spaces. We even note

Po)en=P®; o) (2.41)
j=1 j=1

where equality has to be understood in the sense that both spaces are uni-
tarily equivalent by virtue of the identification

O er=> fiof (2.42)
j=1 =1

Problem 2.17. Show that f @ f =0 if and only if f =0 or f = 0.

Problem 2.18. We have f @ f = g® g # 0 if and only if there is some
a € C\ {0} such that f = ag and f = a13.

Problem* 2.19. Show ([2.41]).

2.5. Applications to Fourier series

We have already encountered the Fourier sine series during our treatment
of the heat equation in Section [I.1] Given an integrable function f we can
define its Fourier series

S(f)(z) = % + Z (ak, cos(kzx) + by sin(kz)), (2.43)
keN

where the corresponding Fourier coefficients are given by

ay 1= 1 /TF cos(kx) f(x)dz, by = 1 /TF sin(kz) f(z)dz. (2.44)

™ J_n T J 7

At this point is just a formal expression and the question in what sense
the above series converges lead to the development of harmonic analysis. For
example, does it converge at a given point (e.g. at every point of continuity
of f) or when does it converge uniformly? We will give some first answers in
the present section and then come back later to this when we have further
tools at our disposal.

For our purpose the complex form

S() @) =D fre™,  fi:

keZ

1 ™

— o [ iy 2a5)



64 2. Hilbert spaces

Figure 2.1. The Dirichlet kernels D1, D2, and Dgs

will be more convenient. The connection is given via f:l:k = @, k € Np
(with the convention by = 0). In this case the n’th partial sum can be written

as

SuN@) = 3 et = = [ Dy —p)faydy,  (246)

T on
k=—n -

where
n

Dafa) = 3 b = Sin(s(gl(tc /12/)2)56) (2.47)

k=—n
is known as the Dirichlet kerneﬂ (to obtain the second form observe that
the left-hand side is a geometric series). Note that D, (—z) = D,(x) and
that | D, (x)| has a global maximum D,,(0) = 2n+ 1 at x = 0. Moreover, by
Sn(1) =1 we see that [*_ Dy (x)dx = 2.
Since

™
/ e kel gy — 2705, (2.48)
—

the functions ey () := (27)~1/2¢** are orthonormal in L?(—7, 7) and hence

the Fourier series is just the expansion with respect to this orthogonal set.
Hence we obtain

Theorem 2.19. For every square integrable function f € L?*(—=,7), the
Fourier coefficients fi. are square summable

SIAE =55 [ 1f@)Pds (2.49)

kEZ -

TPeter Gustav Lejeune Dirichlet (1805 —1859), German mathematician


http://en.wikipedia.org/wiki/Peter Gustav Lejeune Dirichlet
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and the Fourier series converges to f in the sense of L?. Moreover, this is a
continuous bijection between L*(—m, ) and (*(7Z).

Proof. To show this theorem it suffices to show that the functions e; form
a basis. This will follow from Theorem below (see the discussion after
this theorem). It will also follow as a special case of Theorem below
(see the examples after this theorem) as well as from the Stone—Weierstrafs
theorem — Problem [2.24] O

This gives a satisfactory answer in the Hilbert space L?(—m, m) but does
not answer the question about pointwise or uniform convergence. The latter
will be the case if the Fourier coefficients are summable. First of all we note
that for integrable functions the Fourier coefficients will at least tend to zero.

Lemma 2.20 (Riemann-Lebesgue lemma). Suppose f € L'(—m, =), then
the Fourier coefficients fi, converge to zero as |k| — oo.

Proof. By our previous theorem this holds for continuous functions. But the
map f — f is bounded from C[—n, 7] C LY(—m,7) to co(Z) (the sequences
vanishing as |k| — o) since |fi| < (27) 7| f||1 and there is a unique exten-
sion to all of L(—m, 7). O

It turns out that this result is best possible in general and we cannot say
more about the decay without additional assumptions on f. For example, if
f is periodic of period 27 and continuously differentiable, then integration
by parts shows

fr= 27:% / 7; e R 1 (2)d. (2.50)

Then, since both k! and the Fourier coefficients of f’ are square summa-
ble, we conclude that f is absolutely summable and hence the Fourier series
converges uniformly. So we have a simple sufficient criterion for summa-
bility of the Fourier coefficients, but can we do better? Of course conti-
nuity of f is a necessary condition for absolute summability but this alone
will not even be enough for pointwise convergence as we will see in Exam-
ple Moreover, continuity will not tell us more about the decay of the
Fourier coefficients than what we already know in the integrable case from
the Riemann-Lebesgue lemma (see Example [4.4)).

A few improvements are easy: holds for any class of functions
for which integration by parts holds, e.g., piecewise continuously differen-
tiable functions or, slightly more general, absolutely continuous functions
(cf. Lemma from [37]) provided one assumes that the derivative is
square integrable. However, for an arbitrary absolutely continuous func-
tion the Fourier coefficients might not be absolutely summable: For an
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absolutely continuous function f we have a derivative which is integrable
(Theorem from [37]) and hence the above formula combined with the
Riemann-Lebesgue lemma implies fj, = 0(%). But on the other hand we
can choose an absolutely summable sequence ¢, which does not obey this

asymptotic requirement, say cp = % for k =1? and ¢, = 0 else. Then

f(z) = cheim = Z l%eilz”" (2.51)

k€EZ leN

is a function with absolutely summable Fourier coefficients fk = ¢ (by
uniform convergence we can interchange summation and integration) but
which is not absolutely continuous. There are further criteria for absolute
summability of the Fourier coefficients, but no simple necessary and sufficient
one. A particularly simple sufficient one is:

Theorem 2.21 (Bernstei. Suppose that [ € ng[—ﬂ,ﬂ] is Holder con-
tinuous (cf. (1.67)) of exponent v > %, then
DUl < Gl fllos-

kEZ

Proof. The proof starts with the observation that the Fourier coefficients of
fs(x) == f(z—0) are fr, = e fi.. Now for § := 2727 and 2™ < |k| < 2m*!

we have |9 — 1|2 > 3 implying

O S S LR

2m§‘M<2m+1

1
< g[f]gyé%/

Now the sum on the left has 2-2™ terms and hence Cauchy—Schwarz implies

R (m+1)/2 .
Z |fil = 27[1%57 - % (?) 2(1/2_7)m[f]7'
9m < |k|<2m+1 V3

Summing over m shows

Z ’fk| < C’y[f]’y

k40
provided 7 >  and establishes the claim since | fol < 11flse- O

Note however, that the situation looks much brighter if one looks at mean
values
_ 1 n—1 1 T
Sn(f)(@) =~ D S(N)@) == [ Fulz—y)f(y)dy, (2.52)
k=0

o -

8Sergei Natanovich Bernstein| (1880-1968), Russian mathematician
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F3(z)

Fa ()
Fy(z)

[

Figure 2.2. The Fejér kernels F}, Fb, and F3

where

_INm gy 2 L (sin(ne/2)\?
Fu(w) = n kZ:ODk( )= n < sin(x/2) ) (2.53)

is the Fejér kernelﬂ To see the second form we use the closed form for the
Dirichlet kernel to obtain

2 sin((k + 1/2)x 1 = .

) = kzzo (S(ln?;?/é)) : - sin(ai/2)1mkzzoe o
B 1 o (i el — 1 _1- cos(nx) _ sin(na/2) 2
N sin(m/2)I ( el — 1 ) 2sin(z/2)? < sin(z/2) > '

The main difference to the Dirichlet kernel is positivity: F,(xz) > 0. Of
course the property fjﬁ F,(z)dx = 27 is inherited from the Dirichlet kernel.

Theorem 2.22 (Fejér). Suppose f is continuous and periodic with period
2. Then S,(f) — f uniformly.

Proof. Let us set F,, = 0 outside [—m,7]. Then F,(z) < m for
d < |z| < 7 implies that a straightforward adaption of Lemma to the
periodic case is applicable. O

In particular, this shows that the functions {ey }yez are total in Cpe, [—, 7]
(continuous periodic functions) and hence also in LP(—m,7) for 1 < p < co

(Problem [2.23]).

9ILipot Fejér (1880-1959), Hungarian mathematician
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68 2. Hilbert spaces

Note that for a given continuous function f this result shows that if
Sn(f)(x) converges, then it must converge to S,(f)(xz) = f(x). We also
remark that one can extend this result (see Lemma from [37]) to show
that for f € LP(—m,7), 1 < p < 00, one has S, (f) — f in the sense of LP.
As a consequence note that the Fourier coefficients uniquely determine f for
integrable f (for square integrable f this follows from Theorem .

Finally, we look at pointwise convergence.

Theorem 2.23. Suppose
T — T
is integrable (e.g. f is Holder continuous), then

n
: ¢ ikxg __
Gim D fiett = f(o). (2.55)
k=—m

Proof. Without loss of generality we can assume z¢g = 0 (by shifting z —
x — 29 modulo 27 implying f — e~ %% ;) and f(zo) = 0 (by linearity since
the claim is trivial for constant functions). Then by assumption
f(x)

elr — 1

g(z) ==

is integrable and f(z) = (e!* — 1)g(z) implies fi = gr_1 — gr and hence

n
Z fk: = g,m,1 - gn
k=—m

Now the claim follows from the Riemann—-Lebesgue lemma. ([l

If we look at symmetric partial sums S, (f) we can do even better.

Corollary 2.24 (Dirichlethinim criterion). Suppose there is some a such
that
f(@o + ) + f(wo — 7) — 200
T
is integrable. Then Sy (f)(zo) — c.

(2.56)

Proof. Without loss of generality we can assume xg = 0. Now observe
(since Dy(—2) = Dn(x)) Su(f)(0) = a + Su(9)(0), where g(z) := 5(f(x) +
f(—=z)) — @ and apply the previous result. O

Problem 2.20. Compute the Fourier series of D,, and F,,.

Problem 2.21. Show |Dy(z)| < min(2n+ 1, %) and F,(z) < min(n, n”—;)

el

10Ulisse Dini (1845-1918), Italian mathematician and politician
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Problem 2.22. Show that if f € Cpil|—m, w1 is Hélder continuous (cf.

(L.67)), then
/1y

~ T v
|fk§2<‘k|> . k0.

(Hint: What changes if you replace e %Y by e #W+7/k) 4n ([2.45) 2 Now make
a change of variables y — y — 7 /k in the integral.)

Problem 2.23. Show that Cpe,|—m, 7| is dense in LP(—m,m) for 1 < p < oo.

Problem 2.24. Show that the functions ex(x) = \/%eik:”, ke Z, form an

orthonormal basis for $ = L?(—m, 7). (Hint: Start with K = [—7, 7] where
—m and 7 are identified and use the Stone—Weierstrafy theorem.)






Chapter 3

Compact operators

Typically, linear operators are much more difficult to analyze than matrices
and many new phenomena appear which are not present in the finite dimen-
sional case. So we have to be modest and slowly work our way up. A class
of operators which still preserves some of the nice properties of matrices is
the class of compact operators to be discussed in this chapter.

3.1. Compact operators

A linear operator A : X — Y defined between normed spaces X, Y is called
compact if every sequence A f, has a convergent subsequence whenever f;, is
bounded. Equivalently (cf. Corollary, A is compact if it maps bounded
sets to relatively compact ones. The set of all compact operators is denoted
by Z(X,Y). If X =Y we will just write .#(X) := (X, X) as usual.

Example 3.1. Every linear map between finite dimensional spaces is com-
pact by the Bolzano—Weierstrafl theorem. Slightly more general, a bounded
operator is compact if its range is finite dimensional. o

The following elementary properties of compact operators are left as an

exercise (Problem [3.1):

Theorem 3.1. Let X, Y, and Z be normed spaces. FEvery compact linear
operator is bounded, # (X,Y) C L (X,Y). Linear combinations of compact
operators are compact, that is, #(X,Y) is a subspace of £ (X,Y). More-
over, the product of a bounded and a compact operator is again compact, that
is, Ae L(X,)Y), Be #(Y,Z) or Aec #(X,Y), Be Z(Y,Z) implies
BAe ¥ (X,Z).
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In particular, the set of compact operators £ (X) is an ideal within the
set of bounded operators. Moreover, if X is a Banach space this ideal is even
closed:

Theorem 3.2. Suppose X is a normed and Y a Banach space. Let A, €
H(X,Y) be a convergent sequence of compact operators. Then the limit A
1S again compact.

Proof. Let f]Q be a bounded sequence. Choose a subsequence fj1 such that

Aq fj1 converges. From fj1 choose another subsequence f]2 such that Ao f]2
converges and so on. Since there might be nothing left from [} asn — o0, we

consider the diagonal sequence f; := fj] . By construction, f; is a subsequence
of fJ" for j > n and hence A, f; is Cauchy for every fixed n. Now

[Af; = Afill = (A = An)(f5 — fi) + An(f5 = fo)l
<A = Aullllf5 = frll + | Anfs — Anfil

shows that Af; is Cauchy since the first term can be made arbitrary small
by choosing n large and the second by the Cauchy property of A, f;. U

Example 3.2. Let X := ¢P(N) and consider the operator

(Qa); = qja;
for some sequence ¢ = (g;)72; € co(N) converging to zero. Let @, be
associated with ¢7' = ¢; for j <n and ¢} =0 for j > n. Then the range of
Q" is finite dimensional and hence @, is compact. Moreover, by ||Q, — Q|| =

SUD >, lgj| we see @, — @ and thus @ is also compact by the previous
theorem. o

Example 3.3. Let X := C[0,1], Y := C[0,1] (cf. Problem then the
embedding X < Y is compact. Indeed, a bounded sequence in X has
both the functions and the derivatives uniformly bounded. Hence by the
mean value theorem the functions are equicontinuous and hence there is
a uniformly convergent subsequence by the Arzela—Ascoli theorem (Theo-
rem . Of course the same conclusion holds if we take X := C%7[0, 1] to
be Holder continuous functions (cf. Theorem [1.21)). o

If A: X — Y is a bounded operator there is a unique extension A4 : X —
Y to the completion by Theorem Moreover, if A € #(X,Y), then
A € #(X,Y) is immediate. That we also have A € #(X,Y) will follow
from the next lemma. In particular, it suffices to verify compactness on a
dense set.

Lemma 3.3. Let X, Y be normed spaces and A € # (X,Y). Let X, Y be
the completion of X, Y, respectively. Then A € # (X,Y), where A is the
unique extension of A (cf. Theorem .



3.1. Compact operators 73

Proof. Let f, € X be a given bounded sequence. We need to show that Af,
has a convergent subsequence. Pick g, € X such that [|g, — fn| < L and

n

by compactness of A we can assume that Ag, — g. But then IAfn —gll <
1A fn = gnll + [[Agn — gll shows that Af, — g. O

One of the most important examples of compact operators are integral
operators. The proof will be based on the Arzela—Ascoli theorem (Theo-

rem .

Lemma 3.4. Let X := C([a,b]) or X := L£2,,,(a,b). The integral operator
K : X — X defined by

b
(KN @) = [ Ko () (3.1)
where K (x,y) € C([a,b] X [a,b]), is compact.

Proof. First of all note that K(.,..) is continuous on [a, b] X [a, b] and hence
uniformly continuous. In particular, for every € > 0 we can find a é > 0 such
that |K(y,t) — K(z,t)| < e for any t € [a, b] whenever |y —z| < §. Moreover,
1K oo = supy yefa (2, )| < oo

We begin with the case X := £2,(a,b). Let g := K f. Then

cont

b b
l9(2)| S/ (K (2, )] [f(#)]dE < HKlloo/ [F@)ldt < |[Kloo |11,

where we have used Cauchy-Schwarz in the last step (note that ||1]] =

Vb — a). Similarly,
b
l9(z) = g(y)| < / (K (y,t) — K(z,t)[ | f(£)|dt

b
gs/ £l < <] 1£],

whenever |y — z| < 6. Hence, if f,(x) is a bounded sequence in £2,,,(a,b),

then g, := K f,, is bounded and equicontinuous and hence has a uniformly
convergent subsequence by the Arzela—Ascoli theorem (Theorem . But
a uniformly convergent sequence is also convergent in the norm induced by
the scalar product. Therefore K is compact.

The case X := C([a,b]) follows by the same argument upon observing

JP1F@)]dt < (b= a)]] f]loo- 0

Compact operators share many similarities with (finite) matrices as we
will see in the next section.

Problem* 3.1. Show Theorem[3.1
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Problem 3.2. Is the left shift (a1,az2,as,...) — (ag,as,...) compact in
2(N)?

Problem 3.3 (Lions’ lemma)ﬂ Let X, Y, and Z be Banach spaces. Assume
X is compactly embedded into Y and Y is continuously embedded into Z.
Show that for every e > 0 there exists some C(e) such that

[zlly < ellzllx + C@)l|zl 2.

Problem 3.4. Is the operator % : C*[0,1] — C[0,1] compact for k = 1,27

(Hint: Problem[1.38 and Ezample[3.3)

Problem 3.5. Is the multiplication operator M; : C*[0,1] — C0,1] with
M, f(t) = tf(t) compact fork = 0,12 (Hint: Problem[1.38 and Example[3.3)
Problem 3.6. Let X := C([a,b]) or X := L2,,(a,b). Show that the

cont

Volterra integral operatovﬂ K : X — X defined by
(KD = [ K. r)dy,

where K (z,y) € C([a,b] X [a,b]), is compact.

Problem* 3.7. Show that the adjoint of the integral operator K on L2,,,(a,b)
from Lemma is the integral operator with kernel K (y,xz)*:

b
<Wﬂm:/Kmmvww

(Hint: Fubini.)

3.2. The spectral theorem for compact symmetric operators

Let $ be an inner product space. A linear operator A : ®(A) C $H — § is
called symmetric if its domain is dense and if

(9,Af) =(Ag, f)  f,g€D(A). (3.2)

If A is bounded (with ©(A) = ), then A is symmetric precisely if A = A*,
that is, if A is self-adjoint. However, for unbounded operators there is a
subtle but important difference between symmetry and self-adjointness (see
also Example [3.7] below).
A number z € C is called eigenvalue of A if there is a nonzero vector
u € ®(A) such that
Au = zu. (3.3)

Ly acques-Louis Lions (1928-2001), French mathematician
2Vito Volterra (1860-1940), Italian mathematician
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The vector w is called a corresponding eigenvector in this case. The set of
all eigenvectors corresponding to z is called the eigenspace

Ker(A — 2) (3.4)

corresponding to z. Here we have used the shorthand notation A — z for
A — zI. An eigenvalue is called (geometrically) simple if there is only one
linearly independent eigenvector.

Example 3.4. Let $ := (%(N) and consider the shift operators (STa); :=
aj+1 (with ag := 0). Suppose z € C is an eigenvalue, then the corresponding
eigenvector u must satisfy u;j4+; = zu;. For ST the special case j = 1 gives
0 = ug = zuy. So either z =0 and u = 0 or z # 0 and again u = 0. Hence
there are no eigenvalues. For ST we get u; = 2Ju; and this will give an
element in £2(N) if and only if |2| < 1. Hence z with |z| < 1 is an eigenvalue.
All these eigenvalues are simple. o

Example 3.5. Let § := ¢2(N) and consider the multiplication operator
(Qa); := gja; with a bounded sequence ¢ € ¢**(N). Suppose z € C is an
eigenvalue, then the corresponding eigenvector u must satisfy (g; — z)u; = 0.
Hence every value g; is an eigenvalue with corresponding eigenvector u := 4.
If there is only one j with z = ¢; the eigenvalue is simple (otherwise the
numbers of linearly independent eigenvectors equals the number of times z
appears in the sequence ¢). If z is different from all entries of the sequence,
then v = 0 and z is no eigenvalue. o

Note that in the last example Q) will be self-adjoint if and only if ¢ is real-
valued and hence if and only if all eigenvalues are real-valued. Moreover, the
corresponding eigenfunctions are orthogonal. This has nothing to do with
the simple structure of our operator and is in fact always true.

Theorem 3.5. Let A be symmetric. Then all eigenvalues are real and eigen-
vectors corresponding to different eigenvalues are orthogonal.

Proof. Suppose A is an eigenvalue with corresponding normalized eigen-
vector u. Then A = (u, Au) = (Au,u) = N\*, which shows that A is real.
Furthermore, if Au; = A\juj, 7 = 1,2, we have

(A1 — A2)(u1, u2) = (Aur, uz) — (u1, Aug) =0
finishing the proof. O
Note that while eigenvectors corresponding to the same eigenvalue A will
in general not automatically be orthogonal, we can of course replace each

set of eigenvectors corresponding to A by an set of orthonormal eigenvectors
having the same linear span (e.g. using Gram—Schmidt orthogonalization).
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Example 3.6. Let § := ¢2(N) and consider the Jacobi operator J := (ST +
S7):
1
(Je)j = 5(cj1 +¢j-1)
with the convention ¢y = 0. Recall that J* = J. If we look for an eigenvalue
Ju = zu, we need to solve the corresponding recursion wj1 = 2zu; — uj_1
starting from uy = 0 (our convention) and u; = 1 (normalization). Like
an ordinary differential equation, a linear recursion relation with constant
coefficients can be solved by an exponential ansatz u; = k7 which leads to the
characteristic polynomial k% = 2zk — 1. This gives two linearly independent
solutions and our requirements lead us to
uj(z):%, k=z—+22-1.
Note that k~! = 2++/22 — 1 and in the case k = z = £1 the above expression
has to be understood as its limit u;(£1) = (£1)7T1j. In fact, U;(z) =
uj+1(z) are polynomials of degree j known as Chebyshev polynomialﬂ
of the second kind.

Now for z € R\ [—1,1] we have |k| < 1 and u; explodes exponentially.
For z € [~1,1] we have |k| = 1 and hence we can write k = ¢l* with x € R.

Thus u; = % is oscillating. So for no value of z € R our potential
eigenvector u is square summable and thus J has no eigenvalues. o
Example 3.7. Let $o := £2,,,(—7,7) and consider the operator
1d
=c—, D(A) := CH—m, .
. D(4) = C'm, 7]

To compute its eigenvalues we need to solve the differential equation
—iu/(z) = zu(x)
whose solution is given by
u(x) = e**
and hence every z € C is an eigenvalue. To investigate symmetry we use
integration by parts which shows

(0. Afy =1 / " ge) f()de

= 1o 1) = g f-m) — 1 [ g @) flade
= (9" f(m) = g(=m)" f(=m)) + {Ag, )

for g, f € ©D(A). Since the boundary terms will not vanish in general, we
conclude that our operator is not symmetric. This could also be verified

3Pafnuty Chebyshev| (1821-1894), Russian mathematician
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by observing that the eigenfunctions for (e.g.) z = 0 and z = 1/2 are not
orthogonal. However, the above formula also shows that we can obtain a
symmetric operator by further restricting the domain. For example, we can
impose Dirichlet boundary conditionsﬁ and consider

_1d

T id’
Then the above computation shows that Ag is symmetric since the boundary
terms vanish for g, f € ©(Ag). Moreover, note that this domain is still
dense (to see this note that both 1 and z can be approximated by functions
vanishing at the boundary and that every polynomial can be decomposed into
a linear part and a polynomial which vanishes at the boundary). However,
note that since the exponential function has no zeros, we loose all eigenvalues!

