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T H E T H E O E Y O F AUTOMOKPHIC FUNCTIONS. 

Vorlesungen uber die Theorie der Automorphen Functionen. 
Von KOBERT F R I C K E und F E L I X K L E I N . Leipzig, B. G. 
Teubner. Bd. I : Die gruppentheoretischen Grundlagen, 
1897, xiv + 634 pp. Bd. I I : Die functionentheoretischen 
Ausführungenund die Anwendungen ; ErsteLieferung : Engere 
Theorie der Automorphen Functionen, 1901, 282 pp. 

SIDE by side with the growth of general function theory 
special classes of functions have developed in which the general 
theories have found abundant opportunity to display their 
fertility and power. On the other hand, the study of special 
functions has repeatedly afforded the stimulus and suggested 
the path for new investigations along general lines. When, in 
addition, the intrinsic value and usefulness of such functions as 
the elliptic, hyperelliptic, abelian, hypergeometric, Bessel, etc., 
is taken into consideration, it is readily seen that the cultiva
tion of such special fields is scarcely second in interest and im
portance to that of the general theory itself. 

Among the various classes of special functions which have 
hitherto engaged the attention of mathematicians, that of most 
recent origin, and of by far the largest content (at least poten
tially) is the automorphic functions. This vast subject, the 
growth of the past quarter of a century, owes its rapid develop
ment to the genius and assiduity of the two eminent mathema
ticians, Klein and Poincaré, as well as to the comparatively 
high state of perfection of other mathematical disciplines which 
have been forced to contribute their assistance to this new field. 
Klein and Poincaré have each brought to this subject a breadth 
of knowledge and a corresponding wealth of ideas truly remark
able at the present day when multiplicity of interests hardly 
permits the investigator any other choice than to specialize 
within limits more or less narrow. 

Klein in particular has by precept and example urged the 
importance of a closer unity among all departments of mathe
matical thought, and the great advantage to be derived from 
bringing to the aid of any one field the combined resources of 
all the others. I t is in his work on the automorphic functions 
that he has given the most brilliant illustration of this mode of 
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treatment. In this work he has been ably seconded by the 
efforts of the pupils and co-laborers he has been so fortu
nate as to gather about him at the Göttingen school, among 
whom Robert Fricke is especially deserving of the highest 
praise for the ability and industry which he has brought to the 
arduous labor of preparing for publication the volumes now 
before us, and for the wealth of material which he himself has 
contributed to the subject. 

These volumes form the sequel to, and final elaboration of 
the ideas contained in the volumes previously published, 
namely, the Ikosaeder (by Klein), and the Elliptische Modul
functionen* (by Klein and Fricke). The former of these 
works deals exhaustively with the finite groups of transforma
tions on a single variable, and the functions associated with them. 
The two large volumes of the latter treat in a very elaborate 
manner the modular group, and the general ideas necessary to 
be followed out in the study of all such groups and their func
tions. One of the principal objects of this fullness of discus
sion in the Modulfunctionen is to pave the way for a subsequent 
discussion of the general theory of automorphic functions with
out the restraint of burdensome details. 

The advantage of thus disposing of preliminary details, and 
familiarizing the reader with many of the fundamental ideas as 
applied to a concrete example is clearly perceived when we 
observe how completely are the various elements in the present 
work fused into an organic whole, each part in strong and vital 
contact with every other part. The degree of abstractness and 
concentration thus attained is necessary for a forceful treatment 
of a subject which seeks to embrace in one view such an infinite 
variety and complexity of phenomena. 

The theory of automorphic functions has for its object to 
investigate the discontinuous groups of linear transformations 
of a single variable f, and to study the properties of functions 
which are invariant for the transformations of any given group. 

The most important aid in this work comes from geometry, f 
which affords a concrete representation of the values of the 

* The interesting review of the Modulfunctionen by Professor Cole, and 
the general survery of Klein's work and ideas which it contains, renders i t 
unnecessary for us to give more than a passing notice to the antecedents of 
the present work. See BULLETIN, 1st Series, vol. 1 (1892), p. 105. 

f Geometry is, in fact, at the present stage of development of the subject, 
an indispensable tool. To the lack of geometrical aids is in no small meas
ure to be attributed the meager success that has attended the various attempts 
to investigate automorphic functions of more than one variable. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



472 AUTOMORPHic FUNCTIONS. [June, 

complex variable Ç and pictures the effect of a group of trans
formations applied to this variable. In the Automorphe Func-
tionen an introductory chapter of about sixty pages is accord
ingly devoted to the discussion of some geometrical notions not 
explained in the Modulfunctionen. 

The first geometrical interpretation of the complex variable 
£ is serviceable only for a restricted, but very extensive class 
of groups, the fundamental circle groups (Hauptkreisgruppen). 
The values of £ are associated with the homogeneous coordinates 
(zv z2> zz) °f P°ints in a plane by means of the relation 

Collineations which leave the conic 

(i) * ; - v » - o 
unaltered correspond to linear transformations 

7f + 8 

on Ç. Taking the conic (1) as the absolute for a system of 
non-euclidean measurement of distance, the transformations (2) 
leave distances unaltered, and hence they are called (in a gen
eralized sense) motions. Congruent figures, that is, figures 
which transform into each other have like (non-euclidean) areas. 
The interior of the conic, regarded for convenience as an ellipse, 
is called the "hyperbolic" plane.* 

Out of the oo6 transformations of the continuous group (2) 
let us suppose a discontinuous group T selected by any suitable 
definition. This group is then properly, or improperly discon
tinuous, according as the fundamental region for T has a 
finite or an infinitesimal area. By " fundamental region " is 
meant a division of the hyperbolic plane such that no two 
points of the region are congruent, while every point without 
the region is congruent to some point within. The properties 

* The cases in which the conic is imaginary (giving the " elliptic " plane), 
or breaks up into the circular points at infinity (giving the ordinary, or 
u parabolic " plane) lead to groups of finite order, or groups associated with 
the elliptic functions. These cases receive their full share of attention in 
the work under review, but from lack of space we pass them by without 
discussion. 