Ao : D(Ao) := {f € O [=m, ]| f(~7) = f(r) = 0}.

The reason for this unfortunate behavior is that A and Ag are adjoint to
each other in the sense that (g, Agf) = (Ag, f) for f € D(Ag) and g € D(A).
Hence, at least formally, the adjoint of Ag is A and hence Ay is symmetric
but not self-adjoint. This gives a first hint at the fact, that symmetry is not
the same as self-adjointness for unbounded operators.

Returning to our original problem, another choice are periodic boundary
conditions

_1d
Py de?
Now we have increased the domain (in comparison to Ag) such that we are

still symmetric, but such that A is no longer adjoint to A,. Moreover, we
loose some of the eigenfunctions, but not all:

D(Ap) := {f € C[=m,]|f(—7) = f(n)}.

ap :=n, up(r):= en®, n € Z.

In fact, the eigenfunctions are just the orthonormal basis from the Fourier
series. 3

The previous examples show that in the infinite dimensional case sym-
metry is not enough to guarantee existence of even a single eigenvalue. In
order to always get this, we will need an extra condition. In fact, we will
see that compactness provides a suitable extra condition to obtain an or-
thonormal basis of eigenfunctions. The crucial step is to prove existence of
one eigenvalue, the rest then follows as in the finite dimensional case.

Theorem 3.6. Let $H be an inner product space. A symmetric compact
operator A has an eigenvalue oy which satisfies |a1| = || A]|.

Apeter Gustav Lejeune Dirichlet (1805 —1859), German mathematician
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Proof. We set a := ||A|| and assume a # 0 (i.e., A # 0) without loss of
generality. Since

IAI? = sup [AfII® = sup (Af,Af)= sup (f,A°f)
Filfl=1 Filfl=1 Flfl=1

there exists a normalized sequence u,, such that

lim (uy,, A%u,) = a®.
n—oo
Since A is compact, it is no restriction to assume that A%wu,, converges, say

lim,, o $A2un =: u. Now
1(A? = &®)un|® = [[A%un|* — 207 (un, A%up) + o*
< 2a2(a2 — (U, A2un>)

(where we have used ||A%u,| < ||A||||Aun]| < ||Al?||unl] = o?) implies
lim,, 00 (AU, — a?uy,) = 0 and hence lim, ;o0 4, = u. In addition, u is
a normalized eigenvector of A2 since (A2 — a?)u = 0. Factorizing this last
equation according to (A — a)u = v and (A + a)v = 0 shows that either
v # 0 is an eigenvector corresponding to —a or v = 0 and hence u # 0 is an
eigenvector corresponding to . [l

Note that for a bounded operator A, there cannot be an eigenvalue with
absolute value larger than ||A]|, that is, the set of eigenvalues is bounded by

||A|| (Problem [3.8]).
Now consider a symmetric compact operator A with eigenvalue a; (as
above) and corresponding normalized eigenvector uj. Setting

91 = {w}* = {f € Hl{w, f) = 0} (3.5)
we can restrict A to £ since f € £ implies
<u17Af>:<Au17f>:a1<u17f>:0 (36)

and hence Af € §;. Denoting this restriction by Aj, it is not hard to see
that A; is again a symmetric compact operator. Hence we can apply Theo-
rem iteratively to obtain a sequence of eigenvalues «; with corresponding
normalized eigenvectors u;. Moreover, by construction, u; is orthogonal to
all u, with & < j and hence the eigenvectors {u;} form an orthonormal set.
By construction we also have |a;| = ||441] < ||4;]| = |aj—1]. This proce-
dure will not stop unless §) is finite dimensional. However, note that a; = 0
for j > n might happen if 4, = 0.

Theorem 3.7 (Hilbert—Schmidt; Spectral theorem for compact symmetric
operators). Suppose §) is an infinite dimensional Hilbert space and A : § —
$H is a compact symmetric operator. Then there exists a sequence of real
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eigenvalues oj converging to 0. The corresponding normalized eigenvectors
u;j form an orthonormal set and every f € $ can be written as

f= {uj, flu; +h, (3.7)

j=1
where h is in the kernel of A, that is, Ah = 0.

In particular, if 0 is not an eigenvalue, then the eigenvectors form an
orthonormal basis (in addition, $) need not be complete in this case).

Proof. Existence of the eigenvalues «; and the corresponding eigenvectors
u; has already been established. Since the sequence || is decreasing it has a
limit € > 0 and we have || > e. If this limit is nonzero, then v; = «

J
a bounded sequence (||v;|| < 1) for which Av; has no convergent subsequence

since ||Av; — Avg||* = |Ju; — ug||* = 2, a contradiction.

Uj 18

Next, setting

n
fn = Z<uja f>Uj,
j=1
we have
IACf = f)ll < lanallf = full < lana|lI£]
since f — fn, € 9, and || A4, || = |an+1]. Letting n — oo shows A(foo — f) =0
proving . Finally, note that without completeness f., might not be
well-defined unless h = 0. (|

By applying A to (3.7) we obtain the following canonical form of compact
symmetric operators.

Corollary 3.8. Every compact symmetric operator A can be written as

N
Af =" ajluy, fuy, (3.8)
j=1
where (ozj)év:l are the nonzero eigenvalues with corresponding eigenvectors
uj from the previous theorem.

Remark: There are two cases where our procedure might fail to construct
an orthonormal basis of eigenvectors. One case is where there is an infinite
number of nonzero eigenvalues. In this case oy, never reaches 0 and all eigen-
vectors corresponding to 0 are missed. In the other case, 0 is reached, but
we might still miss some of the eigenvectors corresponding to 0 (if the kernel
is not separable or if we do not choose the vectors u; properly). In any
case, by adding vectors from the kernel (which are automatically eigenvec-
tors), one can always extend the eigenvectors u; to an orthonormal basis of
eigenvectors.
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Corollary 3.9. Every compact symmetric operator A has an associated or-
thonormal basis of eigenvectors {uj}jcs. The corresponding unitary map
U:9— (), f— {(uj, f)}jes diagonalizes A in the sense that UAU ! is
the operator which multiplies each basis vector 67 = U u;j by the corresponding
eigenvalue ;.

Example 3.8. Let a,b € ¢o(N) be real-valued sequences and consider the
operator

(Je)j = ajcjr + bjci +ajacj1
If A, B denote the multiplication operators by the sequences a, b, respec-

tively, then we already know that A and B are compact. Moreover, using
the shift operators ST we can write

J=AST + B+ S A,

which shows that J is self-adjoint since A* = A, B* = B, and (S%)* =
ST. Hence we can conclude that J has a countable number of eigenvalues
converging to zero and a corresponding orthonormal basis of eigenvectors.
Note that in this case it is not possible to get a closed expression for either
the eigenvalues or the eigenvectors. o

In particular, in the new picture it is easy to define functions of our
operator (thus extending the functional calculus from Problem. To this
end set ¥ := {a;};es and denote by B(X) the Banach algebra of bounded
functions F': ¥ — C together with the sup norm.

Corollary 3.10 (Functional calculus). Let A be a compact symmetric op-
erator with associated orthonormal basis of eigenvectors {u;}je; and corre-
sponding eigenvalues {a;}jey. Suppose F' € B(X), then

F(A)f = F(aj){uj, fHu; (3.9)
jeJ

defines a continuous algebra homomorphism from the Banach algebra B(X)
to the algebra £ ($)) with 1(A) =1 and I(A) = A. Moreover F(A)* = F*(A),

where F* is the function which takes complex conjugate values.

Proof. This is straightforward to check for multiplication operators in £2(.J)
and hence the result follows by the previous corollary. ([

In many applications F' will be given by a function on R (or at least on
[—[|All,]|A]|]) and, since only the values F'(«;) are used, two functions which
agree on all eigenvalues will give the same result.

As a brief application we will say a few words about general spectral
theory for bounded operators A € Z(X) in a Banach space X. In the finite
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dimensional case, the spectrum is precisely the set of eigenvalues. In the
infinite dimensional case one defines the spectrum as

0(A):=C\{zeC3(A-2)"e2X)} (3.10)

It is important to emphasize that the inverse is required to exist as a bounded
operator. Hence there are several ways in which this can fail: First of all,
A — z could not be injective. In this case z is an eigenvalue and thus all
eigenvalues belong to the spectrum. Secondly, it could not be surjective.
And finally, even if it is bijective, it could be unbounded. However, it will
follow form the open mapping theorem that this last case cannot happen
for a bounded operator. The inverse of A — z for z € C\ o(A) is known
as the resolvent of A and plays a crucial role in spectral theory. Using
Problem [I.49] one can show that the complement of the spectrum is open,
and hence the spectrum is closed. Since we will discuss this in detail in
Chapter [5 we will not pursue this here but only look at our special case of
symmetric compact operators.

To compute the inverse of A — z we will use the functional calculus and
consider F(a) = ﬁ Of course this function is unbounded on R but if 2
is neither an eigenvalue nor zero it is bounded on Y and hence satisfies our

requirements. Then
1
a; — 2

Ra(2)f == Z
JjeJ
satisfies (A — 2)Ra(z) = Ra(2)(A — 2z) =1, that is, Ra(z) = (A —2)7! €
Z($). Of course, if z is an eigenvalue, then the above formula breaks down.
However, in the infinite dimensional case it also breaks down if z = 0 even
if 0 is not an eigenvalue! In this case the above definition will still give an
operator which is the inverse of A — z, however, since the sequence o " is
unbounded, so will be the corresponding multiplication operator in #2(.J) and
the sum in will only converge if {a;1<uj,f>}jej € (%(J). So in the
infinite dimensional case 0 is in the spectrum even if it is not an eigenvalue.
In particular,

<uj,f>uj (311)

o(A) ={a}jer (3.12)
Moreover, if we use ﬁ = ﬁ - % we can rewrite this as
J J
1 N Q;
Ra(z)f == [ > ——(uj, fluj — f
i

where it suffices to take the sum over all nonzero eigenvalues.

Before we apply these results to Sturm—Liouville operators, we look at a
toy problem which illustrates the main ideas.
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Example 3.9. We continue Example[3.7]and would like to apply the spectral
theorem to our operator A,. However, since A, is unbounded (its eigenvalues
are not bounded), it cannot be compact and hence we cannot apply Theo-
rem @ directly to A,. However, the trick is to apply it to the resolvent. To
this end we need to solve the inhomogeneous differential equation

—if'(z) = 2 f(z) = g(2),

whose solution is (variation of constants)

f(@) = F(—m)e @+ 1 / " g () dy.

—T

The requirement f € ©(A,) gives
fom) = flm) = f-m)e i [ gy
implying

1 ie27riz T T

(4= 2)79(a) = Tz [ gy [ =gty
for z ¢ Z. Indeed, for every g € $)o we have constructed f € ®(A,) such that
(Ap—z)f = g provided z ¢ Z. In particular, A, — z is surjective in this case.
Moreover, since z ¢ Z is no eigenvalue, A, — z is also injective and hence
bijective in this case. Thus the inverse exists and is given by (Apfz)_lg = f
as claimed. (Alternatively we could have also checked (A4, — 2)~1(A4, — 2)f
for f € ©®(Ap) — please remember that a right inverse might not be a left
inverse in the infinite dimensional case; cf. Problem .

That the resolvent is compact follows from Lemma [3.4 and Problem [3.6]
Moreover, that it is symmetric for z € R\ Z could be checked using Fubini,
but this is not necessary since it comes for free from symmetry of A, (cf.
Problem .

Finally observe, that the eigenfunctions of the resolvent are niz while
the eigenvectors are the same as those of A,. This shows that u,(z) :=

(2m)~1/2e!" is an orthonormal basis for L?(—, 7).

It is interesting to observe, that, while the algebraic formulas remain
the same, most of our claims break down if we try to replace the Hilbert
space L2,,,(—m,7) by the Banach space C[—m,n]: Of course we have the
same eigenvalues and eigenfunctions and also the formula for the resolvent
remains valid. The resolvent is still compact, but of course symmetry is not
defined in this context. Indeed, we already know that the Fourier series of
a continuous function does not converge in general. This emphasizes the

special role of Hilbert spaces and symmetry. o
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Problem 3.8. Show that if A € Z($), then every eigenvalue o satisfies
laf < [|A].

Problem 3.9. Find the eigenvalues and eigenfunctions of the integral oper-
ator K € £(£2,,,(0,1)) given by

1
<me:ﬁummw@@,

where u,v € C([0,1]) are some given continuous functions.

Problem 3.10. Find the eigenvalues and eigenfunctions of the integral op-
erator K € £(£2,,,(0,1)) given by

cont

1
<Kﬂ@w—2ﬂ<mw—x—y+nﬂw@.

Problem 3.11. Let § := £2,,,(0,1). Show that the Volterra integral opera-
tor K : $5 — $ from Problem[3.6 has no eigenvalues except for 0. Show that
0 is no eigenvalue if K(x,y) > 0. Why does this not contradict Theorem ?

(Hint: Gronwall’s inequality.)

Problem* 3.12. Show that the resolvent Rx(z) = (A — 2)~ (provided it
exists and is densely defined) of a symmetric operator A is again symmetric
for z € R. (Hint: g € D(Ra(2)) if and only if g = (A — 2)f for some
feD(A).)

3.3. Applications to Sturm—Liouville operators

Now, after all this hard work, we can show that our Sturm-Liouville operator

d2
L:=—— 1
s a(a), (3.13)
where ¢ is continuous and real, defined on
D(L) := {f € C*[0,1]|f(0) = f(1) = 0} C L2,,,(0,1), (3.14)

has an orthonormal basis of eigenfunctions.

The corresponding eigenvalue equation Lu = zu explicitly reads
—u"(x) + q(z)u(z) = zu(z). (3.15)

It is a second order homogeneous linear ordinary differential equation and
hence has two linearly independent solutions. In particular, specifying two
initial conditions, e.g. u(0) = 0,4/(0) = 1 determines the solution uniquely.
Hence, if we require u(0) = 0, the solution is determined up to a multiple
and consequently the additional requirement u(1) = 0 cannot be satisfied by
a nontrivial solution in general. However, there might be some z € C for
which the solution corresponding to the initial conditions «(0) = 0,4/(0) = 1
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happens to satisfy u(1) = 0 and these are precisely the eigenvalues we are
looking for.

Note that the fact that £2,,(0,1) is not complete causes no problems
since we can always replace it by its completion $ = L?(0, 1).

We first verify that L is symmetric:

(f,Lg) = / f(x (z) + q(x)g(z))dx

1
_ / F(2)*d (@)de + / f(2) q(2)g(x)dz
0
1
/ (@) g(x)da + /0 f@) a@g@de  (3.16)

=(Lf,9)

Here we have used integration by parts twice (the boundary terms vanish
due to our boundary conditions f(0) = f(1) =0 and ¢(0) = g(1) = 0).

Of course we want to apply Theorem and for this we would need to
show that L is compact. But this task is bound to fail, since L is not even

bounded (see Example [1.18))!

So here comes the trick (cf. Example : If L is unbounded its inverse
L~ might still be bounded. Moreover, L~! might even be compact and this
is the case here! Since L might not be injective (0 might be an eigenvalue),
we consider the resolvent Ry (z) := (L —2)7 %, z € C.

In order to compute the resolvent, we need to solve the inhomogeneous
equation (L — z)f = g. This can be done using the variation of constants
formula from ordinary differential equations which determines the solution
up to an arbitrary solution of the homogeneous equation. This homogeneous
equation has to be chosen such that f € ©(L), that is, such that f(0) =
f(1)=o.

Define

() :W(/j u,(z,t)g(t)dt)

+ w</331 u+(z,t)g(t)dt), (3.17)

where uy(z,x) are the solutions of the homogeneous differential equation
—u/l (z,2)+(q(z) — z)us (z,z) = 0 satisfying the initial conditions u_(z,0) =
0, u_(z,0) = 1 respectively u4(z,1) =0, v/, (2,1) = 1 and

W(z) = W(ug(2),u—(2)) = u_(z,2)uy(z,2) —u_(z,z)u (z,z) (3.18)
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is the Wronski determinantﬂ which is independent of z (compute its
derivative!).

Of course this formula implicitly assume W (z) # 0. This condition is
not surprising since the zeros of the Wronskian are precisely the eigenvalues:
In fact, W(z) evaluated at x = 0 gives W(z) = uy(z,0) and hence shows
that the Wronskian vanishes if and only if uy (z, ) satisfies both boundary
conditions and is thus an eigenfunction.

Returning to we clearly have f(0) = 0 since u_(z,0) = 0 and
similarly f(1) = 0 since u4(z,1) = 0. Furthermore, f is differentiable and a
straightforward computation verifies

(@) :%(/j u_(z,t)g(t)dt>

+ W(/xl u+(z,t)g(t)dt). (3.19)

Thus we can differentiate once more giving

f(=) ZM([ u_(z,t)g(t)dt)

W(z)
u’ (2, x 1
2D ([ wtengtiar) - oo
=(q(z) — 2) f(z) — g(z). (3.20)

In summary, f is in the domain of L and satisfies (L—z)f = g. In particular,
L — z is surjective for W(z) # 0. Hence we conclude that L — z is bijective
for W(z) #0

Introducing the Green functiorﬁ

. 1 ug(z,x)u_(z,t), x>t
G(z,x,t) == W s (o) () { ws (o tu_(,7), o<t (3.21)

we see that (L — z)~! is given by

1
(L —2)"g(x) :/ G(z,x,t)g(t)dt. (3.22)
0

Symmetry of L — z for z € R also implies symmetry of Ry (z) for z €
R (Problem but this can also be verified directly using G(z,z,t) =
G(z,t,z) (Problem [3.13). From Lemma it follows that it is compact.
Hence Theorem applies to (L — z)~! once we show that we can find a
real z which is not an eigenvalue.

9J6zef Maria Hoene-Wronski (1776-1853), Polish philosopher and mathematician
6George Green (1793-1841), British mathematical physicist


https://en.wikipedia.org/wiki/J%C3%B3zef_Maria_Hoene-Wro%C5%84ski
http://en.wikipedia.org/wiki/George Green (mathematician)
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Theorem 3.11. The Sturm—Liouville operator L has a countable number of
discrete and simple eigenvalues E, which accumulate only at oo. They are
bounded from below and can hence be ordered as follows:

min ¢(z) < By < Ep < ---. (3.23)

z€[0,1]
The corresponding normalized eigenfunctions u, form an orthonormal basis
for £2,,,(0,1), that is, every f € £2,.,(0,1) can be written as

o

f(x> = Z<una f>un(x) (3'24)
n=0

Moreover, for f € ©(L) this series is absolutely uniformly convergent.

Proof. If E; is an eigenvalue with corresponding normalized eigenfunction
u; we have

1
E; = (uj, Luj) = /0 (\ué(:ﬁ)]Q + q(:v)|uj(x)|2)d:c > xren[[i)?” q(x) (3.25)

where we have used integration by parts as in (3.16)). Note that equality
could only occur if u; is constant, which is incompatible with our boundary
conditions. Hence the eigenvalues are bounded from below.

Now pick a value A € R such that Rp()\) exists (A < ming,e(o 1) q(2)
say). By Lemma Rp (M) is compact and by Lemma this remains
true if we replace £2,,,(0,1) by its completion. By Theorem there are
eigenvalues ay, of Rp(\) with corresponding eigenfunctions w,. Moreover,
Rr(Mu, = anu, is equivalent to Lu, = (A + i)un, which shows that
E, =)+ i are eigenvalues of L with corresponding eigenfunctions u,. Now
everything follows from Theorem except that the eigenvalues are simple.
To show this, observe that if u, and v, are two different eigenfunctions
corresponding to E,, then u,(0) = v,(0) = 0 implies W (uy,v,) = 0 and
hence u,, and v,, are linearly dependent.

To show that converges uniformly if f € ©(L) we begin by writing

f = RL()‘)ga g e ‘Czont(oa 1)7 implying

ZWM Flun(z) = Z<RL()‘)umg>un(x) = Zan<un,g>un(x).
n=0 n=0 n=0

Moreover, the Cauchy—Schwarz inequality shows

n n

2
> e g, gyui (@) <D g, g)P D laguy ()],
j=m

j=m Jj=m

Now, by (2.18), >°7%, [(uj, g)|* = ||lg||* and hence the first term is part of a

convergent series. Similarly, the second term can be estimated independent
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of x since
1
aptn(x) = Rp(Nup(x) = /0 G\, z, )up(t)dt = (upn, G(A, z,.))

implies
n (3] 1
> lagui(@)P £ 3 Iy, GO )P = [ GO P < MNP,
j=m j=0 0

where M () := max, ;c(01] |G(), 2,1)], again by (2.18). O

Moreover, it is even possible to weaken our assumptions for uniform

convergence. To this end we consider the sequilinear form associated with
L:

1
sp(f,9) = (f, Lg) = /0 (F'(2)d (@) + a@) F(@) g(x)) dz (3.26)

for f,g € ®(L), where we have used integration by parts as in (3.16)). In
fact, the above formula continues to hold for f in a slightly larger class of
functions,

Q(L) :={f € C}[0,1]|f(0) = f(1) =0} 2 D(L), (3.27)

which we call the form domain of L. Here Cjla,b] denotes the set of
piecewise continuously differentiable functions f in the sense that f is con-
tinuously differentiable except for a finite number of points at which it is
continuous and the derivative has limits from the left and right. In fact, any
class of functions for which the partial integration needed to obtain (3.26)
can be justified would be good enough (e.g. the set of absolutely continuous
functions to be discussed in Section 4.4] from [37]).

Lemma 3.12. For a regular Sturm—Liouville problem (3.24]) converges ab-
solutely uniformly provided f € Q(L).

Proof. By replacing L — L — Ey + 1 (this will shift the eigenvalues E,, —
E, — Ey+ 1 and leave the eigenvectors unchanged) we can assume qr(f) :=
sp.(f, f) > 0 and E; > 0 without loss of generality.