(2) 
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of a given group are all implicitly involved in the geometrical 
properties of the fundamental region which it defines, and, ac
cordingly, a large portion of what follows in volume I is de
voted to a geometric study of the fundamental region and the 
network of congruent regions which arise from it by transfor
mations of the group. 

Although, evidently, the fundamental region can be selected 
with a high degree of arbitrariness, it can always be defined 
(and this in an infinity of ways) so as to be bounded by straight 
lines. The fundamental region is then a polygon, and the 
group belonging to it is called a polygon group. 

A particularly useful choice for a fundamental polygon, and 
one which plays a leading rôle throughout the book, is de
termined as follows : Let (70, Ov C2, • • • be any set of con
gruent points. Around the points C. construct circles K. of 
equal radii r, meaning by circle in this connection the locus of 
all points whose non-euclidean distance from a given C. is con
stant. Assuming r at first sufficiently small so that no two 
circles collide, let the radii increase simultaneously and at the 
same rate for all the circles K{ with the understanding that the 
lengthening of any particular ray emanating from C. shall 
cease the instant it meets a like ray emanating from a neighbor
ing point Ck* Imagine this process to continue until the 
entire hyperbolic plane is filled without gap and without over
lapping. The locus of the end points of the rays departing 
from a center C. will consist of a closed chain of straight lines 
forming the boundary of a convex polygon. This region, 
called the normal polygon, is evidently a fundamental region for 
the group.* 

Now let the values of £ be associated in the ordinary way 
with the points of a complex plane. Then, assuming z\ — zxzB 

to be negative for the interior of the ellipse, to each point of 
the hyperbolic plane correspond two points of the £-plane 
representing conjugate imaginary values of f. To each point 
on the ellipse corresponds one point on the real f-axis, and to 

* Each of the points d is the center of a normal polygon. This polygon 
clearly contains within itself all points which are nearer to Q (in the non-
euclidean sense) than to any congruent point. Each polygon is equal in all 
respects to every congruent polygon (still speaking in the non-euclidean 
sense). This picturing of the group with a network of equal polygons fill
ing up the hyperbolic plane, is seen to be a generalization of the idea of a 
network of equal parallelograms filling the ordinary (or parabolic) plane, 
with which the theory of elliptic functions has made us familiar. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



474 ATJTOMORPHIC FUNCTIONS. [June, 

each point outside the ellipse corresponds a pair of points on 
the real axis. On account of the one-to-two correspondence it 
is evidently sufficient to take into consideration only half of 
the f-plane. Moreover, by a linear transformation of f the 
real axis changes into a circle O the interior of which has a 
one-to-one correspondence to the half £-plane and hence to the 
hyperbolic plane. 

In the hyperbolic plane the polygons crowd together in 
infinite number along the ellipse which forms its boundary, 
since this is the infinite element in the plane. Any set of con
gruent points, such as the C. above mentioned, will have limit
ing points, or points of accumulation, on this boundary. These 
limit points may cover the ellipse everywhere densely, in which 
case the ellipse, and correspondingly the circumference of the 
circle (7, forms a natural boundary for the group and its net
work of polygons.* The group is then called a limit circle 
group (Grenzkreisgruppe). On the other hand, segments of the 
ellipse (or circle G) of finite length may be free from limiting 
points. These two classes, which include all groups whose 
fundamental regions fill the hyperbolic plane, are specified by 
the general term, fundamental circle groups. 

The foregoing method of associating the £ values with the 
real points of the hyperbolic plane is of practical value only 
when the substitutions of the group have real coefficients since 
it is only in that case that real points in the hyperbolic plane 
are transformed into real points.* This difficulty is obviated 
by a more general procedure. A quadric surface is taken in 
ordinary space, for convenience the sphere 

(3) *» + ** + * ; - * * = <). 

The values of £ are associated with points on the surface 
of the sphere in the familiar manner of the Riemann function 
theory by means of the relation 

* I t follows that any function, invariant for transformations of the group, 
has the circle for natural boundary and cannot be continued over this 
boundary which is everywhere filled with essential singularities of the 
function. 

* That there is a practical necessity for the restriction to real coefficients 
is not mentioned by our authors, although they may have expected it to be 
inferred. This inference, however, is not likely to be at once drawn by the 
reader, since the reason assigned in the text is that only in this case are 
groups of *'motion," or motion combined with inversion, obtained, without 
explaining why it is desired to exclude from consideration all groups other 
than these. 
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(4) £ = ?L±3. 
zé — zs 

Every collineation which transforms the sphere into itself sub
jects £to a linear transformation of one of two kinds, 

_ „ «Ç + /3 „ cg + 0 

when Ç is the conjugate of f. Taking the surface of the 
sphere as the absolute for a system of non-euclidean measure
ment in space, the interior of the sphere is called the hyperbolic 
space. The non-euclidean distance between two points is un
changed by the transformations (5). Those of the first type 
are " movements " of the hyperbolic space, while one of the 
second type is a reflection, or symmetrical transformation with 
respect to a certain plane of symmetry. 