Now let f € Q(L) and consider (3.24). Then, observing that sz (f,g) is
a symmetric sesquilinear form (after our shift it is even a scalar product) as
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well as sp.(f,uj) = Ej(f,u;) one obtains

n n

0<qr(f = > (uj, HHus) = qu(f) = > (uj, f)si(f,uy)
Jj=m j=m
Z u]’ SL u]7 + Z u]a ukv >SL(uj7uk)
j=m J,k=m

which implies
> Bil(w, /)P < a(f).

In particular, note that this estimate applies to f(y) = G(\, z,y). Now from
the proof of Theorem (with A = 0 and o = EJ_I) we have uj(z) =
E;(uj,G(0,z,.)) and hence

n

Z|“J’ ‘_ZE|UJ’ (u;,G(0,,.))|

j=m
1/2

> Ejltus, AP Bil(uy, G0, 2,.))?
1/2

ST B us, HP ] an(G0,2,.))Y,
j=m

where we have used the Cauchy—Schwarz inequality for the weighted scalar
product (fj,g;) — Z]- f79;E;. Finally note that qr.(G(0,z,.)) is continuous
with respect to x and hence can be estimated by its maximum over [0, 1].
This shows that the sum is absolutely convergent, uniformly with
respect to x. [l

Another consequence of the computations in the previous proof is also
worthwhile noting:

Corollary 3.13. We have

o0
G(z,z,y) Z

j=0

z)u;(y), (3.28)

gq
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where the sum is uniformly convergent. Moreover, we have the following
trace formula

/ G(z,z,z)d. ZEjl—z' (3.29)

Jj=0

Proof. Using the conventions from the proof of the previous lemma we have
(uj, G(0,z,.)) = E;luj(:z‘) and since G(0,z,.) € Q(L) for fixed x € [a, b] we

have

= 1

> 5 ui(@)u(y) = G0,2,y),

j=0 "
where the convergence is uniformly with respect to y (and z fixed). Moreover,
for z = y Dini’s theorem (cf. Problem [B.38)) shows that the convergence is
uniform with respect to x = y and this also proves uniform convergence of
our sum since

. 1/2 1/2

U ; z iu.$2 iu 2
Z|E |] z)u;(y)| < C(z) ZE i() ZE]- i(y) )

j=0 "7 =0

where C(z) := sup; |EE71Z|
J

Finally, the last claim follows upon computing the integral using (3.28|)
and observing ||u;|| = 1. O

Example 3.10. Let us look at the Sturm—Liouville problem with ¢ = 0.
Then the underlying differential equation is

—u"(z) = zu(x)

whose solution is given by w(z) = ¢ sin(y/zx) + ¢z cos(y/zx). The solution
satisfying the boundary condition at the left endpoint is u_(z, z) = sin(y/zx)
and it will be an eigenfunction if and only if u_(z,1) = sin(y/z) = 0. Hence
the corresponding eigenvalues and normalized eigenfunctions are

E, =702, up(z) = V2sin(nnz), n e N.

0,1) can be expanded into a Fourier

Moreover, every function f € L2 .(

81ne Serles
00 1
= nUn ; n = n d 5
5 fuunle) S Aummww

which is convergent with respect to our scalar product. If f € C]% [0, 1] with
f(0) = f(1) = 0 the series will converge uniformly. For an application of the
trace formula see Problem [3.15] o
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Example 3.11. We could also look at the same equation as in the previous
problem but with different boundary conditions

u'(0) = /(1) = 0.

Then
1 n=>0
E :7T2n2, Up () = ’ ’
" (@) {ﬁcos(mm;), n € N.

2

Zont(0,1) can be expanded into a Fourier

Moreover, every function f € L
cosine series

00 1
f(as):;fnunm, fo = /O () f () dz,

which is convergent with respect to our scalar product. o

Example 3.12. Combining the last two examples we see that every symmet-
ric function on [—1, 1] can be expanded into a Fourier cosine series and every
anti-symmetric function into a Fourier sine series. Moreover, since every

function f(x) can be written as the sum of a symmetric function w

and an anti-symmetric function M, it can be expanded into a Fourier
series. Hence we recover Theorem [2.19 o

Problem* 3.13. Show that for our Sturm-Liouville operator uy(z,x)* =
us(z*,x). Conclude Rr(z)* = Rr(z*). (Hint: Which differential equation
does uy(z,z)* solve? For the second part use Problem[3.7])

Problem 3.14. Suppose Ey > 0 and equip Q(L) with the scalar product sy,.
Show that

f(.%') = 3L<G(07 xz, ')7 f)
In other words, point evaluations are continuous functionals associated with

the vectors G(0,x,.) € Q(L). In this context, G(0,x,y) is called a repro-
ducing kernel.

Problem 3.15. Show that

<1 1— t
Y o= TVECOHTYE) e\,
font =z 2z

In particular, for z = 0 this gives Euler’sﬂ solution of the Basel problem:

2T e
=n 6

"Leonhard Euler (1707-1783), Swiss mathematician, physicist, astronomer, geographer, logi-
cian and engineer


http://en.wikipedia.org/wiki/Leonhard Euler
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In fact, comparing the power series of both sides at z = 0 gives

0 1 B (_1)k+1(27r)2kB2k ke N
Z 2k | ) )
—mn 2(2k)!
where By, are the Bernoulli number defined via 2 = Y 72, %zk.

(Hint: Use the trace formula (3.29).)

Problem 3.16. Consider the Sturm—Liouville problem on a compact interval
[a, b] with domain
D(L) = {f € C?[a,0]| f'(a) — af(a) = f'(b) — Bf(b) = 0}

for some real constants «, B € R. Show that Theorem continues to hold
except for the lower bound on the eigenvalues.

3.4. Estimating eigenvalues

In general, there is no way of computing eigenvalues and their corresponding
eigenfunctions explicitly. Hence it is important to be able to determine the
eigenvalues at least approximately.

Let A be a symmetric operator which has a lowest eigenvalue oy (e.g.,
A is a Sturm—Liouville operator). Suppose we have a vector f which is an
approximation for the eigenvector u; of this lowest eigenvalue o;. Moreover,
suppose we can write

A= aj(uj, du;,  D(A) ={f N> |ajlu;, f)I* <oo}, (3.30)
j=1 j=1

where {u;}jen is an orthonormal basis of eigenvectors. Since aq is supposed
to be the lowest eigenvalue we have o; > a; for all j € N.

Writing f = Zj Yiuj, v = (uj, f), one computes

(LAF) = (£ ayug) = il feD(A), (3.31)
P i=1
and we clearly have
o < AN o, (3.32)

oA

with equality for f = u;. In particular, any f will provide an upper bound
and if we add some free parameters to f, one can optimize them and obtain
quite good upper bounds for the first eigenvalue. For example we could

€Jacob Bernoulli (1655-1705), Swiss mathematician


http://en.wikipedia.org/wiki/Jacob Bernoulli
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take some orthogonal basis, take a finite number of coefficients and optimize
them. This is known as the Rayleigh—Ritz methodﬂ

Example 3.13. Consider the Sturm-Liouville operator L with potential
¢(z) = =z and Dirichlet boundary conditions f(0) = f(1) = 0 on the in-
terval [0, 1]. Our starting point is the quadratic form

1
)= (110 = [ (7@ + )l )P da
which gives us the lower bound

(fiLf) > Oléﬂziglq(x) =0.

While the corresponding differential equation can in principle be solved in
terms of Airy functions, there is no closed form for the eigenvalues.

First of all we can improve the above bound upon observing 0 < ¢g(z) <1
which implies

where Lg is the Sturm—Liouville operator corresponding to ¢(z) = 0. Since
the lowest eigenvalue of Ly is 72 we obtain

< E <71’+41
for the lowest eigenvalue E; of L.

Moreover, using the lowest eigenfunction fi(z) = v/2sin(nz) of Lo one
obtains the improved upper bound

1
By < (fi,Lfi) =7+ 5 ~ 10.3696.

Taking the second eigenfunction fo(x) = v/2sin(27z) of Lo we can make the
ansatz f(x) = (1+~2)"Y2(fi(z) + vf2(x)) which gives

1 ~ 32
Lf)=n24 = 3r2y — 2.
SLfy=mt o+ 1720 -5 5)
. . . - o 32 ..
The right-hand side has a unique minimum at v = ST Vi0si a0 S1Ving
the bound
5 1 /1024 + 72978
By < -n? 4= — ~ 10.3685

1S5 Ty 1872

which coincides with the exact eigenvalue up to five digits. o

But is there also something one can say about the next eigenvalues?
Suppose we know the first eigenfunction u;. Then we can restrict A to
the orthogonal complement of u; and proceed as before: FEs will be the
minimum of (f, Af) over all f restricted to this subspace. If we restrict to

9John William Strutt, 3rd Baron Rayleigh| (1842-1919), English physicist
9Walther Ritz (1878-1909), Swiss theoretical physicist


http://en.wikipedia.org/wiki/John William Strutt, 3rd Baron Rayleigh
http://en.wikipedia.org/wiki/Walther Ritz
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the orthogonal complement of an approximating eigenfunction fi, there will
still be a component in the direction of u; left and hence the infimum of the
expectations will be lower than Fs. Thus the optimal choice f; = u; will
give the maximal value FEj.

Theorem 3.14 (Couranﬂ Max-min principle). Let A be a symetric oper-

ator and let a; < ag < --+ < an be eigenvalues of A with corresponding
orthonormal eigenvectors uy, us, ..., uN. Suppose
N ~
A= Za]’<u]', .>Uj + A (333)
j=1
with (f, Af) > an||fl|? for all f € D(A) and uy,...,uy € Ker(A). Then
Q; = sup inf 1 Af), 1<j <N, 3.34
T er(fl,...,fj_1)< ) (3:34)

where
U(fi,-o 1) ={F €D =1, fespan{fi,..., f;}"}.  (3.35)

Proof. We have

inf LA < .
er(fl,...,fj71><f hr<a;

In fact, set f = Zizl veug and choose 7 such that f € U(fi,..., fj—1).
Then

J
(AR = wlax < o
k=1

and the claim follows.

Conversely, let v, = (ug, f) and write f = Zi:l viug + f. Then

N
inf JAF) = inf 200 + (AP | =a;. O
er(uh...,uj,l)U f) U s 1) kzzj vkl " + (f, Af) i

Of course if we are interested in the largest eigenvalues all we have to do
is consider —A.

Note that this immediately gives an estimate for eigenvalues if we have
a corresponding estimate for the operators. To this end we will write

A<B & ([LAf)<(f,Bf), feD(A)ND(B). (3.36)

Corollary 3.15. Suppose A and B are symmetric operators with corre-
sponding eigenvalues a; and B; as in the previous theorem. If A < B and
D(B) CD(A) then oy < S;.

1CRichard Courant (1888-1972), German American mathematician


http://en.wikipedia.org/wiki/Richard Courant
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Proof. By assumption we have (f, Af) < (f, Bf) for f € ©(B) implying
inf (f,Af) < inf (f,Af) < inf )<f, Bf),

FeUA(f1,05f5-1) T feUB(fi,fi—1) T feUB(fi,ofi—1
where we have indicated the dependence of U on the operator via a subscript.
Taking the sup on both sides the claim follows. ([

Example 3.14. Let L be again our Sturm-Liouville operator and Ly the
corresponding operator with ¢(z) = 0. Set ¢— = ming<z<1 ¢(x) and gy =
maxo<z<1 q(x). Then Lo+ q_ < L < Ly + ¢+ implies
0%+ q_ < B, < w2’ 4 ¢;.
In particular, we have proven the famous Weyl asymptoticﬂ
E, =7m*n*+0(1)
for the eigenvalues. o

There is also an alternative version which can be proven similar (Prob-
lem [3.17]):

Theorem 3.16 (Courant Min-max principle). Let A be as in the previous
theorem. Then

inf sup  (f,Af), (3.37)

o =
J : 1
ViCD(A)dim(V))=j fev,.|fll=1

where the inf is taken over subspaces with the indicated properties.

Problem* 3.17. Prove Theorem|[3.18.

Problem 3.18. Suppose A, A, are self-adjoint, bounded and A, — A.
Then ax(Ay) — ar(A). (Hint: For B self-adjoint ||B|| < € is equivalent to
—e<B<e¢.)

3.5. Singular value decomposition of compact operators

Our first aim is to find a generalization of Corollary [3.8] for general com-
pact operators between Hilbert spaces. The key observation is that if K €
H($1,92) is compact, then K*K € J ($1) is compact and symmetric and
thus, by Corollary there is a countable orthonormal set {u;} C $; and
nonzero real numbers s? = 0 such that

K'Kf= Zs?(uj,fmj. (3.38)
J

Moreover, ||[Ku;||? = (uj, K*Kuj) = (uj, 5?1@-} = sjz shows that we can set

sj = [[Ku;|| > 0. (3.39)

HHermann Weyl (1885-1955), German mathematician, theoretical physicist and philosopher


http://en.wikipedia.org/wiki/Hermann Weyl
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The numbers s; = s;(K) are called singular values of K. There are either
finitely many singular values or they converge to zero.

Theorem 3.17 (Schmidt; Singular value decomposition of compact opera-
tors). Let K € # ($1,92) be compact and let sj be the singular values of K
and {u;} C 91 corresponding orthonormal eigenvectors of K*K. Then

K= Z Sj <Uj, .>Uj, (340)

where v; = 5]-_1Kuj. The norm of K is given by the largest singular value

1] = macs; (). (3.41)

Moreover, the vectors {v;} C 2 are again orthonormal and satisfy K*v; =
sjuj. In particular, vj are eigenvectors of KK* corresponding to the eigen-
values s?.
Proof. For any f € $; we can write

F= (uj, fHuj+ fo
J

with f} € Ker(K*K) = Ker(K) (Problem [3.19). Then
Kf =) (uj, [)Ku; = si(uj, v,
J J
as required. Furthermore,

(v, v6) = (s55) " (Kuyj, Kug) = (sys) (K" Kuj, ug) = s (ug, up)
shows that {v;} are orthonormal. By definition K*v; = sj_lK*Kuj = 5;U;j
?’Uj.

Finally, (3.41) follows using Bessel’s inequality

HKsz—HZSJ wj, foj|? = Zs%ug, NP < (maes;(K)) 1117,

which also shows KK*v; = sjKuj; = s

where equality holds for f = uj, if s;, = max; s;(K). O

If K € (%) is self-adjoint, then u; = ojv;, 0]2 = 1, are the eigenvectors
of K and ojs; are the corresponding eigenvalues. In particular, for a self-
adjoint operators the singular values are the absolute values of the nonzero
eigenvalues.

The above theorem also gives rise to the polar decomposition

K =U|K| = |K*|U, (3.42)
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where

K| = VE*K =Y sj(uj, Juj, |K*|=VEKEK* =) s;j(vj,.)v; (3.43)
J J
are self-adjoint (in fact nonnegative) and

U:= Z<uj, Dv; (3.44)

is an isometry from Ran(K*) = span{u;} onto Ran(K) = span{v;}.
From the min-max theorem (Theorem [3.16]) we obtain:
Lemma 3.18. Let K € # ($1,92) be compact; then

s;(K) = min max Kfl, 3.45
]( ) frrnfi—1 fGU(fl,m,fj_l)” fH ( )

where U(f1,....f;) ={femllfll=1, fe span{fl,...,fj}L}.

In particular, note
si(AK) < [|Alls;(K),  s;(KA) <[ A]ls;(K) (3.46)
whenever K is compact and A is bounded (the second estimate follows from
the first by taking adjoints).
An operator K € Z($1,92) is called a finite rank operator if its
range is finite dimensional. The dimension
rank(K) := dim Ran(K)
is called the rank of K. Since for a compact operator
Ran(K') = span{v;} (3.47)

we see that a compact operator is finite rank if and only if the sum in
is finite. Note that the finite rank operators form an ideal in Z($)) just as
the compact operators do. Moreover, every finite rank operator is compact
by the Heine-Borel theorem (Theorem [B.22).

Now truncating the sum in the canonical form gives us a simple way to

approximate compact operators by finite rank ones. Moreover, this is in fact
the best approximation within the class of finite rank operators:

Lemma 3.19 (Schmidt). Let K € 2 ($1,92) be compact and let its singular

values be ordered. Then

i(K) = i K-F 3.48
G(K) = min |K-F, (3.49)

where the minimum is attained for

7j—1
Fj_l = Z sk<uk, .>’Uk. (3.49)
k=1
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In particular, the closure of the ideal of finite rank operators in £($)) is the
ideal of compact operators.

Proof. That there is equality for F' = Fj_; follows from (3.41). In general,

the restriction of F' to span{ui,...,u;} will have a nontrivial kernel. Let
f=>7_ aju; be a normalized element of this kernel, then [|(K — P f|?=
IKFI? = Y5y loksi]? > s7.

In particular, every compact operator can be approximated by finite rank
ones and since the limit of compact operators is compact, we cannot get more
than the compact operators. ([

Two more consequences are worthwhile noting.

Corollary 3.20. An operator K € £ ($1,92) is compact if and only if K*K
18.

Proof. Just observe that K*K compact is all that was used to show Theo-
rem B.17 O

Corollary 3.21. An operator K € £($1,92) is compact (finite rank) if
and only K* € £L($2,91) is. In fact, s;(K) = s;(K*) and

K* = s(vj, Ju;. (3.50)

J

Proof. First of all note that (3.50) follows from ([3.40)) since taking adjoints
is continuous and ((u;,.)v;)* = (vj,.)u; (cf. Problem [2.10). The rest is
straightforward. ([

From this last lemma one easily gets a number of useful inequalities for
the singular values:

Corollary 3.22 (Weyl). Let Ki and Ky be compact and let s;j(K1) and
sj(K2) be ordered. Then

(i) sj+r—1(K1 + K2) < s5(K1) + sk (K2),
(ii) sjrr—1(K1K2) < sj(K1)sk(Ka2),
(iii) |s;(K1) — 5(K2)| < [[K1 — Kaf|.

Proof. Let F} be of rank j — 1 and F; of rank k — 1 such that ||K; — Fi|| =
sj(K1) and || Ky — Fb|| = sp(K3). Then sj451 (K1 + Ks) < [[(Ky + Ka2) —
(F1 + FQ)H = HKI — Fl” + HK2 — FQH = Sj(Kl) + Sk(KQ) since I + Fy is of
rank at most j + k — 2.

Similarly F' = Fy (K — Fy) + K1 Fy is of rank at most j+ k —2 and hence
Sj+k-1(K1K2) < |[K1 Ko — F|| = [[(K1 — F1)(Kz — Fy)|| < [| K1 — ||| K2 —
Byl = s5(K1)sk(Ka).
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Next, choosing k = 1 and replacing Ky — Ky — K1 in (i) gives s;(K3) <
s; (K1) +| K2 — K1]|. Reversing the roles gives s, (K1) < s;(K2)+ || K1 — Ka|
and proves (iii). O
Example 3.15. On might hope that item (i) from the previous corollary
can be improved to s;(K; + K»3) < s;(K1) + s;(K2). However, this is not
the case as the following example shows:

10 0 0
k= (0), e (00).

Then 1 = s9(K71 + K2) £ s2(K1) + s2(K2) = 0. M
Problem* 3.19. Show that Ker(A*A) = Ker(A) for any A € Z($1,932).

Problem 3.20. Let K be multiplication by a sequence k € co(N) in the
Hilbert space (*(N). What are the singular values of K ?

Problem 3.21. Let K be multiplication by a sequence k € co(N) in the
Hilbert space *(N) and consider L = KS~. What are the singular values of
L? Does L have any eigenvalues?

Problem 3.22. Let K € J# ($1,92) be compact and let its singular values
be ordered. Let M C $1, N C 1 be subspaces with corresponding orthogonal
projections Pyy, Py, respectively. Then

sj(K)= min ||[K - KPyl| = min [K - PyK]|,
dim(M)<j dim(N)<j

where the minimum is taken over all subspaces with the indicated dimension.
Moreover, the minimum is attained for

M = span{u; }i_1, N = span{vg }_;.

3.6. Hilbert—Schmidt and trace class operators

We can further subdivide the class of compact operators J£ () according to
the decay of their singular values. We define

15l = (X)) (351)

J
plus corresponding spaces
Tp(H) ={K € Z(9)|[|Kllp < oo}, (3.52)

which are known as Schatten p-classes. Even though our notation hints
at the fact that ||.||, is a norm, we will only prove this here for p = 1,2 (the
only nontrivial part is the triangle inequality). Note that by (3.41))

K < 1Tl (3.53)
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and that by s;(K) = s;(K*) we have
1Kl = [LK]p- (3.54)
The two most important cases are p = 1 and p = 2: J2($)) is the space

of Hilbert—Schmidt operators and Ji()) is the space of trace class
operators.

Example 3.16. Any multiplication operator by a sequence from ¢?(N) is in

the Schatten p-class of $ = ¢?(N). o
Example 3.17. By virtue of the Weyl asymptotics (see Example [3.14]) the
resolvent of a regular Sturm-Liouville operator is trace class. o

Example 3.18. Let k be a periodic function which is square integrable over
[, 7]. Then the integral operator

™

KD = 5 [ Ky -a)rw)dy

—T

has the eigenfunctions u;(x) = (27)~'/2e71% with corresponding eigenvalues
I;:j, j € 7, where k; are the Fourier coefficients of k. Since {u; }jez is an ONB
we have found all eigenvalues. In particular, the Fourier transform maps K
to the multiplication operator with the sequence of its eigenvalues l%j. Hence
the singular values are the absolute values of the nonzero eigenvalues and

(3.40) reads
K= Z l%j<uj, )u]

JEZ
Moreover, since the eigenvalues are in ¢?(Z) we see that K is a Hilbert—

Schmidt operator. If k is continuous with summable Fourier coefficients
(e.g. k € C2,.[—m,7]), then K is trace class. o

per

We first prove an alternate definition for the Hilbert—Schmidt norm.
Lemma 3.23. A bounded operator K is Hilbert—Schmidt if and only if
D 1K w;|? < oo (3.55)
JjeJ
for some orthonormal basis and
1/2
1Kl = (3 IKwil?) (3.56)
JjeJ
for every orthonormal basis in this case.

Proof. First of all note that (3.55)) implies that K is compact. To see this,
let P, be the projection onto the space spanned by the first n elements of
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the orthonormal basis {w;}. Then K, = KP, is finite rank and converges
to K since

1/2
I = Ka) £l = 11 e Kwsll < 3 lell Kyl < (3 I 2) TlifL
i>n i>n i>n
where f =3, cjw;.