The values of f = £ + it) are likewise represented by the 
coordinates of points in a complex plane referred to £, r\ rec
tangular axes. A third rectangular coordinate # in space is 
introduced. Then assuming 

Zi ~ ~ ZB 

this equation combined with (4) establishes a correspondence 
between the f, rj, # space and the hyperbolic space such that to 
a point within the sphere correspond two points situated sym
metrically with respect to the £ plane. The portion of the £, 
ij, & space situated on one side of the £ plane has a one-to-one 
correspondence with the hyperbolic space. This is called the 
£ half-space. To each plane of the hyperbolic space corre
sponds a half sphere of the f half-space which is orthogonal to 
the £ plane. 

Consider now a discontinuous group T of transformations 
(5). A fundamental region for T will consist of a limited por
tion of the hyperbolic space (or of the £ half-space) of largest 
possible extent subject to the condition that no two congruent 
points are within this region. Such a fundamental region can 
be selected in an infinity of ways so as to be bounded by planes 
alone. If this fundamental region be transformed by all the 
substitutions of the group, the totality of congruent regions 
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thus obtained will fill the hyperbolic space without gap and 
without overlapping. These polyhedra may or may not inter
sect the surface of the sphere. In the former case the surface 
is divided up into a network of polygons forming fundamental 
regions for the f transformations, which, by the mediation of 
the above correspondence (4), may be depicted on the £ plane, 
while at the same time the network of polyhedra are repre
sented by polyhedra in the f half-space whose faces are half 
spheres orthogonal to the f plane. The group is then properly 
discontinuous in the £ plane (or on the £ sphere). 

If, in particular, the group consists of all the transforma
tions which leave unchanged a point P outside the sphere, the 
polar plane of P and its circle of intersection with respect to 
the sphere is invariant for the group, which is accordingly a 
fundamental circle group. From this point of view it is called 
a hyperbolic rotation group. If the point P is on the sphere, 
we have the parabolic rotation groups with one limit point, to 
which the elliptic functions are related. Finally, when P is 
within the sphere, the polar plane does not intersect the surface 
in real points, and hence the group has no limit points. There 
are accordingly only a finite number of fundamental regions, 
and the group is finite. I t is called an elliptic rotation group. 

I t is found that the use of the polyhedra in the hyperbolic 
space is an especial convenience and simplification in the study 
of properties of non-rotation groups, and indispensable for the 
investigation of groups which are improperly discontinuous on 
the surface of the sphere (or in the £ plane). An example of 
the latter kind to which considerable space is allotted is the 
Picard group which consists of all the substitutions of f formed 
with complex integer coefficients whose determinant is 1 or i. 

Returning to the polyhedra into which the hyperbolic space 
has been divided by the transformations of the group, it is 
further noticed that these can be determined in a manner 
exactly analogous to the determination of the normal polygons 
in the hyperbolic plane. A set of congruent points C0, Ov 

is selected at random and small spheres (in the non-euclidean 
sense) of equal radii r described about each. Then r is imag
ined to increase simultaneously for all these spheres, with the 
understanding that any ray emanating from C. stops increasing 
when it meets a ray proceeding from a neighboring center. 
When this process is carried to an end, the hyperbolic space 
will be filled without gaps and without overlapping by poly-
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hedra, all of whose faces are planes. A polyhedron determined 
in this way is called a normal polyhedron. The study of the 
normal fundamental polyhedra here plays the same rôle in in
vestigating the properties of the group as the normal polygon 
does in the case of the fundamental circle groups. 

Particular attention is devoted to those non-rotation groups 
whose normal polyhedra intersect the surface of the sphere in 
one or more distinct networks of polygons. A classification of 
groups is based on the nature of these nets and their limit 
points. 

There may be a single net completely covering the sphere. 
The limit points are then isolated, and if there are more than 
two of them, the number is infinite. On the other hand, the 
number of nets may be two, or infinite. In either case the 
number of limit points is infinite since the nets are separated 
from each other by these points. Hence non-rotation groups 
may be classified into : * (a) those with two limit points ; (6) 
those with an infinity of limit points. Division b is classified 
still further according as the number of nets is (1) one, the 
limit points being isolated ; (2) two, the limit points forming 
a non-analytic curve separating the two nets ; (3) infinite, the 
infinity of nets being separated from each other by an infinity 
of limit curves formed by limit points of the group. This last 
case is further subdivided according as the limit curves are (at 
least in part f) non-analytic, or consist entirely of circles, and 
still further as the nets are simply or multiply (always with an 
infinite multiplicity) connected. 

A kind of converse question naturally arises, namely, in how 
far can an arbitrarily chosen polygon serve as the fundamental 
region for a group of linear transformations, and thus serve to 
define and generate the group ? The restrictions under which 
a polygon can be chosen are determined for groups in the 
hyperbolic plane (fundamental circle groups). The like prob
lem is then solved for polyhedra in the hyperbolic space and 
the results made useful for the determination of polygons suit
able for defining non-rotation groups by means of the theorem : 
any polygon P 0 (on the surface of the sphere) is a fundamental 

* These are divisions I I and IV in the book. See pp. 164-5. Division I 
comprises the ordinary cyclic groups formed by the repetition of a single 
operation, and division I I I comprises the rotation groups already noticed 
above. 

t If analytic curves occur, they must be circles. 
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region for some discontinuous group of transformations provided 
that a polyhedron can be constructed intersecting the sphere in 
P 0 and satisfying the restrictions which polyhedra are subject 
to in order to be usable for fundamental regions in the hyper
bolic space. 

A new kind of fundamental region, the canonical polygon, is 
next introduced which greatly facilitates the discussion of the 
generating operations of the group and the relations existing 
among them. To make clear the idea, it is observed that the 
sides of a fundamental polygon must be congruent in pairs, and 
the vertices in cycles. If the sides of a fundamental polygon 
be deformed so as to bring together and unite congruent lines 
and points, a closed surface F is obtained of a certain genus p 
which is called the genus of the group. The surface F may be 
conveniently thought of as an ordinary Riemann surface. 

Consider now the reverse process. Take any Riemann sur
face and draw from an arbitrary point E a canonical system of 
cross-cuts which reduces the surface to a simply connected one. 
I t may then be deformed into a polygon suitable for the funda
mental region of a group. The opposite edges of the cross-cuts 
become congruent edges of the polygon, and the substitution 
which brings an edge into coincidence with a congruent edge is 
one of the generators of the group. If the fundamental poly
gon is assumed to have vertices which are fixed points for para
bolic or elliptic substitutions, then a certain number of points 
e v e2> ' ' ' > en a r e selected in the Riemann surface and cuts 
drawn from E to each of these points. If e. is to be a fixed 
point of an elliptic substitution of finite period, then the de
formation must be carried out so that in the end the angle at 
e. is an aliquot part of TT. If, on the other hand, e. is to be a 
fixed point for a parabolic substitution, the angle must be zero 
after the deformation. The polygon so obtained is the canoni
cal polygon. I t has 2n + Sp edges which are congruent in 
pairs. I t is possible to unite some of the congruent edges by a 
suitable deformation of the polygon. The n + 4p substitutions 
which transform congruent edges into each other are generators 
of the group. Certain relations exist among these which read
ily permit their number to be reduced to n + 2p among which 
a single relation exists (in addition to the relations of the form 
V1 = 1 for the elliptic substitutions). 

The second division of volume I is devoted to an application 
of the geometrical foundation principles, as laid down in the 
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first division, to the detailed study of polygon groups. The 
normal and canonical polygons are made the leading instruments 
of investigation, and the cases of the elliptic and parabolic ro
tation groups, the non-rotation groups with two limit points, 
the hyperbolic rotation groups, and the non-rotation groups 
with an infinity of limit points are considered in turn. The 
first three cases are comparatively simple and easily disposed 
of. The fourth case is treated at great length. The impor
tant principle is first deduced that for any group T the normal 
polygon with a given center C is the region common to the 
normal polygons (with the same center) of all the groups whose 
composition generates V. This principle is applied in particu
lar to the cyclic subgroups of I \ 

Various properties of the sides and corners are next consid
ered. I t is shown for example that, while at an accidental 
corner (that is, one which is not a fixed point for a substitution 
of the group) in general only three polygons meet, for special 
positions of the center (7* more than three polygons meet in such 
a point. All polygons having the same genus p and number n 
of fixed vertices are said to be of the same kind and of charac
ter (p, n). Polygons of the same kind having a like number 
of sides, the sides being congruent in the same order, are said 
to be of the same type. The type is ordinary or special accord
ing as the accidental corners occur in cycles of three and the 
fixed corners in cycles of one, or not. The relations which are 
found to exist between corners, sides, and number of cycles 
show that the occurrence of a special type involves a reduction 
of the number of sides s. Special types with s — 4 sides occur 
with each group and arise from a particular choice of the center 
O. Special types in which the number of sides is diminished 
by six or more below the number belonging to the ordinary 
type can occur only for special groups. There are called singu
lar groups.^ 

* I n fact C will lie either on the ellipse, or on a certain curve of the third 
degree. 

f Our authors do not attempt to develop a theory of singular groups, but 
content themselves with remarking on the possible importance of these groups 
in relation to the theory of algebraic functions. The reader of the Auto-
morphe Functionen will have frequent occasion, as here, to notice the occur
rence of gaps in the development of the subject. While the work under 
review may rightly be regarded as presenting a systematic and well-developed 
theory of the automorphic functions, a vast amount of work yet remains to 
be done. To mention only one further instance, it may be remarked that 
the theory of non-rotation groups has not yet been systematized, and in spite 
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The second chapter in this division of the book deals with 
the canonical polygon with special reference to the form it may 
take in the hyperbolic plane, and the transformations it may 
undergo on account of transformation from one canonical sys
tem of cross-cuts in the Biemann surface to any other. The 
details are first worked out for polygons of character (0, 3), 
(1, 1), and (0, n). The methods being made clear by these 
simplest cases; the case (p, ri) is then treated in its generality. 
The remainder of the chapter is devoted to an extended dis
cussion of the moduli (Moduln), The moduli are the parame
ters on which the substitution coefficients depend, and wThich 
are invariant when the group is transformed by any linear sub
stitution. The groups so obtained are said to belong to the same 
class, and the moduli form a system of numbers characteristic 
for that class. As the groups of the same class have like 
structure, a determination of the properties of the class ac
quaints us with the properties of any group of the class. Any 
particular set of possible values for the moduli determines a 
class, and the number manifoldness of all the classes is meas
ured by that of the moduli. 

The third and last division of volume I treats of the arith
metic definition of discontinuous groups. This subject, al
though of fundamental importance, offers at the present time 
only fragmentary results on account of the great difficulties 
that it has to overcome. 

The first chapter determines the arithmetic characteristics of 
the rotation subgroups of the Picard group. This is accom
plished by the introduction of the Dirichlet and the Hermite 
quadratic forms, concerning wThich the following two theorems 
are proved : Every hyperbolic or loxodromic cyclic subgroup 
transforms into itself a particular Dirichlet form having for 
determinant a non-square ; and, conversely, every such form 
is invariant for some such subgroup. Again, every funda
mental circle group contained within the Picard group trans
forms into itself a particular indefinite Hermite form ; and 
conversely, every such form is reproduced by some fundamental 
circle subgroup of the Picard group. 