The rest follows from (|3.40) and
DK wi? = o, Kwy) [P = Y (K op,wp) =Y | K v
J k,j k,j k

= si(K)? = | K3
k

Here we have used span{vy} = Ker(K*)* = Ran(K) in the first step. O

Corollary 3.24. The Hilbert-Schmidt norm satisfies the triangle inequality
and hence is indeed a norm.

Proof. This follows from ([3.56) upon using the triangle inequality for $) and
for ¢2(J). O

Now we can show

Lemma 3.25. The set of Hilbert-Schmidt operators forms an ideal in £ (9)
and

[KAll2 < [|A[[[K]l2,  respectively, [|AK||y < [[A|[| K]l (3.57)

Proof. If K; and K5 are Hilbert—Schmidt operators, then so is their sum
since

150+ Kl = (S0 + oy |2) 7 < (S0l + 12y 1)?)
jeJ jeJ
< 1Kz + ([ Kzll2,
where we have used the triangle inequality for ¢2(.J).
Let K be Hilbert—Schmidt and A bounded. Then AK is compact and

JAK]E =D [ AKwj|* < A Y 1 Kwyll* = [ A]P||1K]5.
J J
For K A just consider adjoints. O

Example 3.19. Consider #2(N) and let K be some compact operator. Let
K, = (67, K6%) = (K7), be its matrix elements such that

(l(a)j:::ZE:JKQkak.
k=1
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Then, choosing w; = §7 in (3.56) we get
> N 1/2 X 1/2
1K1 = (o 1Ka12) ™ = (32D 1K)
j=1 j=1 k=1

Hence K is Hilbert-Schmidt if and only if its matrix elements are in £?(N x
N) and the Hilbert-Schmidt norm coincides with the ¢?(N x N) norm of
the matrix elements. Especially in the finite dimensional case the Hilbert—
Schmidt norm is also known as Frobenius norm/[?]

Of course the same calculation shows that a bounded operator is Hilbert—
Schmidt if and only if its matrix elements (w;, Kwy) with respect to some
orthonormal basis {w;};es are in ¢2(J x J) and the Hilbert-Schmidt norm
coincides with the ¢?(.J x .J) norm of the matrix elements. o
Example 3.20. Let I = [a, b] be a compact interval. Suppose K : L%(I) —
C(I) is continuous, then K : L?(I) — L?(I) is Hilbert—-Schmidt with Hilbert—
Schmidt norm [|K||2 < /b —aM, where M := [|K||2(1)—c(n)-

To see this start by observing that point evaluations are continuous func-
tionals on C'(I) and hence f — (K f)(x) is a continuous linear functional on
L3(I) satisfying |(K f)(z)] < M||f||. By the Riesz lemma there is some
K, € L*(I) with ||K,|| < M such that

(K f)(z) = (Kz, f)

and hence for any orthonormal basis {w;};cn we have

D IEw) (@) =D 1 Keyw))? = | Ka|> < M.
JEN jEN
But then
Sl = [ 1@t = [ (X 0w )i
JjeEN jeNva a JEN
< (b—a)M?
as claimed. o

Since Hilbert—Schmidt operators turn out easy to identify (cf. also Sec-
tion [3.5] from [37]), it is important to relate J1($) with J2($):

Lemma 3.26. An operator is trace class if and only if it can be written as
the product of two Hilbert—Schmidt operators, K = K1 Ko, and in this case
we have

K < (K 2] Kzll2- (3.58)
In fact, K1, Ko can be chosen such that | K ||y = || K1]|2]| K2]|2-

1ZFerdinand Georg Frobenius (1849 —1917), German mathematician
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Proof. Using (3.40) (where we can extend u,, and v,, to orthonormal bases
if necessary) and Cauchy—Schwarz we have

1K= (on, Ku) = D [(KTvp, Kauy)|
n

n
. 1/2
< (D IK G0l Y I KowalP) " = K2 Kol
n n

and hence K = K7 K> is trace class if both K7 and K5 are Hilbert—Schmidt
operators. To see the converse, let K be given by (3.40) and choose K; =

> V8 (K)(uj, Jvj, respectively, Ko = 3, 1/s;(K)(u;,.)u;. Note that in
this case [|K |y = [ K113 = || Ka|f3. O

Now we can also explain the name trace class:

Lemma 3.27. If K is trace class, then for every orthonormal basis {w,}
the trace
tr(K) =Y (wn, Kwy) (3.59)
n
is finite,

[ tr(K)| < (1K1, (3.60)

and independent of the orthonormal basis.

Proof. If we write K = K1Ks with Ki, Ko Hilbert—Schmidt such that
|K|l1 = [|K1l|2]| K2||2, then the Cauchy—Schwarz inequality implies | tr(K)| <

| K7ll2]| K2ll2 = ||K|]1. Moreover, if {w,} is another orthonormal basis, we
have
> (wn, K1 Kown) =Y (Kfwn, Kown) =Y (KT wn, W) (m, Kaw,)
n n n,m
- Z<K§wm’ w"><w”7 Klwm> = Z<K§wma Klwm>
m,n m
= (W, K2 Kyion,).
m

In the special case w = w we see tr(K;K3) = tr(K2K7) and the general case
now shows that the trace is independent of the orthonormal basis. O

Clearly for self-adjoint trace class operators, the trace is the sum over
all eigenvalues (counted with their multiplicity). To see this, one just has to
choose the orthonormal basis to consist of eigenfunctions. This is even true
for all trace class operators and is known as Lidskiﬂ trace theorem (see [27]
for an easy to read introduction).

L3Victor Lidskii (1924-2008), Soviet mathematician
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Example 3.21. We already mentioned that the resolvent of our Sturm-—
Liouville operator is trace class. Choosing a basis of eigenfunctions we see
that the trace of the resolvent is the sum over its eigenvalues and combining
this with our trace formula gives

o0 1
tr(Rr(z)) = Z Ejl— . :/o G(z,z,z)dz

Jj=0

for z € C no eigenvalue. o

Example 3.22. For our integral operator K from Example [3.1§ we have in
the trace class case

tr(K) =Y k; = k(0).

JEL
Note that this can again be interpreted as the integral over the diagonal
(2m)tk(x — z) = (2m) "1k(0) of the kernel. o

We also note the following elementary properties of the trace:

Lemma 3.28. Suppose K, K1, Ko are trace class and A is bounded.
(i) The trace is linear.
(ii) tr(K*) = tr(K)*.
(i) If K1 < Ko, then tr(K;) < tr(Ka).
(iv) tr(AK) = tr(KA).
Proof. (i) and (ii) are straightforward. (iii) follows from K; < Kj if and

only if (f, K1f) < (f, Kof) for every f € $. (iv) By Problem and (i),
it is no restriction to assume that A is unitary. Let {w,} be some ONB and

note that {w, = Aw,} is also an ONB. Then
tr(AK) =Y (i, AKth,) = Y (Aw,, AK Aw,)

n n
= (wn, KAw,) = tr(K A)
n
and the claim follows. O

We also mention a useful criterion for K to be trace class.

Lemma 3.29. An operator K is trace class if and only if it can be written
as

K=Y (fj, )9 (3.61)
J
for some sequences f;, g; satisfying

> £illlgsll < oo. (3.62)
J
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Moreover, in this case
r(K) =Y (f5,95) (3.63)
J
and

1y = min Y| £llll9511, (3.64)
i

where the minimum is taken over all representations as in (3.61)).

Proof. To see that a trace class operator can be written in such a
way choose f; = u;, gj = sjvj. This also shows that the minimum in (3.64])
is attained. Conversely note that the sum converges in the operator norm
and hence K is compact. Moreover, for every finite N we have

N N N
Zsk: UImKUk ZZ vk7gj fjuuk ZZ(Ukagj><fj7uk>
k=1

k=1 k=1 j j k=1

N 12 , N 1/2
< Z (Z |<Uk,9j)|2> <Z |<fj7uk>|2> < Z £l g;ll-
J k=1 k=1 J

This also shows that the right-hand side in (3.64) cannot exceed || K||;. To
see the last claim we choose an ONB {wy} to compute the trace

tr(K):Zwk,Kwk ZZ wk; f];wk g_] ZZ wk?f] wkagj>
k
= {f595)- _

J
An immediate consequence of ((3.64) is:

Corollary 3.30. The trace norm satisfies the triangle inequality and hence
is indeed a norm.

Finally, note that
5 = (" £))? (3.65)
which shows that J2($) is in fact a Hilbert space with scalar product given
by

<K1,K2> = tr(Kng). (366)

Problem 3.23. Let $ := (2(N) and let A be multiplication by a sequence
a = (a;)52,. Show that A is Hilbert-Schmidt if and only if a € 2(N).

Furthermore show that || All2 = ||a|| in this case.

Problem 3.24. An operator of the form K : (?(N) — (2(N), f, — > jen kn+ifj
is called Hankel operator.
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e Show that K is Hilbert-Schmidt if and only if ZjeNj]ijF < o0
and this number equals || K||2.

e Show that K is Hilbert-Schmidt with ||K||2 < |lcll1 if |k;] < ¢,
where c; 1s decreasing and summable.

(Hint: For the first item use summation by parts.)






Chapter 4

The main theorems
about Banach spaces

Despite the many advantages of Hilbert spaces, there are also situations
where a non-Hilbert space is better suited (in fact the choice of the right
space is typically crucial for many problems). Hence we will devote our
attention to Banach spaces next.

4.1. The Baire theorem and its consequences

Recall that the interior of a set is the largest open subset (that is, the union
of all open subsets). A set is called nowhere dense if its closure has empty
interior. The key to several important theorems about Banach spaces is the
observation that a Banach space cannot be the countable union of nowhere
dense sets.

Theorem 4.1 (Bainﬂ category theorem). Let X be a (nonempty) complete
metric space. Then X cannot be the countable union of nowhere dense sets.

Proof. Suppose X = J;2; X;,. We can assume that the sets X,, are closed
and none of them contains a ball; in particular, X\ X,, is open and nonempty
for every n. We will construct a Cauchy sequence x,, which stays away from

all X,,.

Since X \ X is open and nonempty, there is a ball B, (z1) C X \ Xi.
Reducing r; a little, we can even assume B, (x1) € X \ X;. Moreover,
since Xy cannot contain B, (x1), there is some xo € B, (z1) that is not

in X, Since By, (z1) N (X \ X2) is open, there is a closed ball B,,(z2) C

IRené-Louis Baire (1874 —1932), French mathematician
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By, (z1) N (X \ X2). Proceeding recursively, we obtain a sequence (here we
use the axiom of choice) of balls such that

By (@) C By, (2n_1) N (X \ X).

Now observe that in every step we can choose r, as small as we please; hence
without loss of generality r, — 0. Since by construction z,, € B, (zy) for
n > N, we conclude that x, is Cauchy and converges to some point z € X.

But z € B, (z,) C X \ X,, for every n, contradicting our assumption that
the X,, cover X. O

In other words, if X,, C X is a sequence of closed subsets which cover
X, at least one X, contains a ball of radius € > 0.

Example 4.1. The set of rational numbers Q can be written as a count-
able union of its elements. This shows that the completeness assumption is
crucial. o

Remark: Sets which can be written as the countable union of nowhere
dense sets are said to be of first category or meager (also meagre). All
other sets are second category or fat (also residual). Hence explaining
the name category theorem.

Since a closed set is nowhere dense if and only if its complement is open
and dense (cf. Problem|B.7)), there is a reformulation which is also worthwhile
noting:

Corollary 4.2. Let X be a complete metric space. Then any countable
intersection of open dense sets is again dense.

Proof. Let {O,} be a family of open dense sets whose intersection is not
dense. Then this intersection must be missing some closed ball B.. This ball
will lie in |J,, X, where X, := X \ O,, are closed and nowhere dense. Now
note that X,, := X,, N B. are closed nowhere dense sets in B.. But B. is a
complete metric space, a contradiction. ([

Countable intersections of open sets are in some sense the next general
sets after open sets and are called Gy sets (here G and ¢ stand for the German
words Gebiet and Durchschnitt, respectively). The complement of a G set is
a countable union of closed sets also known as an F, set (here F' and o stand
for the French words fermé and somme, respectively). The complement of
a dense Gy set will be a countable union of nowhere dense sets and hence
by definition meager. Consequently properties which hold on a dense G are
considered generic in this context.

Example 4.2. The irrational numbers are a dense Gg set in R. To see
this, let x, be an enumeration of the rational numbers and consider the



4.1. The Baire theorem and its consequences 109

intersection of the open sets O,, := R\ {z,}. The rational numbers are
hence an F set. o

Now we are ready for the first important consequence:

Theorem 4.3 (BanachfSteinhauﬂ). Let X be a Banach space and Y some
normed vector space. Let {Aqs} C Z(X,Y) be a family of bounded operators.
Then

o cither {An} is uniformly bounded, | Ayl < C,
e or the set {x € X|sup, ||Aqz|| = 00} is a dense G5 set.

Proof. Consider the sets

Oy, := {z| || Aqz|| > n for some a} = U{x! |Agz|| > n}, neN.

By continuity of A, and the norm, each O,, is a union of open sets and hence
open. Now either all of these sets are dense and hence their intersection

() On = {z|sup || Aaz| = oo}
neN @

is a dense G by Corollary Otherwise, X \ O,, is nonempty and open
for one n and we can find a ball of positive radius B:(xo) C X \ O,. Now
observe

[Aayll = [Aa(y + 20 — z0)|| < [|Aa(y + zo)|l + [[Aazoll < 2n

for ||y|| < e. Setting y = %, we obtain

[E1
2n
[Aaz| < — ]|
€
for every z. O

Warning: There is also a variant, sometimes also called Banach—Steinhaus
theorem, for pointwise limits of bounded operators which will be discussed
in Lemma (iii).

Hence there are two ways to use this theorem by excluding one of the two
possible options. Showing that the pointwise bound holds on a sufficiently
large set (e.g. a ball), thereby ruling out the second option, implies a uniform
bound and is known as the uniform boundedness principle.

Corollary 4.4. Let X be a Banach space and 'Y some normed vector space.
Let {Ao} € Z(X,Y) be a family of bounded operators. Suppose ||Aqz| <
C(x) is bounded for every fized x € X. Then {As} is uniformly bounded,
[Aall < C.

2Hugo Steinhaus (1887-1972), Polish mathematician

¢
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Conversely, if there is no uniform bound, the pointwise bound must fail
on a dense Gg. This is illustrated in the following example.
Example 4.3. Consider the Fourier series of a continuous periodic
function f € Cpep|—7, 7| :== {f € Cl—n,7||f(—7) = f(m)}. (Note that this
is a closed subspace of C|—m, 7| and hence a Banach space — it is the kernel
of the linear functional ¢(f) := f(—m) — f(7w).) We want to show that for
every fixed x € [—m, 7] there is a dense G set of functions in Cpe,[—, 7] for
which the Fourier series will diverge at x (it will even be unbounded).

Without loss of generality we fix x = 0 as our point. Then the n’th
partial sum gives rise to the linear functional

1 s

0(f) = 5(0)(0) = o= [ Dua)f(@)de

and it suffices to show that the family {¢,},en is not uniformly bounded.
By Example (adapted to our present periodic setting) we have

1
0]l = 5-I1Dn.

Now we estimate

| Dnlly = 2/7r Dy ()| da > 2/0“ \sin((nszl/z)x”dx

[T s 42/ | 821
= sm — > sm — — —
0 —1)7 m e k

and note that the harmonic series diverges.

In fact, we can even do better. Let G(z) C Cpe,[—7, 7] be the dense G5
of functions whose Fourier series diverges at . Then, given countably many
points {z;}jen C [—m, 7], the set G := [);cy G(z;) is still a dense Gs by
Corollary Hence there is a dense G of functions whose Fourier series
diverges on a given countable set of points. o

Example 4.4. Recall that the Fourier coefficients of an absolutely continu-
ous function satisfy the estimate

; [ £lloc, & =0,
el < €170
Il & 0.

This raises the question if a similar estimate can be true for continuous
functions. More precisely, can we find a sequence c; > 0 such that

|fk| < Cka;,
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where Cy is some constant depending on f. If this were true, the linear
functionals

ek(f) = kEZ,

satisfy the assumptions of the uniform boundedness principle implying ||¢x|| <
C. In other words, we must have an estimate of the type

|fil < Cllf llooen

which implies v/27 < C ¢, upon choosing f (x) := e#? Hence our assump-
tion cannot hold for any sequence c¢i converging to zero and there is no
universal decay rate for the Fourier coefficients of continuous functions be-
yond the fact that they must converge to zero by the Riemann—Lebesgue
lemma. o

The next application is

Theorem 4.5 (Open mapping). Let A € Z(X,Y) be a continuous linear
operator between Banach spaces. Then A is open (i.e., maps open sets to
open sets) if and only if it is onto.

Proof. Set BYX := BX(0) and similarly for BY(0). By translating balls
(using linearity of A), it suffices to prove that for every ¢ > 0 thereisa § > 0
such that BY C A(BX). (By scaling we could also assume £ = 1 without
loss of generality.)

So let € > 0 be given. Since A is surjective we have

v = ax = aJnX = | AwBY) = | naBY)
n=1 n=1 n=1

and the Baire theorem implies that for some n, nA(BX) contains a ball.
Since multiplication by n is a homeomorphism, the same must be true for
n =1, that is, BY (y) C A(BX). Consequently

By C —y+ A(BX) C A(BX) + A(BX) C A(BX) + A(BX) C A(By).

So it remains to get rid of the closure. To this end choose ¢, > 0 such that
> olien < € and corresponding &, — 0 such that B} < A(BZX). Now

n=1
for z € Bg; C A(BZX) we have 1 € BX such that Az is arbitrarily close
to z, say z — Ax; € Bg; C A(BZ). Hence we can find zy € BX such

that (z — Azy) — Axg € Bg; C A(BZ) and proceeding like this a sequence
T, € Bgi such that

n
z— ZAxk € Bg;ﬂ.
k=1
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By construction the limit z := Y7 | x4 exists and satisfies z € BX as well
as z = Ar € A(BX). That is, Bg; C A(BZX) as desired.

Conversely, if A is open, then the image of the unit ball contains again
some ball BY C A(B5X). Hence by scaling BY. C A(BX) and letting r — oo
we see that A is onto: Y = A(X). O

Example 4.5. Let X be a Banach space and M a closed subspace. Then
the quotient map 7 : X — X/M is open. o

Example 4.6. However, note that, under the assumptions of the open map-
ping theorem, the image of a closed set might not be closed. For example,
consider the bounded linear operator A : (2(N) — (*(N), x + (z2,24,...)
which is clearly surjective. Then the image of the closed set U = {z €
2(N)|zon, = won_1/n} is dense (it contains all sequences with finite sup-
port) but not all of ¢2(N) (e.g. y, = + is missing since this would imply

n
Top—1 = 1) <&

As a by-product of the proof we record two consequences:

Corollary 4.6. For a continuous linear operator A € £ (X,Y) between
Banach spaces the following are equivalent:

(i) A is open.
(ii) BY (0) C AB{X(0) for some § > 0.

(iii) BY (0) C AB{¥(0) for some § > 0.

Corollary 4.7. Let A € Z(X,Y) be a continuous linear operator between
Banach spaces. Then either Ran(A) is meager or Ran(A) =Y.

Proof. As shown in the proof, if A is not onto, none of the sets AB;X will
contain a ball and hence the sets ABfL( are nowhere dense. Consequently,
Ran(A) = |J,, AB;X is meager in this case. O

Example 4.7. For example, ¢7°(N) is meager as a subset of (?(N) for pg < p
(which follows from applying the above corollary to the natural embedding

operator — Problem [1.17)). ©

As another immediate consequence we get the inverse mapping theorem:

Theorem 4.8 (Inverse mapping). Let A € £ (X,Y) be a continuous linear
bijection between Banach spaces. Then A™1 is continuous.

Example 4.8. Consider the operator (Aa)}_; := (%aj)?zl in ¢2(N). Then
its inverse (A_la)?:1 = (ja;)j—; is unbounded (show this!). This is in
agreement with our theorem since its range is dense (why?) but not all
of £2(N): For example, (b; := %)‘;‘;1 ¢ Ran(A) since b = Aa gives the
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contradiction
(o) (o0}

o0
== S i = S ol < o
=1 j=1 j=1

This should also be compared with Corollary [8:2] below.

Note that if one considers A on the subspace of sequences with finitely
many nonzero terms, then A would be surjective. This shows that the open
mapping theorem and the inverse mapping theorem fail if the spaces are not
complete. o

Example 4.9. Consider the Fourier series of an integrable function.
Using the inverse mapping theorem we can show that not every sequence
tending to 0 (which is a necessary condition according to the Riemann—
Lebesgue lemma) arises as the Fourier coefficients of an integrable function:

By the elementary estimate

A 1
17l < 511

we see that that the mapping F(f) := f continuously maps F : L'(—m, 1) —
co(Z) (the Banach space of sequences converging to 0). In fact, this estimate
holds for continuous functions and hence there is a unique continuous ex-
tension of F to all of L'(—m,n) by Theorem Moreover, it can be
shown that F' is injective (see the discussion after Theorem . Now if
F were onto, the inverse mapping theorem would show that the inverse is
also continuous, that is, we would have an estimate || f||o > C||f||1 for some
C > 0. However, considering the Dirichlet kernel D,, we have ||]_A7n||oo =1
but || Dy|l1 — oo as shown in Example o

Another important consequence is the closed graph theorem. The graph
of an operator A : ®(A) C X — Y between Banach spaces is

T(A) = {(z, Az)|z € D(A)}. (4.1)

If A is linear, the graph is a subspace of the Banach space X & Y, which is
just the Cartesian product together with the norm

(=, )| xey = l|z|lx + [lylly- (4.2)

Note that (zy,y,) — (z,y) if and only if z,, — = and y,, — .

We say that A has a closed graph if I'(A) is a closed subset of X @Y.
Explicitly this says that if (x,, Az,) € I'(A) converges to (z,y) € X ®Y,
we must have (z,y) € I'(A), that is, x € ©(A) and y = Az. In the case of
a bounded operator one gets convergence of Ax, for free from convergence
of x,, and hence the graph will be closed if and only if the domain D(A) is
closed. In the case of an unbounded operator closedness of the graph will
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not guarantee convergence of Ax, but it will ensure that if this sequence
converges, then it will converge to the right object, namely Ax.