The second chapter discusses the groups that reproduce cer-

of the considerable space devoted to this subject and the powerful aid afforded 
by the introduction of the fundamental polyhedron in the hyperbolic space, 
this portion of the field can hardly be said to have been more than lightly 
touched upon. (Compare the remarks on page 441, Vol. I. ) 
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tain ternary and quaternary forms. This includes a large and 
important class of groups, among which the Picard group 
occurs as the reproducing group of a particular quaternary form. 
A considerable number of illustrative cases are worked out. 

The third chapter deals with groups whose substitutions have 
coefficients which are integers within a given field of algebraic 
numbers. 

Volume I I , of which the first part only has appeared, is 
devoted to a study of the automorphic functions belonging to 
the groups treated in the first volume. By an automorphic 
function of an independent variable f is meant a function 0(f) 
which is unaltered when f is transformed by any substitution 

(6) K = -tf + \ 
of a given group T ; that is, 

I t is further required that 0(f) have no essential singularity at 
any point of the fundamental region of T, and that within this 
region it is uniform and without branching. Accordingly 0(f) 
is expansible in the vicinity of an ordinary point f0 in powers 
of f — f0, and in powers of 1/f in the vicinity of the infinite 
point. 

If f0 and f '0 are the fixed points of an elliptic substitution of 
period I, then since the corresponding substitution can be 
written in the form 

r-r._e r-# 
the function 0(f) can be expanded in the vicinity of f0 in a 
series of ascending powers of 

U-d' 
Every parabolic substitution can be written in the form 

1 1_ 
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in which f0 is the fixed point. In the vicinity of this point 
cf>(Ç) can therefore be expanded in a series of ascending powers 

of e T ÏWö' 
The first step in the development of the theory of auto-

morphic functions is to prove that such functions exist for 
every group V which is properly discontinuous in the £-plane. 
This is accomplished by means of Riemann's general existence 
theorem, the details of the proof following the methods of 
Schwarz and Neumann. 

I f £ = £ + irj, it is first shown that an automorphic potential 
u(h v) c a n be found which satisfies prescribed boundary condi
tions, and is uniform and everywhere continuous in the funda
mental region of V except at one prescribed point f0 where it 
becomes discontinuous like the real part of l/(f — f0). 

The conjugate potential v is defined by the integral 

I t is shown that dv has the automorphic character, and that 
hence v is reproduced by any substitution of the group with 
the addition of a constant. This constant is zero for groups of 
genus zero, and in that case the function 

<K0 = u($> v) + w(& v) 

is an automorphic function of (f. 
If p > 0, the expression Z == u + iv behaves on the closed 

Eiemann surface F, on which the fundamental region of T is 
depicted, like an elementary integral of the second kind. 
Hence, according to the well known Riemann method, if 
Zv Z2, • • . , Z^ be fJL such functions having different poles, con
stants Cv (72, • • •, C can be determined so that 

CA+CA + .-. + C^ 

is reproduced unchanged when continued over any closed path 
in F. As a closed path in F corresponds to a path joining two 
congruent points in the Ç-plane, this means that 2 OiZi is auto
morphic for the group T. 

Among the properties of <£(£) may be mentioned the following. 
I t takes any given value at /JL points of the fundamental 
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region P, \x being the number of poles of <£(£). From this 
follows that the region P can be conformally represented on an 
ordinary //--leaved Riemann surface F of genus p by means of 
the function z = </>(£). Any automorphic function of £ is ac
cordingly an algebraic function on the Riemann surface F. On 
the other hand every algebraic function of z, W[z(Ç)~\, is an 
automorphic function of £, so that the totality of automorphic 
functions belonging to the group T coincides with the totality 
of algebraic functions on the surface F. I t follows from this 
that between any two functions <\>v cf>2 which are automorphic for 
the group T an algebraic relation exists, G{<\>v <£2) = 0. If 
this relation is irreducible, then every automorphic function 
belonging to the same group is rationally expressible in terms 
of <px and <f>2. In particular, if p — 0, every such function is 
rationally expressible in terms of any function having a single 
pole in the fundamental region. Such a function is called a 
principal function. In general, a principal function is one 
which takes a given value the least possible number of times 
within the fundamental region. 

I t is evident from what precedes that every algebraic func
tion on the Riemann surface F which is in general a many 
valued function of z, is single valued when expressed in terms 
of £. Every Riemann surface can be associated with a group 
r (in fact with more than one group), so that every algebraic 
function can be expressed as a uniform function. In the lan
guage of geometry, the coordinates of a point on any algebraic 
curve can be expressed as uniform (automorphic) functions of 
a variable parameter. To establish this result is one of the 
main problems of the book, or more explicitly stated : given 
any Riemann surface of genus p and n arbitrarily assigned 
points on it, ev e2, • • •, en) to investigate the existence of a func
tion Ç(z) which branches at the given points and which can 
mediate the representation of the Riemann surface on a polygon 
suitable for the fundamental region of a limit circle group and 
having vertices corresponding to e. which are fixed points for 
substitutions of periods lv l2, • • • , ln9 these being any integers 
> 1, or infinite. 

Since <£(£) takes any given value ^ times in every polygon 
which is congruent to the fundamental region P , and since 
these polygons crowd together in infinite number about the 
limit points of the group, it follows that <£(£) takes any given 
value an infinite number of times in the immediate vicinity of 
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such a point which is accordingly a point of essential singu
larity for the function. If these limit points fill a curve, the 
limit curve, everywhere dense, this curve forms a natural boun
dary for the function over which it cannot be analytically con
tinued. 

Corresponding to the classification of the discontinuous 
groups, an analogous classification of the automorphic functions 
is given. 