Example 4.10. Let X := (0, 1] and consider the unbounded operator (cf.
Example [1.18])

D(A) = C*0,1], Af = f.
Then A is closed since f, — f and f, — ¢ implies that f is differentiable
and f' = g. o

Theorem 4.9 (Closed graph). Let A : X — Y be a linear map from a
Banach space X to another Banach space Y. Then A is continuous if and
only if its graph is closed.

Proof. If I'(A) is closed, then it is again a Banach space. Now the projec-
tion 71 (x, Az) := x onto the first component is a continuous bijection onto
X. So by the inverse mapping theorem its inverse m; Lis again continuous.
Moreover, the projection ma(x, Ax) := Az onto the second component is also
continuous and consequently so is A = mg o ! The converse is easy. [

Remark: The crucial fact here is that A is defined on all of X!

Operators whose graphs are closed are called closed operators. Warn-
ing: By Example a closed operator will not map closed sets to closed
sets in general. In particular, the concept of a closed operator should not be
confused with the concept of a closed map in topology!

Being closed is the next option you have once an operator turns out to
be unbounded. These operators play an important role and we will have a
closer look at them in Section [8.1] For now we only point out that the closed
graph theorem tells us that a closed linear operator can be defined on all of
X if and only if it is bounded. So if we have an unbounded operator, we
cannot have both! That is, if we want our operator to be at least closed, we
have to live with domains. This is the reason why in quantum mechanics
most operators are defined on domains. In fact, there is another important
property which does not allow unbounded operators to be defined on the
entire space:

Theorem 4.10 (Hellinger—Toeplitz). Let A : $ — $ be a linear operator on
some Hilbert space $). If A is symmetric, that is (g, Af) = (Ag, f), f,g € 9,
then A is bounded.

Proof. It suffices to prove that A is closed. In fact, f,, — f and Af, — ¢
implies

(h.g) = lim (h. Af,) = lim (Ah, f,) = (Ah, ) = (h. Af)
for every h € §. Hence Af = g. O
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Problem 4.1. Every subset of a meager set is again meager. Fvery superset
of a fat set is fat.

Problem 4.2. The complement of a meager set is dense.

Problem 4.3. Consider X := C'[—1,1]. Show that M := {z € X|z(—t) =
x(t)} is meager.

Problem 4.4. An infinite dimensional Banach space cannot have a count-
able Hamel basis (see Problem @ (Hint: Apply Baire’s theorem to X, :=

span{u;}7_;.)

Problem 4.5. Let X := C[0,1]. Show that the set of functions which are
nowhere differentiable contains a dense Gs. (Hint: Consider Fy, = {f €
X|3z € [0,1] : |f(z) — f(y)] < klx —y|, Yy € [0,1]}. Show that this set is
closed and nowhere dense. For the first property Bolzano—Weierstraf§ might
be useful, for the latter property show that the set P,, of piecewise linear

functions whose slopes are bounded below by m in absolute value are dense.
Now observe that Fy, N Py, =0 for m > k.)

Problem 4.6. Let X be a complete metric space without isolated points.
Show that a dense Ggs set cannot be countable. (Hint: A single point is
nowhere dense.)

Problem 4.7. Let X be the space of sequences with finitely many nonzero
terms together with the sup norm. Consider the family of operators { Ay }nen
given by (Anpa); = jaj, j < n and (Apa); := 0, j > n. Then this family
is pointwise bounded but not uniformly bounded. Does this contradict the
Banach—Steinhaus theorem?

Problem 4.8. Show that a bilinear map B : X XY — Z is bounded,
| B(x,y)|| < Cllz|l|yll, if and only if it is separately continuous with respect
to both arguments. (Hint: Uniform boundedness principle.)

Problem 4.9. Consider a Schauder basis as in . Show that the coor-
dinate functionals o, are continuous. (Hint: Denote the set of all possible
sequences of Schauder coefficients o = (an)flvzl by A and equip it with the
norm ||| := sup,, || Y_p_, axugl|. By construction the operator A: A — X,
a = > apuy has norm one. Now show that A is complete and apply the
inverse mapping theorem.)

Problem 4.10. Show that a compact symmetric operator in an infinite-di-
mensional Hilbert space cannot be surjective.

Problem 4.11. Show that the operator
9(A):={aecl’(N)ja; e #*(N)},  (Aa); :=jaj,

is a closed operator in X := (P(N).
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4.2. The Hahn—Banach theorem and its consequences

Let X be a Banach space. Recall that we have called the set of all bounded
linear functionals the dual space X* (which is again a Banach space by

Theorem |1.17]).

Example 4.11. Consider the Banach space ?(N), 1 < p < oco. Taking
the Kronecker deltas 6™ as a Schauder basis the n’th term x,, of a sequence
x € (P(N) can also be considered as the n’th coordinate of = with respect to
this basis. Moreover, the map l,,(x) := z,, is a bounded linear functional, that
is, I, € P(N)*, since |l,,(x)| = |zp| < ||z]|p. It is a special case of the following
more general example (in fact, we have I, = lsn). Since the coordinates of
a vector carry all the information this explains why understanding linear
functionals is of key importance. o
Example 4.12. Consider the Banach space P(N), 1 < p < oo and let ¢ be
the corresponding dual index satisfying % + % = 1. We have already seen
that by Holder’s inequality every b € ¢1(N) gives rise to a bounded
linear functional

Ih(a) == > bja, (4.3)

jneN

whose norm is ||| = [|b]lq (Problem [£.17). But can every element of ¢°(N)*
be written in this form?

Suppose p := 1 and choose [ € ¢}(N)*. Now define
b = 1(8%).

Then
[ = [1(7)] < {12l |87 {2 = 1[7]

shows [|b]|ec < ||Z]|, that is, b € £>°(N). By construction i{(a) = l3(a) for every
a € span{d’}ey. By continuity of [ it even holds for a € span{d’};en =
?1(N). Hence the map b + I; is an isomorphism, that is, £}(N)* = ¢*°(N).
A similar argument shows ¢P(N)* = (9(N), 1 < p < oo (Problem [4.18). One
usually identifies ¢P(N)* with ¢9(N) using this canonical isomorphism and
simply writes ¢P(N)* = (4(N). In the case p = oo this is not true, as we will
see soon. o

It turns out that many questions are easier to handle after applying a
linear functional ¢ € X*. For example, suppose z(t) is a function R — X
(or C — X), then ¢(z(t)) is a function R — C (respectively C — C) for
any ¢ € X*. So to investigate ¢(z(t)) we have all tools from real/complex
analysis at our disposal. But how do we translate this information back to
x(t)? Suppose we have £(z(t)) = £(y(t)) for all £ € X*. Can we conclude
x(t) = y(t)? The answer is yes and will follow from the Hahn-Banach
theorem.
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We first prove the real version from which the complex one then follows
easily.
Theorem 4.11 (HahnfBanaChEL real version). Let X be a real vector space
and ¢ : X — R a convez function (i.e., p(Ax+(1—=N)y) < Ap(x)+(1—=N)p(y)
for A€ (0,1)).

If £ is a linear functional defined on some subspace Y C X which satisfies

{(y) < ¢(y), y €Y, then there is an extension { to all of X satisfying
U(z) < p(x), x € X.

Proof. Let us first try to extend ¢ in just one direction: Take z ¢ Y and
set Y := span{z,Y}. If there is an extension £ to Y it must clearly satisfy
Uy + ax) == L(y) + al(z), yey.

So all we need to do is to choose £(x) such that £(y + ax) < p(y 4+ az). But

this is equivalent to

sup oy — ar) —L(y) <i(z)< inf oy + azx) — L(y)

a>0,yeY -« T a>0yeY o

and is hence only possible if

Py —arz) — Uyr) _ oy + a2x) — (y2)

—oq %)
for every a1, a2 > 0 and y1,y2 € Y. Rearranging this last equations we see
that we need to show

azl(y1) + arl(ys) < asp(yr — a1z) + anp(y2 + asz).
Starting with the left-hand side we have

a2l(y1) + arl(y2) = (o1 + a2)l (Ay1 + (1 — N)yz)
< (a1 +az)p (Ayr + (1 = Nyz)
= (a1 + ) (AMy1 — a12) + (1 = ) (y2 + azx))
< agp(yr — a1x) + a1p(y2 + az),

@2
aijtaz’

To finish the proof we appeal to Zorn’s lemma (Theorem : Let E
be the collection of all extensions / satisfying f(z) < ¢(x). Then E can be
partially ordered by inclusion (with respect to the domain, i.e. 0y C 0y if
D(f1) C D(ls) and 62\9(3 )= — /1) and every linear chain has an upper bound

where \ = Hence one dimension works.

(defined on the union of all domains). Hence there is a maximal element
¢ by Zorn’s lemma. This element is defined on X, since if it were not, we
could extend it as before contradicting maximality. ([l

3Hans Hahn (1879-1934), Austrian mathematician
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Note that linearity gives us a corresponding lower bound —p(—z) < £(z),
x € X, for free. In particular, if p(z) = ¢(—x) then |[{(z)| < ().

Theorem 4.12 (Hahn-Banach, complex version). Let X be a complex vector
space and ¢ : X — R a conver function satisfying p(ax) < p(z) if |a| = 1.

If € is a linear functional defined on some subspace Y C X which satisfies
()l < w(y), y € Y, then there is an extension £ to all of X satisfying
[(x)| < p(z), z € X.

Proof. Set ¢, := Re(¢) and observe
Uz) =L (x) — il (iz).
By our previous theorem, there is a real linear extension {, satisfying £,.(x) <
o(x). Now set ¢(x) := {(z) — ily(iz). Then ¢(z) is real linear and by
((iz) = 0,.(iz) + il,(z) = il(z) also complex linear. To show |[{(z)| < ¢(z)
x *

Uz)

we abbreviate o 1= @] and use
[U(x)| = al(x) = l{ax) = Lr(ax) < p(ax) < o(z),
which finishes the proof. ([

Note that p(az) < ¢(z), |a] =1 is in fact equivalent to ¢(ax) = ¢(x),
la| = 1.

If £ is a bounded linear functional defined on some subspace, the choice
p(x) = [|€][[|z]] implies:

Corollary 4.13. Let X be a normed space and let £ be a bounded linear
Junctional defined on some subspace Y C X. Then there is an extension
€ X* preserving the norm.

Example 4.13. Note that in a Hilbert space this result is trivial: First of
all there is a unique extension to Y by Theorem Now set £ =0 on Y.
Moreover, any other extension is of the form ¢+ ¢;, where ¢; vanishes on Y.
Then ||+ £1]]? = ||€]|*> + ||¢1]|* and the norm will increase unless /1 = 0. ¢

Example 4.14. In a Banach space this extension will in general not be
unique: Consider X := ¢}(N) and /(x) := 21 on Y := span{é'}. Then by
Exampleany extension is of the form ¢ = [, with y € /*°(N) and y; = 1,
lylloo < 1. (Sometimes it still might be unique: Problems and[4.14). o

Moreover, we can now easily prove our anticipated result

Corollary 4.14. Let X be a normed space and x € X fized. Suppose ¢(x) =
0 for all £ in some total subset Y C X*. Then x = 0.

Proof. Clearly, if /(x) = 0 holds for all ¢ in some total subset, this holds
for all ¢ € X*. If x # 0 we can construct a bounded linear functional on
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span{z} by setting ¢(czx) = a and extending it to X* using the previous
corollary. But this contradicts our assumption. ([

Example 4.15. Let us return to our example ¢*°(N). Let ¢(N) C ¢*°(N) be
the subspace of convergent sequences. Set

l(z) = nlgrl;o T, z € ¢(N), (4.4)

then ! is bounded since
@) = limn [ < [l (45)
Hence we can extend it to (*°(N) by Corollary Then [(x) cannot be
written as [(x) = l,(z) for some y € £1(N) (as in (4.3)) since y, = [(6") = 0

shows y = 0 and hence ¢, = 0. The problem is that span{é”} = ¢o(N) #
0> (N), where ¢o(N) is the subspace of sequences converging to 0.

Moreover, there is also no other way to identify £>°(N)* with ¢!(N), since
¢*(N) is separable whereas £>°(N) is not. This will follow from Lemma (iii)
below. o

Another useful consequence is

Corollary 4.15 (MazuIEI). Let Y C X be a subspace of a normed vector
space and let zo € X \Y. Then there exists an £ € X* such that (i) {(y) = 0,
y €Y, (ii) {(xo) = dist(xo,Y), and (ii) ||¢]] = 1.

Proof. Replacing Y by Y we see that it is no restriction to assume that
Y is closed. (Note that xp € X \ 'Y if and only if dist(zo,Y) > 0.) Let
Y = span{xo,Y}. Since every element of Y can be uniquely written as
Yy + axg we can define

Uy + axg) := « dist(zg, V).

By construction £ is linear on Y and satisfies (i) and (ii). Moreover, by
dist(20,Y) < |lzg — 2| for every y € Y we have

[6(y + axo)| = |af dist(zo,Y) < [ly + axoll, yeY.

Hence ||¢|| < 1 and there is an extension to X by Corollary To see
that the norm is in fact equal to one, take a sequence ¥, € Y such that
dist(z0,Y) > (1 — 1)||zo + yn|. Then

. 1
[y -+ 20)] = dist(a0,¥) 2 (1~ -y + 0]
establishing (iii). 0

Two more straightforward consequences of the last corollary are also
worthwhile noting:

4Stanistaw Mazur (1905-1981), Polish mathematician
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Corollary 4.16. Let Y C X be a subspace of a normed vector space. Then
x €Y if and only if £(z) = 0 for every £ € X* which vanishes on'Y .

Corollary 4.17. Let Y be a closed subspace and let {xj};‘zl be a linearly
independent subset of X. If Y Nspan{z;}_; = {0}, then there exists a
biorthogonal system {(;}7_ C X" such that Lj(xx) = 0 for j # k,
li(zj) =1 and L(y) =0 fory e Y.

Proof. Fix jo. Since Y}, = Y+span{z;}1<;<n;jzj, is closed (Corollary|1.19)),
xj, € Yj, implies dist(xj,,Yj,) > 0 and existence of £;, follows from Corol-

lary O

Problem 4.12. Let X := C3 equipped with the norm |(z,y,2)|1 = |=| +
ly| + |z] and Y := {(z,y,z)|lx +y =0, z = 0}. Find at least two extensions
of l(x,y,z) == x from Y to X which preserve the norm. What if we take
Y :={(z,y,2)|[x +y=0}7?

Problem 4.13. Consider X := C[0, 1] and let fo(x) :=1—2x. Find at least
two linear functional with minimal norm such that £(fy) = 1.

Problem 4.14. Show that the extension from Corollary[4.13 is unique if X*
is strictly convezr. (Hint: Problem|[1.16])

Problem™ 4.15. Let X be some normed space. Show that

|z = sup [{(z)],
LeV, Jlef=1
where V. C X* is some dense subspace. Show that equality is attained if
V =X*.
Problem 4.16. Let X,Y be some normed spaces and A : D(A) C X — Y.
Show

1Al = sup [£(Az)],
2€D(A), |lal|=1; £V, [14|=1

where V. C Y™ is a dense subspace.
Problem* 4.17. Show that ||ly|| = ||bllq, where I, € P(N)* as defined in
(4.3). (Hint: Choose a € P such that ajb; = |b;]9.)
Problem* 4.18. Show that every | € (P(N)*, 1 < p < oo, can be written as

l(a) = Z bjaj

JjEN

with some unique b € (4(N). (Hint: To see b € £9(N) consider aV defined
such that af := [b;|?/b; for j <n with bj # 0 and b} := 0 else. Now look at
@) < [lelllle™l»-)
Problem* 4.19. Let cy(N) C ¢>°(N) be the subspace of sequences which
converge to 0, and ¢(N) C £>°(N) the subspace of convergent sequences.
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(i) Show that cy(N), ¢(N) are both Banach spaces and that c¢(N) =
span{co(N), e}, where e := (1,1,1,...) € ¢(N).

(ii) Show that every l € co(N)* can be written as
a) = bja;
JEN
with some unique b € (*(N) which satisfies ||bll1 = ||¢]|.
(iii) Show that everyl € C(N)* can be written as
Zb a; + bo hm a,]
jEN
with some b € (*(N) which satisfies |bo| + ||b]l1 = ||¢]|.
Problem 4.20. Let u, € X be a Schauder basis and suppose the complex

numbers ¢, satisfy |cn| < c||lunl|. Is there a bounded linear functional £ € X*

with {(uy,) = ¢, ? (Hint: Consider e.g. X = (*(Z).)

Problem 4.21 (Banach limit). Let ¢(N) C ¢>°(N) be the subspace of all
bounded sequences for which the limit of the Cesaro means

L(x nh_g)lo - Z Tk

ezists. Note that ¢(N) C ¢(N) and L(x) = hmn_>oo xp, for x € ¢(N).
Show that L can be extended to all of £>°(N) such that

(i) L is linear,

(i) L) < 2lle,

(iii) L(Sz) = L(z) where (Sx)n, = xnt1 is the shift operator,

(iv) L(z) > 0 when x,, > 0 for all n,

(v) liminf, z, < L(z) < limsup x,, for all real-valued sequences.
(Hint: Of course existence follows from Hahn-Banach and (i), (i) will come
for free. Also (iii) will be inherited from the construction. For (iv) note

that the extension can assumed to be real-valued and investigate L(e —x) for
x >0 with ||z]|cc = 1 where e = (1,1,1,...). (v) then follows from (iv).)

Problem 4.22. Let X be a Banach space. Show that a subset U C X is
bounded if and only if ¢(U) C C is bounded for every £ € X*. (Hint: Uniform
boundedness principle.)

Problem™* 4.23. Show that a finite dimensional subspace M of a Banach
space X can be complemented. (Hint: Start with a basis {x;} for M and

choose a corresponding dual basis {€;} with {y(x;) = ;5 which can be ea-
tended to X*.)
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Problem* 4.24. Suppose X is a vector space and £, {1, ..., ¢, are linear

functionals such that (\;_; Ker(¢;) € Ker(£). Then £=37"_, a;l; for some
constants a; € C. (Hint: Find a dual basis x, € X such that {j(xy) = 0;

and look at x — 3%, L;(x)x;.)

4.3. Reflexivity

If we take the bidual (or double dual) X** of a normed space X, then the
Hahn-Banach theorem tells us, that X can be identified with a subspace of
X**. In fact, consider the linear map J : X — X** defined by J(x)(¢) := £(x)
(i.e., J(z) is evaluation at x). Then

Theorem 4.18. Let X be a normed space. Then J : X — X™* is isometric
(norm preserving).

Proof. Fix g € X. By |J(z0)(?)] = [(z0)| < [|€]|«||xo]| we have at least
|J(z0)]|+« < ||zo||. Next, by Hahn-Banach there is a linear functional £y with

norm ||4p]|« = 1 such that fo(xo) = ||zo||. Hence |J(x0)(4o)| = [lo(x0)| =
[[zol| shows [.J (20)[l«x = [[zol- O

Example 4.16. This gives another quick way of showing that a normed
space has a completion: Take X := J(X) C X** and recall that a dual
space is always complete (Theorem [1.17)). o

Thus J : X — X*™ is an isometric embedding. In many cases we even
have J(X) = X** and X is called reflexive in this case. Of course a reflexive
space must necessarily be complete.

Example 4.17. The Banach spaces ¢P(N) with 1 < p < oo are reflexive:

Identify ¢P(N)* with ¢?(N) (cf. Problem |4.18]) and choose ¢ € ¢P(N)**. Then
there is some a € ¢P(N) such that

c(b) =Y bja;,  beLIN)=F(N)".
jeN

But this implies ¢(b) = b(a), that is, ¢ = J(a), and thus J is surjective.
(Warning: It does not suffice to just argue ¢P(N)** = (4(N)* = (P(N).)

However, ¢! is not reflexive since ¢}(N)* = ¢°°(N) but £>°(N)* 2 (}(N)
as noted earlier. Things get even a bit more explicit if we look at c¢o(N),
where we can identify (cf. Problem [4.19)) ¢o(N)* with £}(N) and co(N)** with
¢>(N). Under this identification J(co(N)) = ¢o(N) C ¢*°(N). o
Example 4.18. By the same argument, every Hilbert space is reflexive. In
fact, by the Riesz lemma we can identify $* with §) via the (conjugate linear)
map f — (f,.). Taking h € $H** we have, again by the Riesz lemma, that

h(g) = (f, ), (9, Ne = (f,9)" = (9, ) = J(f)(9). °
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Example 4.19. The sum of reflexive spaces is reflexive. Indeed, recall (X ®
Y)* = X*aY* with (2/,y)(z,y) := 2/(z)+y'(y) and hence also (X §Y)** =
X** @ Y* with (2”,y")(2',y) = 2"(2') + y"(y'). Hence for (z",y") €
(X @ Y)* there is z € X and y € Y such that (2”,y") = (Jx(x), Jy(y)) =
J(x,y) and hence J is surjective. This even extends to countable sums —
Problem .27 o

Lemma 4.19. Let X be a Banach space.

(i) If X is reflexive, so is every closed subspace.
(ii) X s reflexive if and only if X* is.
(i) If X* is separable, so is X.
Proof. (i) Let Y be a closed subspace. Denote by j : ¥ < X the natural

inclusion and define ju : Y** — X** via (Ju(y")) () = y"(¢]y) for ¢y € Y**
and £ € X*. Note that j. is isometric by Corollary [4.13] Then

x B xw
Y — Y™
Jy

commutes. In fact, we have j..(Jy (y))(¢) = Jy(y)(L]y) = L(y) = Jx(y)(£).
Moreover, since Jx is surjective, for every y” € Y** there is an x € X such
that j.(y") = Jx(x). Since ju(y")(¢) = y"(¢ y) vanishes on all £ € X*
which vanish on Y, so does £(z) = Jx(x)(¢) = ju(y")(£) and thus x € Y
by Corollary That is, ju(Y*) = Jx(Y) and Jy = jloJx o] is
surjective.

(ii) Suppose X is reflexive. Then the two maps

(Jx)s: X* — X** (Jx)*: X — X~

! — 7o J;(l 2" — "o Jx
are inverse of each other. Moreover, fix z” € X** and let z = Jy'(2").
Then Jx«(z')(z") = 2" (2') = J(x)(z') = 2’ (x) = 2/ (J' (z")), that is Jx+ =
(Jx )« respectively (Jx«)~! = (Jx)*, which shows X* reflexive if X reflexive.
To see the converse, observe that X* reflexive implies X** reflexive and hence
Jx(X) = X is reflexive by (i).

(iii) Let {£y}22, be a dense set in X*. Then we can choose z, € X such
that ||z,|| = 1 and £,,(x,) > ||€n]/2. We will show that {z,}32, is total in
X. If it were not, we could find some = € X \ span{xz, }>°; and hence there
is a functional £ € X* as in Corollary Choose a subsequence £, — /.
Then

which implies £, — 0 and contradicts ||¢| = 1. O
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If X is reflexive, then the converse of (iii) is also true (since X = X**
separable implies X* separable), but in general this fails as the example
H(N)* = ¢*°(N) shows. In fact, this can be used to show that a separable
space is not reflexive, by showing that its dual is not separable.

Example 4.20. The space C(I) is not reflexive. To see this observe that
the dual space contains point evaluations 5, (f) := f(x0), zo € I. Moreover,
for xg # x1 we have |[ly, — {5, || = 2 and hence C(I)* is not separable. You
should appreciate the fact that it was not necessary to know the full dual
space which is quite intricate (see Theorem [6.5 from [37]). o

Finally we discuss the analog of the orthogonal complement of a set.
Given subsets M C X and N C X* we define their annihilator as

Mt :={lc X*|{(z) =0z € M} ={l € X*|M C Ker(£)}
= (N {te X |tx) =0} = () {=}",

zeM zeM

Ny :={z € X|{(z) =0Vl e N} = (] Ker(¢) = () {¢}.. (4.6)
leN leN

In particular, {¢}, = Ker(¢) while {z}* = Ker(J(z)) (with J : X «— X**
the canonical embedding). Note {0}* = X* and {0}, = X.

Example 4.21. In a Hilbert space the annihilator is simply the orthogonal
complement. o

The following properties are immediate from the definition (by linearity
and continuity):

e M+ is a closed subspace of X* and M+ = (span(M))*.
e N, is a closed subspace of X and N, = (span(N)),.
Note that we can also consider N* C X** and that we have J(N,) C N+
with equality if X is reflexive. Similarly we have J(M), = M L
Note also that

span(M) = X & M+ ={0},
span(N) = X* = N, ={0} (4.7)

by Corollary [£.15] and Corollary [£.14] respectively. The converse of the last
statement is wrong in general (unless X is reflexive, see the following lemma).

Example 4.22. Consider X := (}(N) and N := {§"}neny C (©°(N) & X*.
Then span(N) = ¢o(N) but N, = {0}. o

Lemma 4.20. We have (M*), = span(M) and (N,)* D span(N) with
equality if X is reflexive.
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Proof. By the preceding remarks we can assume M, N to be closed sub-
spaces. The first part

(M), ={z e X|l(z) =0Vl € X* with M C Ker({)} = M
is Corollary and for the second part one just has to spell out the defi-
nition:

(NL)*" = {t € X*| (] Ker(f) C Ker(¢)} 2 N.

leN
If X is reflexive we can use the first part to conclude
(Nt =(J(NL)L=(N")L=N. O

Note that we also have equality in the preceding lemma if IV is finite
dimensional (Problem . For non-reflexive spaces the inclusion can be
strict as the previous example shows. Moreover, with a little more machinery
one can identify (N, )" as the weak-* closure of span(NN) (Problem .

Warning: Some authors call a set N C X* total if Ny = {0}. By the
preceding discussion this is equivalent to our definition if X is reflexive, but
otherwise might differ.

With the help of annihilators we can also describe the dual spaces of
subspaces.

Theorem 4.21. Let M be a closed subspace of a normed space X. Then
there are canonical isometries

(X/M)* = MY, M* =X /Mt (4.8)

Proof. In the first case the isometry is given by ¢ — £ o j, where j : X —
X /M is the quotient map. In the second case by 2’ + M+ — 2’ [3;. The
details are easy to check. O

Corollary 4.22. Suppose X is a reflexive Banach space and M a closed
subspace. Then X /M is reflexive.

Proof. By Lemma (i) M+ = (X/M)* is reflexive and hence so is X /M
by Lemma [4.19] (ii). O

Problem 4.25. Show that X is finite dimensional if and only X* is. In this
case the dimensions agree and X is reflexive.

Problem 4.26. Let X be some normed space. By definition we have

1€ = sup [¢(z)]
zeX,||z||=1

for every £ € X*. One calls £ € X* norm-attaining, if the supremum is
attained, that is, there is some x € X such that ||£|| = |[¢(x)].
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Show that in a reflexive Banach space every linear functional is norm-
attaining. Give an example of a linear functional which is not norm-attaining.
For uniqueness see Problem . (Hint: For the first part apply Prob-

lem to X*. For the second part consider Problem

Problem™ 4.27. Let X := (D, oy X be defined as in Problem and let
]%-i-% = 1. Show that for 1 < p < oo we have X* = P X7, where the
wdentification is given by

y(@) = yi(ry), == (2)jen € @MN Xj, y=(yj)jen € @qjeN X3

jEN

q.JEN

Moreover, if all X; are reflexive, so is X for 1 < p < 00.

Problem 4.28. Suppose X is separable. Show that there exists a countable
set N C X* with N, = {0}.

Problem 4.29. Suppose My, My are closed subspaces of X. Show
MO My = (M{+My)y,  MinMy = (M + M)+
and

(My N M)t D (M- + M-, (M- Mz) = (M + Ms).

4.4. The adjoint operator

Given two normed spaces X and Y and a bounded operator A € Z(X,Y)
we can define its adjoint A’ : Y* — X* via A’y =9y 0 A, ¢/ € Y*. Tt is
immediate that A’ is linear and boundedness follows from

[A = sup  [AY| = sup (sup !(A’y’)(w)l>

yey=:ly|l=1 yev=:|lyl=1 \eeX:|z|=1

y ey :|ly'||=1 \zeX:|z|=1 zeX: ||z]|=1

= sup ( sup \y’(Aw)!>— sup || Az[| = [ A],

where we have used Problem to obtain the fourth equality. In summary,

Theorem 4.23. Suppose X, Y are normed spaces. Let A € L (X,Y), then
A e L(Y*, X*) with ||A]| = ||A7]].

Note that for A, B € Z(X,Y) and «, 8 € C we have

(a¢A+ BB) = oA’ + BB’ (4.9)
and for A € Z(X,Y) and B € Z(Y, Z) we have
(BA) = A'B' (4.10)

which is immediate from the definition. Note also that ]IfX = Ix=.
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Example 4.23. Given a Hilbert space §) we have the conjugate linear isom-
etry C :  — 9%, f — (f,-). Hence for given A € Z($1,92) we have
A'Cyf = (f,A-) = (A*f,-) which shows A’ = C;A*Cy . o
Example 4.24. Let X :=Y := (?(N), 1 < p < o0, such that X* = (4(N),
% + % = 1. Consider the right shift R € Z(¢?(N)) given by

Ra = (0,a1,aq,...).
Then for b € ¢4(N)

Zb (Ra); Zba] 1—Zb+1aj

which shows (R'b), = bl ; upon choosing a = 6*. Hence R’ = L is the left
shift: Lb:= (ba,bs,...). Similarly, L' = R. o
Example 4.25. Let ¢ € *°(N) and consider the multiplication operator A
in /P(N) with 1 < p < oo defined by Aa; := c¢ja;. As in the previous example
X* = ¢1(N) with % + ]% =1 and for b € (9(N) we have

a) = Z bj(cja;) Z j)aj,
j=1

Jj=1

which shows (A’b); = ¢;b; and hence A’ is multiplication with ¢ but now in
¢4(N). Also note that in the case p = 2 the Hilbert space adjoint A* would
be multiplication by the complex conjugate sequence c*. o
Example 4.26. Recall that an operator K € Z(X,Y) is called a finite
rank operator if its range is finite dimensional. The dimension of its
range rank(K) := dimRan(K) is called the rank of K. Choosing a ba-
sis {y; = K :rj}" for Ran( ) and a corresponding dual basis {y}}"_; (cf.
Problem , then a: = K"y is a dual basis for x; and

Kx—Zy] (Kz)y; = Z:v oy, Ky =)y (g

j=1 j=1
In particular, rank(K) = rank(K’). o

Of course we can also consider the doubly adjoint operator A”. Then a
simple computation

A"(Ix (@)(y) = Ix (2)(Ay) = (A'yY)(z) = ' (Az) = Jy (Az)(y) (4.11)

shows that the following diagram commutes

x Ay

JIx | 1 Jy

X** Y**
A//
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Consequently
A" [Ran(i)= Sy AT, A=J1A"x. (4.12)

Hence, regarding X as a subspace Jx(X) C X* and Y as a subspace
Jy(Y) € Y** then A” is an extension of A to X** but with values in
Y**. In particular, note that B € Z(Y™*, X*) is the adjoint of some other
operator B = A" if and only if B'(Jx(X)) = A"(Jx (X)) C Jy(Y) (for the
converse note that A := J;lB’JX will do the trick). This can be used to
show that not every operator is an adjoint (Problem .

Theorem 4.24 (Schauder). Suppose X, Y are Banach spaces and A €
Z(X,Y). Then A is compact if and only if A’ is.

Proof. If A is compact, then A(B;*(0)) is relatively compact and hence
K := A(B{*(0)) is a compact metric space. Let y/, € Y* be a bounded
sequence and consider the family of functions f,, := y},| k€ C(K). Then this
family is bounded and equicontinuous since

|fa(y1) = fu(y2)] < llynllllyr — vall < Cllyr — v2ll-

Hence the Arzela—Ascoli theorem (Theorem |B.40) implies existence of a uni-
formly converging subsequence f;,;. For this subsequence we have

1Ay, — Ayp < sup yp, (Az) =y, (Az)| = [[fn; — frlloo
z€BX(0)
since A(BiX(0)) C K is dense. Thus Yn, s the required subsequence and A’
is compact.

To see the converse note that if A’ is compact then so is A” by the first
part and hence also A = J;lA”JX. O

Theorem 4.25. Suppose X, Y are Banach spaces. If A € Z(X,Y),
then A=1 exists and is in L (Y, X) if and only if (A')~1 exists and is in
ZL(X*,Y*). Moreover, in this case we have

(A1 = (A1, (4.13)

Proof. If A has a bounded inverse, then A'(A71) = (A7!A) =Ty =
Iy- and (A71)A" = (A71A) =T}, = Iy~ shows that A’ is invertible with
(A/)—l — (A_l)/.

Conversely, let (A')~! € Z(X*,Y*). Then by the first part (4”)~! exists
and is in Z(X**,Y**). Moreover, A~ = J;'(A") "Ly € Z(Y, X). O

Finally we discuss the relation between solvability of Az = y and the
corresponding adjoint equation A’y = x/. We begin with the following

analog of ([2.28]) (Problem (4.32)):



4.4. The adjoint operator 129

Lemma 4.26. If A € Z(X,Y), then Ran(A)*+ = Ker(A’) and Ran(A’)| =
Ker(A).

Taking annihilators in these formulas Lemma [£.20] implies
Ker(A'); = (Ran(4)'), = Ran(A) (4.14)
and
Ker(A)* = (Ran(A’) )+ D Ran(A), (4.15)
with equality if X is reflexive.

Note that the first identity tells us that, for an operator A with closed
range, a necessary and sufficient solvability criterion for the equation Az =y
isy € Ker(A4’), (thatis, £(y) = 0 for all £ € Ker(A")). Equality in the second
identity would imply an analogous criterion for the adjoint equation.

Example 4.27. Suppose X, Y are Banach spaces and A € Z(X,Y). When
trying to solve the abstract problem Ax = y an estimate of the type (for
some C > 0)

lz]| < Cllyll
for a solution = (provided there is a solution at all) in terms of the inhomo-
geneous datum y is known as an a priori estimate.

Of course an a priori estimate shows that z = 0 whenever y = 0 and
hence immediately gives injectivity of A. Moreover, if we choose a convergent
sequence y, = Ax, — y from Ran(A), then the a priori estimate implies
convergence of x,, — = and thus y = Az € Ran(A). Hence we see that
Ran(A) is closed. Moreover, chosing # = A~y in the a priori estimate shows
that the inverse of A is bounded and the optimal constant C' is precisely
jA-1.

As the name insinuates ("a priori" means "from before" in Latin), the
estimate is derived before a solution is known to exist, and hence should
better written as

2]l < Cl|Azf|,  z€ X,
it cannot be used to establish surjectivity of A. For this one could show
injectivity of the adjoint problem, that is, Ker(A’) = {0}, and then appeal
to .

These considerations should be compared with Lemma [2.16]and the Lax—
Milgram theorem (Theorem . In particular, note that coercivity com-
bines the a priori estimate and the fact that the kernel of the adjoint operator
is trivial into one convenient condition. o

Unfortunately, if X is not reflexive, then equality in might fail
(Problem . However, it turns out that this can only happen if the range
of A is not closed. To show this we first establish a criterion for the range of
A to be closed. Of course we would like to use the a priori estimate from the
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previous example. Since this will only work if A is injective, we will factor
out the kernel (hence it will no longer hold for all  but only for a suitable
chosen representative from the equivalence class). Moreover, we want to
control both the norm of x and its deviation y — Az from being a solution.

Lemma 4.27. Suppose A € Z(X,Y). Then Ran(A) is closed if and only
if for some given € > 0 and 0 < 0 < 1 we can find for every y € Ran(A) a
corresponding x € X such that

ellz|l +[ly — Azl < dljy]- (4.16)

Proof. If Ran(A) is closed, then we can factor out its kernel and restrict Y
to obtain a bijective operator A as in Problemm By the inverse mapping
theorem (Theorem A has a bounded inverse. Fix § < 1 and choose
e < ||A7Y|716. Then for every y € Ran(A) there is some x € X with
y = Ar and [|Az| > §||z| after maybe adding an element from the kernel
to . This z satisfies ef|z|| + [y — Az|| = ef|z|| < d][y[| as required.

Conversely, fix y € Ran(A) and recursively choose a sequence x,, such
that

elanll + 1(y — Ain-1) = Azg|| < 0lly — AZpall, Fni= ) Tm.
m<n
In particular, ||y — AZ,| < 6"yl as well as ¢||x,|| < 6"|ly||, which shows
Zn — x and AZ,, — Ax € Ran(A). O

Theorem 4.28 (Banach; Closed range). Suppose X, Y are Banach spaces
and A € Z(X,Y). Then the following items are equivalent:

(i) Ran(A) is closed.
(i) Ker(A)* = Ran(4").
(i) Ran(A’) is closed.
(iv) KeT(A/)J_ = Ran(A).

Proof. Consider X = X/ Ker A) and Y = Ran(A) and the corresponding
operator A as in Problem Then A is a bounded injective operator
whose range is dense. In partlcular Ran(A) is closed if and only if A=!
Z(Y,X). Moreover, Ran(A') C X* = Ker(A)* (cf. Theorem and the
canonical isometry (i.e. composition with the quotient map — to see this
observe (A'7)(&) = y/(Az), where & = x + Ker(A) and §' = y + Ran(A4)")
will map Ran(A’) € Ker(A)* to Ran(A’). In particular, Ran(A’) = Ker(A)*
if and only if (A")~' € Z(X*,Y™).

Hence (i) < (ii) follows from Theorem applied to A. (ii) = (iii) is

clear since annihilators are closed. (i) < (iv) is immediate from (4.14]).
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(iif) = (i): Without loss of generality we can replace A by A and assume
that both A and A’ are injective. Then, if Ran(A’) is closed, A’ has a
bounded inverse (defined on the range) by the inverse mapping theorem.

Suppose Ran(A) were not closed. Then, given e > 0 and 0 < 0 < 1, by
Lemma [4.27] there is some y € Y such that ¢||z|| + ||y — Az|| > 6||y]| for all
x € X. Hence there is a linear functional ¢ € Y* such that § < ||¢]] < 1
and ||A'¢|| < e. Indeed consider X @Y and use Lemma to choose
¢ € (X ®Y)* such that £ vanishes on the closed set V := {(ex, Az)|x € X},
|4]] = 1, and £(0,y) = dist((0,%), V) (note that (0,y) & V since y # 0). Then
£(.) = £(0,.) is the functional we are looking for since dist((0,y),V) > §|y||
and (A'0)(z) = £(0, Ax) = {(—ex,0) = —el(x,0). Now this allows us to
choose ¢, with ||¢,,]] — 1 and ||A’¢,|| — 0 contradicting the fact that A’ has
a bounded inverse. g

Problem* 4.30. Let X =Y := ¢y(N) and recall that X* = (Y(N) and
X** =2 °(N). Consider the operator A € £ (¢*(N)) given by

Aa = (Zaj,O,...).
JEN
Show that
A'b = (by, b1, ...).
Conclude that A is not the adjoint of an operator from £ (co(N)).

Problem 4.31. Show that for A € Z(X,Y) we have
rank(A) = rank(4’).
Problem 4.32. Show Lemma[{.20

Problem 4.33. Let us write ,, — ¢ provided the sequence converges point-
wise, that is, b, (x) — () for all z € X. Let N C X* and suppose £, — (
with £, € N. Show that £ € (N )*.

Problem* 4.34. Consider A from Example with ¢j := jl in the case p =
1. Show that Ran(A) is not closed but dense while Ran(A’) is neither closed

nor dense. In particular, show Ker(A)t = {0}+ = ¢>*(N) > Ran(4’) =
co(N).

4.5. Weak convergence

In Section we have seen that ¢(x) = 0 for all £ € X* implies z = 0.
Now what about convergence? Does ¢(x,) — £(z) for every £ € X* imply
Tn — x7 In fact, in a finite dimensional space component-wise convergence
is equivalent to convergence. Unfortunately in the infinite dimensional this
is no longer true in general:
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Example 4.28. Let u,, be an infinite orthonormal set in some Hilbert space.
Then (g, u,) — 0 for every g since these are just the expansion coefficients
of g, which are in ¢?(N) by Bessel’s inequality. Since by the Riesz lemma
(Theorem , every bounded linear functional is of this form, we have
£(uy) — 0 for every bounded linear functional. (Clearly u,, does not converge
to 0, since ||u,| = 1.) o

If {(xy,) — £(z) for every ¢ € X* we say that =, converges weakly to
x and write

w-limz, =2 or =z, — z. (4.17)
n—oo

Clearly, x, — x implies z,, — x and hence this notion of convergence is
indeed weaker. Moreover, the weak limit is unique, since ¢(x,) — ¢(z) and
U(xy) — £(Z) imply ¢(x — T) = 0. A sequence z, is called a weak Cauchy
sequence if /(x,) is Cauchy (i.e. converges) for every ¢ € X*.

Lemma 4.29. Let X be a Banach space.
(i) &, — x, yp — y and o, — « implies , + y, — = +y and
ATy — QT.
(ii) xp, — x implies ||z| < liminf ||z,]|.
(i) Every weak Cauchy sequence x,, is bounded: |x,| < C.
(iv) If X is reflexive, then every weak Cauchy sequence converges weakly.
)

(v) A sequence x,, is Cauchy if and only if £(xy,) is Cauchy, uniformly
for £ € X* with ||¢|| = 1.

Proof. (i) Follows from ¢(a,arn +yn) = anl(zn) +L(yn) = al(x)+L(y). (ii)
Choose ¢ € X* such that ¢(z) = ||z| (for the limit =) and ||¢|] = 1. Then

llz|| = ¢(x) = liminf |[¢(x,)| < liminf ||z,].

(iii) For every ¢ we have that |J(zy,)(¢)| = |¢(z,)| < C(¢) is bounded. Hence
by the uniform boundedness principle we have ||z,| = ||J(x,)| < C.

(iv) If &, is a weak Cauchy sequence, then ¢(z,,) converges and we can define
j(€) :=lim £(z,,). By construction j is a linear functional on X*. Moreover,
by (iii) we have [j(¢)| < sup|l(zyn)| < [|€]| sup ||z.|| < C||¢]] which shows
Jj € X**. Since X is reflexive, j = J(z) for some z € X and by construction
Uzy) — J(x)(€) = l(x), that is, z,, — x.

(v) This follows from

|Zn — Zm| = HShlp [(y, — )|
ll|l=1

(cf. Problem [4.15)). O
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Item (ii) says that the norm is sequentially weakly lower semicontinuous
(cf. Problem while the previous example shows that it is not sequen-
tially weakly continuous. However, bounded linear operators turn out to
be sequentially weakly continuous (Problem . Nonlinear operations are
more tricky as the next example shows:

Example 4.29. Consider L?(0,1) and recall (see Example [3.10)) that
un(z) == V2sin(nrz), n €N,

form an ONB and hence u,, — 0. However, v,, := u2 — 1. In fact, one easily
computes
V2= (™) an? V(1 = (=)™

(ttm, vn) = mm (4n2 — m2) - mm = {um, 1)

and the claim follows from Problem [4.40| since [[v,|| = /3. o

Example 4.30. Let X := cy(N) and hence X* = ¢}(N). Let aj =1 for
1 <j<nanda}:=0for j >n. Then for every b € ¢*(N) we have

o0 n [ee]

; ny — i A= T _ .

Jm bla") = lim, D biaf = lim D b =D b,
j=1 j=1 j=1

and hence o is a weak Cauchy sequence which, does not converge. Indeed,

a™ — a would imply a; = 1 for all 5 € N (upon choosing b = §’) which is

clearly not in X. The limit is however in X** = />°(N). o

Remark: One can equip X with the weakest topology for which all £ € X*
remain continuous. This topology is called the weak topology and it is
given by taking all finite intersections of inverse images of open sets as a
base. By construction, a sequence will converge in the weak topology if and
only if it converges weakly. By Corollary [£.15]the weak topology is Hausdorff,
but it will not be metrizable in general. In particular, sequences do not suffice
to describe this topology. Nevertheless we will stick with sequences for now
and come back to this more general point of view in Section [6.3

In a Hilbert space there is also a simple criterion for a weakly convergent
sequence to converge in norm (see Theorem for a generalization).

Lemma 4.30. Let $ be a Hilbert space and let f, — f. Then f, — f if
and only if limsup || full < || f]l-

Proof. By (ii) of the previous lemma we have lim || f,,|| = || f|| and hence

1f = £ull® = 117 = 2Re((f, fa)) + [ful® = 0.

The converse is straightforward. U
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Now we come to the main reason why weakly convergent sequences are of
interest: A typical approach for solving a given equation in a Banach space
is as follows:

(i) Construct a (bounded) sequence z, of approximating solutions
(e.g. by solving the equation restricted to a finite dimensional sub-
space and increasing this subspace).

(ii) Use a compactness argument to extract a convergent subsequence.

(iii) Show that the limit solves the equation.