I . Cyclic functions, belonging to cyclic groups. 
If the group is elliptic of period /, the principal function is 

the algebraic function [ (£ — ÇQ)/(Ç — Ç'0)~\l* If the group is 

parabolic, the principal function is e y £-£<>. If hyperbolic, or 
loxodromic, the automorphic functions are the elliptic functions 
of log[(£-g / (? -Q] . 

I I . Elliptic functions. The corresponding groups are the 
parabolic rotation groups. 

III. Fundamental circle functions. These belong to groups 
whose limit points lie on a circle. If the circle is everywhere 
dense with fixed points, we have the special, but highly im
portant, class of functions existing only within the circle and 
having the circumference for a natural boundary. 

I V . Automorphic functions in general, without fundamental 
circle. This last and most extensive division of functions does 
not at present admit of precise classification owing to lack of 
knowledge of the non-rotation groups to which they belong. 
Three main subclasses are given, however, corresponding to 
the subdivisions of the groups mentioned above. 

The inverse problem of determining the nature of Ç as a 
function of z in the Riemann surface F is next considered. 
When z describes a closed path in F, Ç is either unchanged or 
undergoes a linear transformation. I t is infinitely many 
valued, and is accordingly called a polymorphic function. The 
important question arises as to whether in case any Riemann 
surface whatever is given, a polymorphic function exists, 
having the properties of the function £ and capable of repre
senting the Riemann surface on a polygon (or other region) 
suitable as the fundamental region for a group of linear sub
stitutions. The full discussion of this problem is reserved for 
the remaining part of the volume which is not yet published, 
the author delaying on this point only to show that the poly
morphic function f satisfies a differential equation of the third 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1903.] AUTOMORPHIC FUNCTIONS. 485 

order obtained by equating the " Schwarzian derivative " of £ 
to a certain function which is algebraic on the surface F. 

From a consideration of automorphic functions of f we pass 
on in the second chapter to the consideration of forms belong
ing to groups of genus zero. The variable f is separated into 
the quotient of two variables f1? f2. Instead of the group T 
of substitutions of the form (6), the corresponding group of 
homogeneous substitutions 

(7) % = *& + &&, r, = 7£+8£ 
is introduced. The course of the investigation is directed 
towards the construction of binary forms in Çv f2, having the 
automorphic character. This treatment of the problem from 
the point of view of binary forms is characteristic of the 
methods of Klein as previously employed in the Icosahedron 
theory and the Modular Functions. 

An automorphic form is defined as a homogeneous, non-
branching function of Çv f2 of dimension d (d being any 
rational number) which is reproduced multiplied by a constant 
fi when the variables describe any continuous series of admis
sible value such that the end values fj, Ç'2

 a r e congruent to the 
initial values with respect to the homogeneous group of uni-
modular substitutions (7). 

That is, 

* ( « £ + 0*k tó + 8 £ ) = PMv &• 

The quotient of two forms of like dimensions and the same 
multipliers is evidently an automorphic function of (^/S^ = £• 

Among the various forms that could be constructed for a 
given group (p = 0) two are of especial interest, the principal 
form, and the prime form. The former is defined by the 
equation 

$-*&> Q = - £2 j£> 

in which 2 is a principal function, that is, an automorphic 
function of f which takes a given value but once in the funda
mental region. The principal form is absolutely invariant, is 
of dimension — 2, has one pole of order 2 at the point where 
z= 00, and vanishes of order 1 — ljlh at a vertex ek of the 
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fundamental region which is a fixed point for a substitution of 
period lk. I t has no other poles or zeros. 

I f ek is the value of z at £ = ek, then (z — ek) vanishes of the 
first order at £ = ek and at all equivalent points : Hence the 
product 

(8) ^m-e,)-^, 
k=l 

in which <f>_2 is the principal form, does not vanish at the ver
tices, and is zero of order 

?KH=- \ 
at the pole f0 of <£_2. Accordingly, if the expression (8) is 

raised to the power ( — -~ ), the result vanishes of the first order 

at f0. Such a form, denoted by z2(Kv f2), is of dimension v in 
Çv Ç2, and is finite and different from zero at every point of the 
fundamental region except f0. I t is called a prime form. 

The form 

*i(?i> S,
a) = < 0 - * 2 ( ^ Si) 

is likewise a prime form whose zero point in the fundamental 
region coincides with that of z. 

The formula azx + bz2 defines a binary family of prime forms, 
all of which behave like z2 with respect to the substitutions of 
the homogeneous group, and whose zero point varies with the 
parameter a/6. 

If (z, eJc) denote the particular form of this family which 
vanishes at the fixed corner ek of the fundamental region, then 
the form 

is a non-branching form for the group. I t is called the ground 
form belonging to the corner ek. In case of an elliptic point lk 

is the period of the substitution, and for a parabolic point lh may 
be any positive integer. 

The effect of the substitutions of the homogeneous group 
upon any form <j>d is next determined. This is accomplished 
by calculating the multipliers fik which arise from the generat-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1903. ] AUTOMORPHIC FUNCTIONS. 487 

ing substitutions. From this set of multipliers, called a mul
tiplier system, the multiplier for any other operation of the 
group is obtained by a very simple formula. 

The number of theoretically possible multiplier systems hav
ing been determined, it is then proved that automorphic forms 
of any allowable dimension d exist for every such system. This 
is done by first showing that every automorphic form can be 
expressed as a product of prime forms and ground forms, and 
that this product can be so chosen that the system of multi
pliers will coincide with any given possible system. In par
ticular, the forms with the multiplier system fik — 1 exist for 
every group V and for every integer dimension d. They are 
absolutely unchanged by substitutions of the group, and for 
this reason are called proper automorphic forms. 