Our aim here is to provide some results for the step (ii). In a finite di-
mensional vector space the most important compactness criterion is bound-
edness (Heine-Borel theorem, Theorem . In infinite dimensions this
breaks down as we have already seen in Section We even have

Theorem 4.31 (F. Riesz). The closed unit ball in a Banach space X is
compact if and only if X is finite dimensional.

Proof. If X is finite dimensional, then by Theorem [I.§ we can assume X =
C™ and the closed unit ball is compact by the Heine-Borel theorem.

Conversely, suppose S := {z € X||z| = 1} is compact. Then {X \
Ker(¢)}sex~+ is an open cover since for every x € S there is some ¢ € X*
with ¢(x) # 0 by Corollary This cover has a finite subcover, S C
Uj—i (X \ Ker(¢;)) = X \ (j_, Ker(¢;). Hence (;_; Ker(¢;) = {0} and the
map X — C", z +— ({1(z),--- ,ly,(x)) is injective, that is, dim(X) <n. O

Of course in the formulation of the above theorem the unit ball could
be replaced with any ball (of positive radius). In particular, if X is infinite
dimensional, a compact set cannot contain a ball, that is, it must have
empty interior. Hence compact sets are always meager in infinite dimensional
spaces.

However, if we are willing to treat convergence for weak convergence, the
situation looks much brighter!

Theorem 4.32 (Smulia. Let X be a reflexive Banach space. Then every
bounded sequence has a weakly convergent subsequence.

Proof. Let x, be some bounded sequence and consider Y := span{x,}.
Then Y is reflexive by Lemma (i). Moreover, by construction Y is
separable and so is Y* by the remark after Lemma [4.19

Let ¢5 be a dense set in Y*. Then by the usual diagonal sequence argu-
ment we can find a subsequence x,,, such that ¢y(z,,, ) converges for every

5Vitold Shmulyan| (1914-1944), Soviet mathematician
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k. Denote this subsequence again by x, for notational simplicity. Then,
[(2n) — £(zm)| <|(2n) — Lr(zn)] + [€k(Tn) — e ()]
+ [k (zm) — U(zm)|
<2016 = L[| + |k (2n) — L (2m)|

shows that ¢(x,) converges for every ¢ € span{/{;} = Y*. Thus there is a
limit by Lemma [4.29] (iv). O

Note that this theorem breaks down if X is not reflexive.

Example 4.31. Consider the sequence of vectors ¢" in /P(N), 1 < p < 0.
Then 6™ — 0 for 1 < p < oo. In fact, since every [ € fP(N)* is of the form
l =1 for some b € £4(N) we have [,(6") = b, — 0.

If we consider the same sequence in £}(N) there is no weakly convergent
subsequence. In fact, since ,(6"™) — 0 for every sequence y € ¢*°(N) with
finitely many nonzero entries, the only possible weak limit is zero. On the
other hand choosing the constant sequence b := (1)72, we see [,(0") =1 / 0,
a contradiction. o

Example 4.32. Let X := L'(—1,1). Every continuous function ¢ gives rise
to a linear functional

1
0o(f) = / F@)pla) da

in L1(—1,1)*. Take some nonnegative u; with compact support, ||uilj; = 1,
and set ug(z) = kuy (k) (implying |luglls = 1). Then we have

/ ur(@)() dz = o(0)

(cf. Lemmal1.2)) for every continuous ¢. Furthermore, if uy, — u we conclude

/ u(@)p() dz = p(0).

In particular, choosing ¢y (z) = max(0, 1 —k|z|) we infer from the dominated
convergence theorem

1= /u(m)gpk(l‘) dr — /u(w)x{o}(m) dr =0,

a contradiction.

In fact, ug converges to the Dirac measure centered at 0, which is not in
LY(-1,1). o

Note that the above theorem also shows that in an infinite dimensional
reflexive Banach space weak convergence is always weaker than strong con-
vergence since otherwise every bounded sequence had a weakly, and thus by
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assumption also norm, convergent subsequence contradicting Theorem [.31]
In a non-reflexive space this situation can however occur.

Example 4.33. In ¢!(N) every weakly convergent sequence is in fact (norm)
convergent (such Banach spaces are said to have the Schur propertyﬁ).
First of all recall that £!(N)* = ¢>°(N) and a"™ — 0 implies

Ih(a™) =) braf —0,  VbeL®(N).
k=1

Now suppose we could find a sequence a™ — 0 for which limsup,, ||a"|1 >
e > 0. After passing to a subsequence we can assume |[a”||; > ¢/2 and
after rescaling the vector even ||a"||; = 1. Now weak convergence a” — 0
implies a} = lsi(a™) — 0 for every fixed j € N. Hence the main contri-
bution to the norm of ¢ must move towards co and we can find a subse-
quence n; and a corresponding increasing sequence of integers k; such that

ijgkij lay’| > % Now set

by, := sign(a,’), ki <k <kj.
Then
_ . : 2 1 1
CSTEND DRI D SRV
kj§k<k‘j+1 1§k‘<kj; k‘j+1§k
contradicting a™ — 0. o

It is also useful to observe that compact operators will turn weakly con-
vergent into (norm) convergent sequences.

Theorem 4.33. Let A € #(X,Y) be compact. Then x, — x implies
Az, — Az. If X is reflexive the converse is also true.

Proof. If z,, = x we have sup,, ||z,|| < C by Lemma[4.29| (ii). Consequently
Az, is bounded and we can pass to a subsequence such that Az,, — v.
Moreover, by Problem we even have y = Az and Lemma shows
Az, — Az.

Conversely, if X is reflexive, then by Theorem [4.32] every bounded se-
quence x, has a subsequence z,, — x and by assumption Az,, — x. Hence
A is compact. O

Operators which map weakly convergent sequences to convergent se-
quences are also called completely continuous. However, be warned that
some authors use completely continuous for compact operators. By the above
theorem every compact operator is completely continuous and the converse
also holds in reflexive spaces. However, the last example shows that the

6lssai Schur (1875-1941), Russian mathematician
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identity map in /!(N) is completely continuous but it is clearly not compact
by Theorem [£:31]

Similar concepts can be introduced for operators. This is of particular
importance for the case of unbounded operators, where convergence in the
operator norm makes no sense at all.

A sequence of operators A, is said to converge strongly to A,

slimA,=A & Aux— Axr VeeD(A) CD(A4,). (4.18)

n—o0

It is said to converge weakly to A,

w-limA, =4 & Az —Ar Vre®(A) CD(A4,). (4.19)

n—oo

Clearly norm convergence implies strong convergence and strong convergence
implies weak convergence. If Y is finite dimensional strong and weak con-
vergence will be the same and this is in particular the case for Y = C.

Example 4.34. Consider the operator S, € .Z(¢*(N)) which shifts a se-
quence n places to the left, that is,

Sp(x1,29,...) = (Tpt+1, Tnt2,---) (4.20)

and the operator S} € Z(¢?(N)) which shifts a sequence n places to the
right and fills up the first n places with zeros, that is,

S:;(:El,.’EQ,...):(O,...,O,xl,.’ﬂg,...). (421)

n places
Then S,, converges to zero strongly but not in norm (since ||S,|| = 1) and S}
converges weakly to zero (since (z, S}y) = (Spz,y)) but not strongly (since
[Spzll = ll=l) - o

Lemma 4.34. Suppose A, B, € L (X,Y) are sequences of bounded opera-
tors.

(i) s-lim A4, = A4, s- hm B,, = B, and oy, — o implies 5- hm(A +B,) =

n—oo

A+ B and s- hmanAn = aA.

n—oo

(i) s-lim A,, = A implies ||A]| < hmlnf | Al

n—oo

(iii) If Anx converges for all x € X then |An|| < C and there is an
operator A € £ (X,Y) such that S—Em A, = A.

(iv) If Any converges for y in a total set and |A,|| < C, then there is
an operator A € Z(X,Y) such that S—Em A, = A
n o

The same result holds if strong convergence is replaced by weak convergence.
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Proof. (i) lim, o0 (anA, + By)x = lim, oo (anApz + Brx) = aAz + Be.
(ii) follows from

|Az|| = lim ||Apz| < liminf ||A,]|
n—oo n—oo

for every z € X with ||z|| = 1.

(iii) By linearity of the limit, Az := lim, o Apx is a linear operator. More-
over, since convergent sequences are bounded, ||A,z| < C(z), the uniform
boundedness principle implies ||A,| < C. Hence ||Az| = limy, 0 [|[Anz|| <
Cllel.

(iv) By taking linear combinations we can replace the total set by a dense
one. Moreover, we can define a linear operator A on this dense set via
Ay = lim, 00 Any. By [|An]] < C we see ||A|| < C and there is a unique
extension to all of X. Now just use

[Anz — Az|| < [|Anz — Apyll + [[Any — Ayl + [| Ay — Az|
< 20|z =yl + [[Any — Ay]|
and choose y in the dense subspace such that ||z —y|| < % and n large such
that [ A,y — Ayl < 5.
The case of weak convergence is left as an exercise (Problem . O

Item (iii) of this lemma is sometimes also known as Banach-Steinhaus
theorem. For an application of this lemma see Lemma from [37].

Example 4.35. Let X be a Banach space of functions f : [-7, 7] — C such
that the functions {eg(z) := e**}cz are total. E.g. X := Cper[—m, 7] or
X := LP(—m,m) for 1 < p < oco. Then the Fourier series converges on
a total set and hence it will converge on all of X if and only if ||S,| < C.
For example, if X = Cper[—m, 7] then

1
1Sall = sup [ISa(f)l = sup |Su(f)(O0)] = o[ Dullx
[ flloo=1 [l flloo=1 T

which is unbounded as we have seen in Example [£.3] In fact, in this example
we have even shown failure of pointwise convergence and hence this is nothing
new. However, if we consider X := L![—7, 7| we have (recall the Fejér kernel
which satisfies || F},|[1 = 1 and use together with Sy, (D) = Diin(m,n))

IS = sup IS0l > Jim_ 1S (Fn)ls = 1Dal
»

and we get that the Fourier series does not converge for some L' function. <

Lemma 4.35. Suppose A, € L(Y,Z), B, € L(X,Y) are two sequences of
bounded operators.

(i) s-lim A, = A and s-lim B,, = B implies s-lim A, B,, = AB.

n—oo n—oo n—oo
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(ii) w-lim A,, = A and s-lim B,, = B implies w-lim A,,B,, = AB.

n—o0 n—o0 n—oo

(iii) lim A, = A and w-lim B,, = B implies W—_l)im A, B, = AB.

e N300 n
Proof. For the first case just observe

1(AnBn — AB)z|| < [[(An — A)Bz|| + || Anl|[[(Bn — B)x|| — 0.
The remaining cases are similar and again left as an exercise. O
Example 4.36. Consider again the last example. Then

S,;:Sn (fCl,xQ,.. ) = (0,...,0,xn+1,xn+2,...)
——

n places

converges to 0 weakly (in fact even strongly) but
SpSh(x1,x2,...) = (x1,22,...)
does not! Hence the order in the second claim is important. o

For a sequence of linear functionals ¢,, strong convergence is also called
weak-* convergence. That is, the weak-* limit of ¢, is ¢ if ¢, (z) — £(z) for
all x € X and we will write

whlimfl, =€ or £, >/ (4.22)

n—0o0

in this case. Note that this is not the same as weak convergence on X* unless
X is reflexive: £ is the weak limit of ¢, if

Jln) = §(6)  Vje X™, (4.23)

whereas for the weak-* limit this is only required for j € J(X) C X** (recall
J(2)(0) = £(x)).

Example 4.37. In a Hilbert space weak-* convergence of the linear func-
tionals (x,,.) is the same as weak convergence of the vectors z,. o
Example 4.38. Consider X := ¢o(N), X* = ¢}(N), and X** = (*°(N) with
J corresponding to the inclusion ¢o(N) — ¢°°(N). Then weak convergence
on X* implies

ly(a" —a) = Zbk(az —ag) — 0
k=1

for all b € £*°(N) and weak-* convergence implies that this holds for all b €
co(N). Whereas we already have seen that weak convergence is equivalent to
norm convergence, it is not hard to see that weak-* convergence is equivalent
to the fact that the sequence is bounded and each component converges (cf.

Problem {4.41)). o
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With this notation the proof of Lemma (iv) shows that (without
assuming X to be refelxive) every weak Cauchy sequence converges weak-
x. Similarly, it is also possible to slightly generalize Theorem (Prob-

lem :

Lemma 4.36 (Hellyﬂ). Suppose X is a separable Banach space. Then every
bounded sequence £, € X* has a weak-* convergent subsequence.

Example 4.39. Let us return to Example [£:32] Consider the Banach space
of continuous functions X := C[-1,1]. Using £;(¢) := [¢fdx we can
regard L'(—1,1) as a subspace of X*. Then the Dirac measure centered at
0 is also in X™* and it is the weak-* limit of the sequence uy. o

Example 4.40. Consider X := ¢*°(N). Then the sequence of projections
I € X* given by li(x) := x, has no weak-* convergent subsequence (if there
were such a subsequence k;, choose x € X such that zj; does not converge
to get a contradiction). Hence the assumption that X is separable cannot
be dropped in Lemma [4.36] o

Problem 4.35. Suppose €, — ¢ in X* and x, — x in X. Then ly(z,) —
L(x). Similarly, suppose s-liml, = ¢ and x,, — x. Then ly(zy) — £(z).
Does this still hold if s-lim ¢, = £ and x, — x?

Problem® 4.36. Show that x,, — x implies Az, — Az for Ae Z(X,Y).
Conversely, show that if x, — 0 implies Az, — 0 then A € Z(X,Y).

Problem 4.37. Let X := X1 @& Xy show that (z1,,%2n) — (z1,22) if and
only if xjn — xj for j =1,2.

Problem 4.38. Establish Lemma i the case of weak convergence.
(Hint: Problem [4.16 might be useful.)
Problem 4.39. Suppose A,, A € Z(X,Y). Show that s-lim A,, = A and

limx, = x implies lim A, x,, = Ax.

Problem* 4.40. Show that if {{;} C X* is some total set, then x, — x if
and only if x, is bounded and {j(x,) — €;(x) for all j. Show that this is
wrong without the boundedness assumption (Hint: Take e.g. X = (*(N)).

Problem* 4.41. Show that if {x;} C X is some total set, then £, — £ if
and only if £, € X* is bounded and ly(z;) — {(x;) for all j.

Problem* 4.42. Prove Lemma [/.36

"Eduard Helly| (1884-1943), Austrian mathematician
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Chapter 5

Bounded linear operators

We have started out our study by looking at eigenvalue problems which, from
a historic view point, were one of the key problems driving the development
of functional analysis. In Chapter [3] we have investigated compact operators
in Hilbert space and we have seen that they allow a treatment similar to
what is known from matrices. However, more sophisticated problems will
lead to operators whose spectra consist of more than just eigenvalues. Hence
we want to go one step further and look at spectral theory for bounded
operators. Here one of the driving forces was the development of quantum
mechanics (there even the boundedness assumption is too much — but first
things first). A crucial role is played by the algebraic structure, namely recall
from Section that the bounded linear operators on X form a Banach
space which has a (non-commutative) multiplication given by composition.
In order to emphasize that it is only this algebraic structure which matters,
we will develop the theory from this abstract point of view. While the reader
should always remember that bounded operators on a Hilbert space is what
we have in mind as the prime application, examples will apply these ideas
also to other cases thereby justifying the abstract approach.

To begin with, the operators could be on a Banach space (note that even
if X is a Hilbert space, .Z(X) will only be a Banach space) but eventually
again self-adjointness will be needed. Hence we will need the additional
operation of taking adjoints.

5.1. Banach algebras
A Banach space X together with a multiplication satisfying

(x+y)z=a2+yz, 2x(y+z2) =zy+zz, x,y,2€X, (5.1)

141
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and
(zy)z = x(yz),  a(zy) = (ax)y =z (ay), aecC, (5.2)

and
eyl < llzlllyll- (5.3)
is called a Banach algebra. In particular, note that ensures that

multiplication is continuous (Problem [5.1)). In fact, one can show that (sep-
arate) continuity of multiplication implies existence of an equivalent norm

satisfying ((5.3) (Problem .

An element e € X satisfying
er =zre =, Ve e X (5.4)
is called identity (show that e is unique) and we will assume ||e|| = 1 in this
case (by Problem this can be done without loss of generality).

Example 5.1. The continuous functions C'(I) over some compact interval
form a commutative Banach algebra with identity 1. o

Example 5.2. The differentiable functions C™(I) over some compact inter-
val do not form a commutative Banach algebra since (5.3)) fails for n > 1.
However, the equivalent norm

loo

=
[ flloom :=>_ =7
k=0

remedies this problem. o

Example 5.3. The bounded linear operators .2 (X) form a Banach algebra
with identity I. o
Example 5.4. The bounded sequences ¢*°(N) together with the component-
wise product form a commutative Banach algebra with identity 1. o

Example 5.5. The space of all periodic continuous functions which have an
absolutely convergent Fourier series A together with the norm

1F1la= > 1 fal
kez

and the usual product is known as the Wiener algebraﬂ Of course as a
Banach space it is isomorphic to £*(Z) via the Fourier transform. To see
that it is a Banach algebra note that

f(z)g(z) = Z freih® Zgjeijw = Z FogjelFti)e

kEZ JEZ k,jEZ
_ £oa ikx
= E ( E fjgkfj>e .

kezZ  jez

INorbert Wiener (1894-1964), American mathematician and philosopher
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Moreover, interchanging the order of summation

1alla= 2| 3 Fiwms| < 30" 1Fillan—sl = 1 1Lallgla

k€Z jEZL JEZ kEZ

shows that A is a Banach algebra. The identity is of course given by e(x) = 1.
Moreover, note that A C Cper[—7, 7] and || flloc < || f]| 4- o

Example 5.6. The space L!(R") together with the convolution

(9% )(x) = / o(z — ) f(y)dy = / s —wdy  (55)

is a commutative Banach algebra (Problem [5.14]) without identity. o

n

A Banach algebra with identity is also known as unital and we will
assume X to be a Banach algebra with identity e throughout the rest of this
section. Note that an identity can always be added if needed (Problem .

An element x € X is called invertible if there is some y € X such that

xy =yr =e. (5.6)

In this case y is called the inverse of z and is denoted by x~!. It is straight-
forward to show that the inverse is unique (if one exists at all) and that

(@y) =y a7, (@)l == (5.7)

In particular, the set of invertible elements G(X) forms a group under mul-

tiplication.
Example 5.7. If X = Z(C") is the set of n by n matrices, then G(X) =
GL(n) is the general linear group. o

Example 5.8. Let X = Z(¢?(N)) and recall the shift operators S* defined
via (S*a); = aj+1 with the convention that ag = 0. Then S*S~ = I but

S=S* # 1. Moreover, note that STS~ is invertible while S~S* is not. So
you really need to check both xy = e and yx = e in general. o

If = is invertible, then the same will be true for all elements in a neigh-
borhood. This will be a consequence of the following straightforward gener-
alization of the geometric series to our abstract setting.

Lemma 5.1. Let X be a Banach algebra with identity e. Suppose ||z| < 1.
Then e — x 1is invertible and

(e—xz)" ' = Z_;)a:". (5.8)

Proof. Since ||z|| < 1 the series converges and

o o o0
(e—x)g x"zg ac”—g " =e
n=0 n=0 n=1
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respectively
o0 [e.e] [e.e]
(Zx”) (efx):Zx”fonze. O
n=0 n=0 n=1

Corollary 5.2. Suppose x is invertible and ||z~ y| < 1 or |yz~!|| < 1.
Then (z —y) is invertible as well and

=y =D @yrat or (@—y) =D a " (5.9)
n=0 n=0

In particular, both conditions are satisfied if ||y|| < ||z~ t||~! and the set of
invertible elements G(X) is open and taking the inverse is continuous:
Iy~

-1 _ 1
r—y) —x |-
”( ) ‘| 1——”$ 1yH

(5.10)

Proof. Just observe x —y = z(e — 27 1y) = (e — yz~ 1)z U

The resolvent set is defined as
p(x) :={a € C|(x — «) is invertible in X} C C, (5.11)

where we have used the shorthand notation x — « := x — ae. Its complement
is called the spectrum

o(x):=C\ p(z). (5.12)
It is important to observe that the inverse has to exist as an element of
X. That is, if the elements of X are bounded linear operators, it does
not suffice that x — « is injective, as it might not be surjective. If it is
bijective, boundedness of the inverse will come for free from the inverse
mapping theorem.

Example 5.9. If X := Z(C") is the space of n by n matrices, then the
spectrum is just the set of eigenvalues. More general, if X are the bounded
linear operators on an infinite-dimensional Hilbert or Banach space, then
every eigenvalue will be in the spectrum but the converse is not true in
general as an injective operator might not be surjective. In fact, this already
can happen for compact operators where 0 could be in the spectrum without
being an eigenvalue. o

Example 5.10. If X := C(I), then the spectrum of a function x € C(I) is
just its range, o(x) = x(I). Indeed, if a ¢ Ran(x) then t — (2(t) — )~ ! is
the inverse of 2 —a (note that Ran(z) is compact). Conversely, if a« € Ran(x)
and y were an inverse, then y(to)(z(t9) — @) = 1 gives a contradiction for
any to € I with z(tg) = a. o
Example 5.11. If X := A is the Wiener algebra, then, as in the previous
example, every function which vanishes at some point cannot be inverted.
If it does not vanish anywhere, it can be inverted and the inverse will be a
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continuous function. But will it again have a convergent Fourier series, that
is, will it be in the Wiener Algebra? The affirmative answer of this question
is a famous theorem of Wiener, which will be given later in Theorem[7.22] ¢

The map a + (z — )~ ! is called the resolvent of z € X. If ag € p(z)
we can choose x - — ag and y = @ — ag in which implies
(o9}
(e—a)™t =) (a—ap)(—ag) ™", [a—ao| < |[[(x—ag)”!|7". (5.13)
n=0
In particular, since the radius of convergence cannot exceed the distance to
the spectrum (since everything within the radius of convergent must belong
to the resolvent set), we see that the norm of the resolvent must diverge
1
dist(a, o(x))

as a approaches the spectrum. Moreover, this shows that (z — «)~! has a
convergent power series with coefficients in X around every point ag € p(z).
As in the case of coefficients in C, such functions will be called analytic.