The variables Çv Ç2 when regarded as depending on zv z2 are 
polymorphic forms in the latter. On multiplying fL and £2 by 
certain forms in zv z2 polymorphic forms are obtained which are 
of zero dimension and behave like £1? f2 with respect to sub
stitutions of the group. Analytic expressions for these various 
forms are obtained, and differential equations of the second 
order which they satisfy are deduced. 

Some of the foregoing results are illustrated by means of the 
hypergeometric function. 

The third chapter treats of the Poincaré series with a detailed 
consideration of the case p = 0. This subject, which is one of 
the most important and fundamental in the entire theory of 
automorphic functions, is handled in a very felicitous and attrac
tive manner. 

" Poincaré series " is the name given in the present work to 
the series 

(9) <K& Q = EMS-^K?. + e& %£ + «£), 
k 

in which H(£v Q is any rational homogeneous function of Çv 

£2, and /JLU is the multiplier, of any allowable system, corre
sponding to the transformation (7). The function <jf> thus 
defined is an automorphic form for the given group with the 
multiplier system fik. 

I f the above series be divided by f 2, d being the dimension 
of (f>, and the multiplier system /x = 1 taken, the resulting 
formula 
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with d a negative even integer, is the " theta " series introduced 
by Poincaré, and is the principal element out of which he 
constructs the analytic theory of the automorphic functions. 
This function is reproduced, multiplied by a factor, by any 
substitution of the group ; that is, 

e(^îf)-(,y«f+*i)--e(0. 
while the corresponding form <f> is entirely unchanged. 

The series (9) is proved by two methods, both due to Poin
caré, to be convergent. The first proof establishes the con
vergence for a group with one limit curve, or an infinite num
ber of them, and for all dimensions d Éi — 4. This is the most 
general case and includes all others. 

Under what conditions the Poincaré series is convergent for 
values of d greater than — 4 is a problem not yet completely 
solved, but the case d = — 2 receives somewhat extensive con
sideration. I t is shown that for this value of d the series is no 
longer absolutely convergent whenever the group has one or 
more limit curves ; but that for fundamental circle groups which 
are not limit circle groups, and for certain other groups without 
limit curves, the series is unconditionally and uniformly con
vergent. These results, which are largely due to the investi
gations of Burn side and Schottky, lead the authors to suggest 
with Burnside that the theorem is possibly true for all groups 
without limit curves. I t is worthy of remark, also, that groups 
exist (for every genus p) for which the series of dimension 
d = — 1 is absolutely convergent. 

The second proof is given for the case of a fundamental 
circle group, and establishes the convergence of the series (9) 
for all dimensions d less than — 2. 

The quotient of two Poincaré series of like dimension d and 
with the same multiplier system is an automorphic function of 
f = (r,/(T2. Thus the Poincaré series affords a simple and ele
gant formula for the construction of functions belonging to the 
group. 

One serious obstacle in the way of using this series arises 
from the possibility of its identical vanishing. That this possi
bility is not an imaginary one is shown by proving that identi
cally vanishing series exist, and in infinite number for every 
dimension d. The difficulty is avoided by the construction of 
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series having one or more poles in the fundamental region. 
This is effected by assigning poles to the function H which is 
used in generating the series. The case of a single pole in the 
fundamental region being the simplest one is considered in de
tail. I t is proved that such a series can always be constructed, 
and the details of the method, and the actual form of the series 
are given except in the case of absolute automorphic forms of 
dimension — 2 which must have at least two poles. I t is 
shown that the pole can be taken at any point in the polygon 
net, the parabolic fixed points alone excepted. 

The one-pole series is now placed in the foreground. On the 
introduction of a suitable multiplying constant, it becomes dis
continuous at the pole £ = Çv Ç2 = f2 like 1 /(£i£2 — ÇJ*i)m ^ n e 

series so normalized is called an elementary form and is denoted 
by XI (Çv Ç2 ; Çv £2). I t is worthy of notice that this elementary 
form, when regarded as depending on f1? £2, is of dimension 
— d — 2, and in its manner of becoming discontinuous behaves 
like an automorphic form with inverse multiplier system fi~l. 
In order that Û may be an automorphic form in j*v £2 it is 
necessary that, when expressed as a product of prime forms 
and ground forms, it be of dimension — 1 in the former. I t 
also has the same property when regarded as a form in fx, f2, 
which fact leads to the expression of X2 in this case by a very 
elegant formula [(12), page 201] . 

Except for the special case just mentioned, XI is not auto
morphic in gv £2. I t has, however, certain properties as a 
function of these variables, which lead to the important con
clusion that every automorphic form which vanishes in the 
parabolic points can be expressed in the form of a Poincaré 
series provided the dimension d is one for which that series is 
convergent. That automorphic forms exist which are not ex
pressible as Poincaré series is shown by the occurrence of such 
a case for d = — 1 in the modular group. 

This result is further generalized by showing that every 
automorphic form with arbitrary poles none of which occur at 
a parabolic point, is expressible as a Poincaré series plus an 
integral automorphic form. 

The fourth and last chapter generalizes the results to the 
case p > 0. As in this case the automorphic functions are no 
longer expressible in terms of a principal function z, the simple 
prime form for p — 0 must be replaced by the transcendental 
prime form which enters into the theory of abelian functions. 
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The Eitter prime form introduced here, while not so simple an 
analytic expression as the Klein prime form, has the advantage 
over the latter of not vanishing at the branch points of the 
Biemann surface F. 

Klein's prime form £l(x, y) is defined as the limit of the 
expression 

PjX+dx, y+dy 

— (x, dx) (y, dy) e *> y 

for dx = 0, dy = 0. Here Ilf; JJ is the normal integral of the 
third kind on the m-leaved Riemann surface, while (as, dx) is 
written for brevity to represent the homogeneous differential 
expression xxdx2 — x2dxv 

Hitter's prime form P(z, e) is 

0(z, oo,) Q,(z, oo a) . . . f l(«, c o j 

in which e is any point of the Riemann surface and Q,(z, oo .) is 
Klein's prime form with the path of integration extending to 
the point at infinity in the ith sheet of the surface, while z2 is 
one of the homogeneous variables into which z = z1/z2 *s sepa
rated. The prime form thus defined is everywhere continuous 
and has only a single zero of the first order at z = e. I t is, 
however, in the periodic property of this prime form with re
spect to substitutions of the group V that its superiority over 
the Klein form is especially marked, for while the latter is re
produced multiplied by a function of z, the former has a multi
plier independent of z. 

Expressions are next obtained in terms of the Bitter prime 
form for the polymorphic forms Çv Ç2 whose quotient gives the 
variable f in terms of which z is an automorphic function. 

Just as in the case p = 0, the variable £ as a function of z 
satisfies a differential equation of the third order obtained by 
equating the Schwarzian derivative to a certain function È 
which is rational and algebraic on the Riemann surface, and 
which depends on n + 3 p — 3 arbitrary constants, the acces
sory parameters of the differential equation. The form of the 
function JR is determined for three cases of special interest, viz : 

1. When the group Y is of character (1, n). 
2. When it is hyperelliptic of character (p, 0). 
3. For the general case of character (3, 0). 

ofr «0 A( 
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The polymorphic forms f1? £2 satisfy the differential equation 
of the second order 

in which R is the function occurring in the differential equation 
of the third order for f. 

The general multiplicative forms, that is, the automorphic 
forms which are reproduced with multiplying constants by the 
operations of the group T, are now taken under consideration, 
the main result arrived at being the theorem that such forms 
always exist for every integer dimension d and for every 
theoretically possible multiplier system. Every form <f> of this 
kind is expressible as a product of ground and prime forms 
giving the zeros of <£>, divided by a product of prime forms 
giving the poles of <ƒ>. As in the case p = 0, the ground form 
is a properly chosen root of a prime form which vanishes at 
one of the fixed corners of the fundamental polygon. By 
prime form is here meant the product of the Hitter form by 
an exponential factor whose exponent is an abelian integral of 
the first kind on the Biemann surface, such an exponential 
factor being the most general expression for a multiplicative 
form without poles or zeros. 

Among the automorphic forms belonging to a group of genus 
p those of dimension — 2 and multiplier system 1 which are 
free from poles have particular interest. Denoting such a form 

oy <ï>_2(£i, f2) it is observed that the integral f<b_2(Çv Q(Ç, dÇ) 
is of dimension zero and hence a function of £ (and therefore 
of z) which is everywhere finite on the Biemann surface F. I t 
is accordingly an abelian integral of the first kind. As there 
are p linearly independent integrals of the first kind it follows 
that the same number of linearly independent functions <ï>_2 

exist. The number of linearly independent forms <f> of given 
dimension and multiplier system is £ -—p + cr + 1, in which t 
is the number of zeros of <j>, and a is the number of linearly in
dependent forms <3>_2 which vanish in these t zero points. This 
is clearly only another form of the Biemann-Boch theorem. 

The expression of automorphic forms by means of the Poin-
caré series next demands attention. I t is to be remarked first 
of all that in order to insure the convergence of this series, the 
multipliers /JLJC were assumed unimodular. If a form <ƒ/ has 
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multipliers which are not unimodular, it can be expressed in 
the form 

<f>' = e s w < £ , 

in which <f> is a form with unimodular multipliers and the w. 
are normal integrals of the first kind on the Biemann surface 
F. A generator of Y which corresponds to a crossing of a can
onical period path in F will then reproduce <j>' with a multi
plier e°iPifii} p. and /x. being the corresponding moduli of period
icity of w. and the multiplier of <f> respectively. By a proper 
choice of the c. it is evident that any desired multiplier system 
may be assigned to 4>''. 

In order that the form </> be expressible as a Poincaré series 
it is further necessary that it vanish in the parabolic fixed 
points. After a somewhat lengthy, but interesting analysis, a 
conclusion is reached similar to that in case^? = 0, namely — 
every unimultiplicative form of dimension d satisfying the 
convergence condition, which vanishes in the parabolic points, 
and only such a form, is expressible as a Poincaré series ; 
and every automorphic form with arbitrary poles, none of 
which occur at parabolic points, is expressible as a Poincaré 
series plus an integral automorphic form. 

J . I . HUTCHINSON. 
CORNELL UNIVERSITY. 

LORIA 'S SPECIAL P L A N E CURVES. 

Spezielle algebraisehe und transcendente ebene Curven, Theorie 
und Geschichte. Von Dr. GINO LOEIA. Autorisierte, 
nach dem italienischen Manuscript bearbeitete deutsche Aus-
gabe von F R I T Z SCHUTTE. Leipzig, B. G. Teubner, 1902. 
8vo., xxi + 744 pp. + 17 plates containing 174 figures. 

ABOUT ten years ago the Royal Academy of Sciences at 
Madrid offered its triennial prize to be awarded upon the 
thirty-first of December, 1894, for " An ordered account of all 
curves of any kind which had received special names, and a 
further short account of their form, their equations, and their 
inventors." To this prodigious question no response seems to 
have come. Three years later the question was repeated. 
Professor Loria presented his researches, which were received 
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