Iz — o)™ = (5.14)

Example 5.12. If A € Z(C") is an n by n matrices, then the resolvent is

given by
1

~ det(A — a)
where A4 denotes the adjugate (transpose of the cofactor matrix) of A.
Since (A — a)®¥ is a polynomial in «, the resolvent has a pole at each
eigenvalue whose order is at most the algebraic multiplicity of the eigenvalue.
In fact the order of the pole equals the algebraic multiplicity which can be
seen using (e.g.) the Jordan canonical form. o

(A—a)™ (A —a)™,

In particular, £((x —a) ') is a complex-valued analytic function for every
¢ € X* and we can apply well-known results from complex analysis:

Theorem 5.3. For every x € X, the spectrum o(x) is compact, nonempty
and satisfies
o(x) € {afla] <]} (5.15)

Proof. Equation (5.13) already shows that p(z) is open. Hence o(z) is
closed. Moreover, z — a = —a(e — éx) together with Lemma shows

(x—a) ' = —ii (g)n’ laf > [z],

which implies o(z) C {a||a| < ||z||} is bounded and thus compact. More-
over, taking norms shows

- Lol 1
I —a) <> = ol > =],

= 7 ’
o] & la* ol = ]
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which implies (z — a)~! — 0 as a — co. In particular, if o(z) is empty,

then ¢((x — )™!) is an entire analytic function which vanishes at infinity.
By Liouville’s theorem we must have £((x — a)~!) = 0 for all £ € X* in this
case, and so (z — a)~! = 0, which is impossible. O

Example 5.13. The spectrum of the matrix

0 1
0 1
A= .
0 1
—cp —C1 e+ et —Cpea

is given by the zeros of the polynomial (show this)

det(zl — A) = 2" + Cno12" V4 ez + o
Hence the fact that o(A) is nonempty implies the fundamental theorem
of algebra, that every non-constant polynomial has at least one zero. o

As another simple consequence we obtain:

Theorem 5.4 (Gelfandfl\/[azulﬂ). Suppose X is a Banach algebra in which
every element except 0 is invertible. Then X is isomorphic to C.

Proof. Pick x € X and o € o(x). Then z — « is not invertible and hence
x—a = 0, that is x = a. Thus every element is a multiple of the identity. [

Now we look at functions of z. Given a polynomial p(a) = E?:o pjo’
we of course set

p(z) = ijxj. (5.16)
=0

In fact, we could easily extend this definition to arbitrary convergent power
series whose radius of convergence is larger than |[z|| (cf. Problem [L.50).
While this will give a nice functional calculus sufficient for many applications,
our aim is the spectral theorem which will allow us to handle arbitrary
continuous functions. Since continuous functions can be approximated by
polynomials by the Weierstrals theorem, polynomials will be sufficient for
now. Moreover, the following result will be one of the two key ingredients
for the proof of the spectral theorem.

Theorem 5.5 (Spectral mapping). For every polynomial p and x € X we
have

o(p(x)) = p(o(x)), (5.17)
where p(o(z)) = {p(a)|a € o(z)}.

ZIsrael Gelfand (1913-2009), Soviet mathematician
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Proof. Let a € o(z) and observe
p(z) = ple) = (z — a)q(z).
But since (z — «) is not invertible, the same is true for (r — a)q(z) =
q(z)(x — «) by Problem and hence p(«) € p(o(x)).
Conversely, let 8 € 0( ( )). Then
p(@) =B =alr =) - (z—A)

and at least one \; € o(z) since otherwise the right-hand side would be
invertible. But thenﬁ p(A;) € p(o(x)). O

The second key ingredient for the proof of the spectral theorem is the
spectral radius

r(x):= sup |af (5.18)
aco(x)

of . Note that by (5.15)) we have
r(z) < |z (5.19)

As our next theorem shows, it is related to the radius of convergence of the
Neumann series for the resolvent

(x—a) ! = —ii)(i)n (5.20)

n—=
encountered in the proof of Theorem (which is just the Laurent expansion
around infinity).

Theorem 5.6 (Beurling-Gelfand). The spectral radius satisfies

"= dim (2 (5.21)

= i f
r(z) = inf |z

Proof. By spectral mapping we have r(z)" = r(2") < ||z"|| and hence
r(z) < inf ||z

Conversely, fix £ € X* and consider

((z— )

Q\»—‘

i in (5.22)

Then /((z — a)7!) is analytic in |a| > r(x) and hence converges
absolutely for |a| > r(x) by Cauchy’s integral formula for derivatives. Hence
for fixed o with || > r(x), ¢(z™/a™) converges to zero for every ¢ € X*.
Since every weakly convergent sequence is bounded we have

2Arne Beurling| (1905-1986), Swedish mathematician
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and thus
lim sup ||| */™
n—oo

Since this holds for every |a| > r(z) we have

< limsup C(a)"|a| = |al.
n—oo

(@) < inf 2" < liminf o |7 < limsup 2”7 < r(z),
n [o.¢]

which finishes the proof. O

Note that it might be tempting to conjecture that the sequence ||z™||*/"
is monotone, however this is false in general — see Problem By the ratio

test, the Neumann series ([5.20)) converges for |a| > r(x).
Next let us look at some examples illustrating these ideas.

Example 5.14. In X := C(I) we have o(z) = z(I) and hence 7(z) = ||7]/
for all x. o
Example 5.15. If X := Z(C?) and z := (§}) such that 2 = 0 and
consequently 7(x) = 0. This is not surprising, since x has the only eigenvalue
0. In particular, the spectral radius can be strictly smaller then the norm
(note that [|z]] = 1 in our example). The same is true for any nilpotent
matrix. In general, x will be called nilpotent if ™ = 0 for some n € N
and any nilpotent element will satisfy r(x) = 0. Note that in this case the
Neumann series terminates after n terms,

(:c—a)lz—lnz:l(x>j, a#0,

7=0
and the resolvent has a pole of order n at 0. o

Example 5.16. Consider the linear Volterra integral operator

t
K(x)(t) := / k(t, s)x(s)ds, x € C[0,1]. (5.23)
0
Then, using induction, it is not hard to verify (Problem [5.13])
n [[Ell5t"
(K™ (@)®)] < — ]l (5.24)
Consequently
(L]
K" 2]loo < =2 |oo,
n!
that is || K™ < %, which shows
[Elloo

Hence r(K) = 0 and for every A € C and every y € C[0, 1] the equation
r—AKz=y (5.25)
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has a unique solution given by

oo
z=(I-AK)ly=> N'K"y. (5.26)
n=0
Note that o(K) = {0} but 0 is in general not an eigenvalue (consider

e.g. k(t,s) = 1). Elements of a Banach algebra with r(z) = 0 are called
quasinilpotent. Since the Neumann series converges for |a] > 0 in
this case, the resolvent has an essential singularity at 0 if = is quasinilpotent
(but not nilpotent). o

In the last two examples we have seen a strict inequality in . If we
regard r(z) as a spectral norm for x, then the spectral norm does not control
the algebraic norm in such a situation. On the other hand, if we had equal-
ity for some x, and moreover, this were also true for any polynomial p(z),
then spectral mapping would imply that the spectral norm sup,eq (. [P(@)]
equals the algebraic norm ||p(z)|| and convergence on one side would imply
convergence on the other side. So by taking limits we could get an isometric
identification of elements of the form f(x) with functions f € C(o(z)). But
this is nothing but the content of the spectral theorem and self-adjointness
will be the property which will make all this work.

We end this section with the remark that neither the spectrum nor the
spectral radius is continuous. All one can say is

Lemma 5.7. Let x,, € X be a convergent sequence and x = limy,_ oo T, .
Then whenever o € p(x) we have o € p(xy,) eventually and
(T —a) ' = (z— ). (5.27)
Moreover,
lim o(z,) C o(x), (5.28)
n—oo
where limy,_,o 0(2y) 1= {a € C|3ay, € o(x,) — a}, and
r(xz) > limsup r(z,). (5.29)
n—oo

Proof. The first claim is immediate since taking the inverse is continuous
by Corollary Furthermore, Corollary also shows that for a € p(A)
and ||z — 2y || + |a — an| < ||(z — )71~ we have a,, € p(z,,), which implies
the second claim.

Concerning the last claim, observe that r(zx) < ||#}||'/" implies that
lim supy_, o0 () < 2”27, O

Example 5.17. That the spectrum can expand is shown by the following
example due to Kakutaniﬁ We consider the bounded linear operators on

3Shizuo Kakutani (1911-2004), Japanese-American mathematician


http://en.wikipedia.org/wiki/Shizuo Kakutani
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£2(N) and look at shift-type operators of the form

(Aa); = gjaji,
where g € (°°(N). Then we have ||Al| = sup,¢y |g;| and
(A"a);j = (gjgj+1-* Gjtn—1)aj4n
with [[A™[| = supjen[gjgjt1 - - gjanl-
Now note that every integer can be written as j = 2¥(2[ + 1) and write
k(j) := k in this case. Choose

q; = e k0,

To compute the above products we group integers into blocks 2m~1, ... 2™ —
1 of 277! elements and observe that K, := Z?:;,l k(j) = 2m 1 — 1.
Indeed, note that since odd numbers do not contribute to this sum, we can
drop them and divide the remaining even ones by 2 to get the previous block.
This shows K, = 2™ 2 + K,,,_; and establishes the claim. Summing over
all blocks we have Y | K,;, = 2" —n — 1 implying

||A2nH1/2” =qiq2 - Qan_1 = eXp(—l + (n + 1)2—71,).

Taking the limit n — oo shows r(4) = 1.

Next define
0, k(j) =k,
(Aya); = { ®)
q;ja;j+1, else?

and observe that Ay, is nilpotent since A2 = 0. Indeed note that (Aga)j =
0 for j = 2F,2%3,2%5 ... which are a distance 2¥*1 — 1 apart. Hence apply-
ing A once more the result will vanish at the previous points as well, etc.
Moreover,

((Ax — A)a); = {%am, k(7) =k,

0, else,
implying || A — A|| = e7%. Hence we have A, — A with 7(4;) =0 — 0 <
e~! =r(x) and o(A;) = {0} — {0} S o (A). o
Problem™ 5.1. Show that the multiplication in a Banach algebra X is con-
tinuous: T, — x and Y, — Yy 1Mply Ty, — TY.

Problem* 5.2. Suppose that X satisfies all requirements for a Banach al-
gebra except that (5.3) is replaced by

eyl < Cllzlllyll, € >0.
Of course one can rescale the norm to reduce it to the case C' = 1. However,

this might have undesirable side effects in case there is a unit. Show that if
X has a unit e, then |le|| > C~! and there is an equivalent norm ||.|lo which

satisfies (5.3) and |lello = 1.
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Finally, note that for this construction to work it suffices to assume that
multiplication is separately continuous by Problem [[.8

(Hint: Identify x € X with the operator L, : X — X, y+— zy in L(X).
For the last part use the uniform boundedness principle.)

Problem* 5.3 (Unitization). Show that if X is a Banach algebra then
C @ X is a unital Banach algebra, where we set ||(a, x)|| = |a| + ||z|| and

(a,a:)(ﬂ,y) = (a67 ay + Bxr + xy)
Problem 5.4. Show o(z~ 1) = o(x)~! if x is invertible.

Problem 5.5. An element x € X satisfying x> = x is called a projection.
Compute the spectrum of a projection.

Problem 5.6. If X = Z(LP(I)), then every x € C(I) gives rise to a
multiplication operator M, € X defined as M,f = x f. Show r(M,) =
| M| = ||z||co and o(M,) = Ran(z).

Problem 5.7. If X := Z((P(N)), then every m € (*°(N) gives rise to a
multiplication operator M € X defined as (Ma), := mynan,. Show r(M) =

|M|| = ||m||co and (M) = Ran(m).

Problem 5.8. Can every compact set K C C arise as the spectrum of an
element of some Banach algebra?

Problem* 5.9. Suppose x has both a right inverse y (i.e., xy = e) and a
left inverse z (i.e., zx = e). Show thaty = z = z~ L.

Problem* 5.10. Suppose xy and yx are both invertible, then so are x and

y:
y = (ay) e =a(e), 27 = (yx)ly =ylay) T

(Hint: Previous problem.)

Problem* 5.11. Let X := Z(C?) and compute ||z"||'/" for x := (g%)
Conclude that this sequence is not monotone in general.

Problem 5.12. Let X := (>*(N). Show o(x) = {xn}nen. Also show that
r(x) = ||z| for allxz € X.

Problem* 5.13. Show ((5.24]).

Problem 5.14. Show that L'(R™) with convolution as multiplication is a
commutative Banach algebra without identity (Hint: Lemma from |37 ).

Problem 5.15. Show the first resolvent identity
(z-a) ' =(@-8)"=(a-B)r—a) (e -5
=(a=B)z—B) " z—a),
for a, B € p(x).
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Problem 5.16. Show o(zy) \ {0} = o(yx) \ {0}. (Hint: Find a relation
between (vy — o)™t and (yxr —a)7t.)

5.2. The C* algebra of operators and the spectral theorem

We begin by recalling that if ) is some Hilbert space, then for every A €
Z($) we can define its adjoint A* € Z($). Hence the Banach algebra
Z($) has an additional operation in this case which will also give us self-
adjointness, a property which has already turned out crucial for the spectral
theorem in the case of compact operators. Even though this is not imme-
diately evident, in some sense this additional structure adds the convenient
geometric properties of Hilbert spaces to the picture.

A Banach algebra X together with an involution satisfying

* k%

(z+y) =24y, (ax)'=a"z", 2=z (2y)" =y*2*, (5.30)

and
|z]|* = [lz*z| (5.31)

is called a C* algebra. Any subalgebra (we do not require a subalgebra
to contain the identity) which is also closed under involution, is called a
x-subalgebra.

The condition might look a bit artificial at this point. Maybe
a requirement like ||z*|| = ||z|| might seem more natural. In fact, at this
point the only justification is that it holds for our guiding example Z(9)
(cf. Lemma . Furthermore, it is important to emphasize that
is a rather strong condition as it implies that the norm is already uniquely
determined by the algebraic structure. More precisely, Lemma [5.8 below
implies that the norm of x can be computed from the spectral radius of z*x
via ||z|| = r(z*z)"/2. So while there might be several norms which turn X
into a Banach algebra, there is at most one which will give a C* algebra.

Note that implies ||z]|? = ||z*z|| < ||z||||z*|| and hence ||z|| < ||z*]|.
By x** = x this also implies ||z*|| < ||™*| = ||z|| and hence

lzll = llz*ll,  llel® = la*z]| = [la2"]. (5.32)

Example 5.18. The continuous functions C'(I) together with complex con-

jugation form a commutative C* algebra. o
Example 5.19. The Banach algebra 2 () is a C* algebra by Lemma m
The compact operators J# () are a *-subalgebra. o

Example 5.20. The bounded sequences ¢*°(N) together with complex con-
jugation form a commutative C* algebra. The set ¢o(N) of sequences con-
verging to 0 are a *-subalgebra. o
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If X has an identity e, we clearly have e* = e, |le|| = 1, (z71)* = (2*)~!

(show this), and

o(x*) =o(z)". (5.33)
We will always assume that we have an identity and we note that it is always
possible to add an identity (Problem [5.17).

If X is a C* algebra, then x € X is called normal if z*z = zz*, self-
adjoint if z* = z, and unitary if z* = 2=, Moreover, z is called positive if
x = y? for some y = y* € X. Clearly both self-adjoint and unitary elements
are normal and positive elements are self-adjoint. If x is normal, then so is
any polynomial p(x) (it will be self-adjoint if x is and p is real-valued).

As already pointed out in the previous section, it is crucial to identify
elements for which the spectral radius equals the norm. The key ingredient
will be (5.31)) which implies ||2|| = ||z||? if z is self-adjoint. For unitary
elements we have |z|| = /[lz*z]] = /|le] = 1. Moreover, for normal
elements we get

Lemma 5.8. If z € X is normal, then ||22| = ||z||? and r(z) = ||z]|.

Proof. Using ([5.31)) three times we have
122] = 12?)*@)'? = |l(z"2)* (a"2) | /2 = ||l2*z|| = |lz]”

22 = ||, O

and hence r(z) = limg_, ||z

The next result generalizes the fact that self-adjoint operators have only
real eigenvalues.

Lemma 5.9. If x is self-adjoint, then o(x) C R. If x is positive, then

o(z) C [0, 00).

Proof. Suppose a+1i € o(x), A € R. Then oo +i(8 + \) € o(z +i\) and
o+ (B+A)? < [lz +A? = [z +iN) (@ =) = [|l2® + 22| < [l2]* + 2%

Hence o? + 32 + 28\ < ||z||* which gives a contradiction if we let |\| — oo
unless 5 = 0.

The second claim follows from the first using spectral mapping (Theo-

rem |5.5]). [l
Example 5.21. If X := Z(C?) and x := (§}) then o(x) = {0}. Hence the
converse of the above lemma is not true in general. o

Given z € X we can consider the C* algebra C*(z) (with identity)
generated by x (i.e., the smallest closed x-subalgebra containing e and z). If
x is normal we explicitly have

C*(x) = {p(x,z*)|p : C> = C polynomial}, xax*t = ax'x, (5.34)
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and, in particular, C*(z) is commutative (Problem [5.18)). In the self-adjoint
case this simplifies to

C*(x) := {p(x)|p : C — C polynomial}, r =z (5.35)

Moreover, in this case C*(x) is isomorphic to C(o(z)) (the continuous func-
tions on the spectrum):

Theorem 5.10 (Spectral theorem). If X is a C* algebra and x € X is self-
adjoint, then there is an isometric isomorphism ® : C(o(x)) — C*(z) such
that f(t) =t maps to ®(t) = x and f(t) =1 maps to ®(1) =

Moreover, for every f € C(o(z)) we have

o(f(x)) = flo(z)), (5.36)
where f(z) = ®(f).

Proof. First of all, ® is well defined for polynomials p and given by ®(p) =
p(z). Moreover, since p(x) is normal, spectral mapping implies
lp(z)|| =r(p(x)) = sup |a|= sup [p(a)|=|plle
aco(p(x)) aco(x)

for every polynomial p. Hence @ is isometric. Next we use that the poly-
nomials are dense in C'(o(x)). In fact, to see this one can either consider
a compact interval I containing o(x) and use the Tietze extension theo-
rem (Theorem to extend f to I and then approximate the extension
using polynomials (Theorem [1.3)) or use the Stone-Weierstraf theorem (The-
orem [B.42). Thus ® uniquely extends to a map on all of C(c(z)) by Theo-
rem By continuity of the norm this extension is again isometric. Sim-
ilarly, we have ®(f g) = ®(f)®(g) and ®(f)* = ®(f*) since both relations
hold for polynomials.

To show U( (x)) = f(o(x)) fix some a« € C. If a & f(o(z)), then
9(t) = 5= € C(o(2)) and ®(g) = (f() —a)™" € X shows o & o(f(2)).
Conversely, 1f a ¢ o(f(x)) then g = 1((f(z)—a) ) = f—% is continuous,
which shows a € f(o(x)). O

In particular, this last theorem tells us that we have a functional calculus
for self-adjoint operators, that is, if A € £($) is self-adjoint, then f(A) is
well defined for every f € C(o(A)). Specifically, we can compute f(A) by
choosing a sequence of polynomials p, which converge to f uniformly on
o(A), then we have p,(A) — f(A) in the operator norm. In particular, if
f is given by a power series, then f(A) defined via ® coincides with f(A)
defined via its power series (cf. Problem .

Problem* 5.17 (Unitization). Show that if X is a non-unital C* algebra
then C& X is a unital C* algebra, where we set ||(c, x)|| := sup{||ay+zy|||y €
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X, [lyl <1}, (a,2)(8,y) = (B, ay+Bz+ay) and (o, )" = (a*,2*). (Hint:
It might be helpful to identify x € X with the operator L, : X — X, y — zy
in £ (X). Moreover, note | Lz|| = ||x].)

Problem™ 5.18. Let X be a C* algebra and Y a x-subalgebra. Show that if
Y is commutative, then so is Y .

Problem 5.19. Show that the map ® from the spectral theorem is positivity
preserving, that is, f > 0 if and only if ®(f) is positive.

Problem 5.20. Let x be self-adjoint. Show that the following are equivalent:
(i) o(z) C[0,00).
(ii) x is positive.
(iil) |A—z|| < A for all X > ||z||.
(iv) [N —zx| < X for one A > ||z||.
Problem 5.21. Let A € Z($). Show that A is normal if and only if
[Aul| = [|A%ul[,  Vu € 9.
In particular, Ker(A) = Ker(A*). (Hint: Problem[1.27)
Problem 5.22. Show that the Cayley transform of a self-adjoint element
z,
yi= (@ =)o +i)!
is unitary. Show that 1 & o(y) and
z=il+y)(1-y) "
Problem 5.23. Show if x is unitary then o(z) C {a € C||a| = 1}.

Problem 5.24. Suppose x is self-adjoint. Show that

1

) Y=
[(z =)™l dist(av, ()

5.3. Spectral measures

The purpose of this section is to derive another formulation of the spectral
theorem which is important in quantum mechanics. This reformulation re-
quires familiarity with measure theory and can be skipped as the results will
not be needed in the sequel.

Using the Riesz representation theorem we get a formulation in terms of
spectral measures:
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Theorem 5.11. Let $) be a Hilbert space, and let A € £ ($) be self-adjoint.
For every w,v € $) there is a corresponding complex Borel measure [,
supported on o(A) (the spectral measure) such that

(u, F(A)) = / 00, £ €06, (5.37)

We have

Puwi+vs = Huor T Huwss  Puav = Oy, Moy = ,U/Z,v (538)

and |pyu|(0(A)) < |lulll|v]|. Furthermore, p, = pu is a positive Borel
measure with p,(o(A)) = |lul?.

Proof. Consider the continuous functions on I = [—||A||, ||A||] and note that
every f € C(I) gives rise to some f € C(o(A)) by restricting its domain.
Clearly 4, ,(f) = (u, f(A)v) is a bounded linear functional and the existence
of a corresponding measure i, , With |pyo|(I) = [[lunl| < |lull||v] follows
from the Riesz representation theorem (Theorem|[6.5]from [37]). Since £y, (f)
depends only on the value of f on 0(A) C I, fu,, is supported on o(A).
Moreover, if f > 0 we have £,(f) = (u, f(A)u) = (f(A)Y?u, f(A)/?u) =
| £(A) /2> > 0 and hence £, is positive and the corresponding measure i,
is positive. The rest follows from the properties of the scalar product. O

It is often convenient to regard i, ., as a complex measure on R by using
P () = pun(2No(A)). If we do this, we can also consider f as a function
on R. However, note that f(A) depends only on the values of f on o(A)!
Moreover, it suffices to consider ., since usi