P LN

MITS ALTAIR BASIC

REFERENCE MANUAL

T__able of Contents:

INTRODUCTION . i vt in et ii e aarmsartosannssansonannn .1
GETTING STARTED WITH BASIC......¢vuiivemmennninnuninn 1
REFERENCE MATERIAL.....civuuiiionanasaarsansnasansnas 23
APPENDICES e iinuronanrnasasrassnrasarinas 45
A) HOW TO LOAD BASIC......ovvurrunnranannnvrs 46
B) INITIALIZATION DIALOG. covvrrvvervvsannrans 51
C} ERROR MESSAGES......veveurrnianssanananrsss 53
D) SPACE HINTS.....ovvvivenvronsrronnnrinanes 56
E] SPEED HINTS.....ivieissinrraansnannsananss 58
F] DERIVED FUNCTIONS....ovevivivarannnaannass 59
G) SIMULATED MATH FUNCTIONS........cvveuvnuns 60
H) CONVERTING BASIC PROGRAMS NOT
WRITTEN FOR THE ALTAIR............ 000, 62
1) USING THE ACR INTERFACE....... Cenrensasiesfd
J) BASIC/MACHIME LANGUAGE INTERFACE.......... 66
K) ASCII CHARACTER CODES......vvivvevrvnvnnnn- 69
L) EXTENDED BASIC....uvvvvsecnaracsnraaansnas 71
M) BASIC TEXTS.....eivvvuvannvrvnvrraines seean 73

© MITS, Inc., 1975 MU U S

"Creative Electronics”

P.0. BOX 8635
ALBUCUERQUE, NEW MEXICO 87108

PRINTED N U,5 A,

ALTAIR MITS v BASIC

Supplement & Errata

The following are additions and corrections to the ALTAIR BASIC REFERENCE
MANUAL. Be sure te read this over carefully before continuing.

1} If you are loading BASIC from paper tape, be sure your Serial I/0
board is strapped for eight data bits and no parity bit.

2) Un page 53 in Appendix C, the meaning for an "GS" error should read:

Out of String Space. Allocate more string space by using
the "CLEAR" command with an argument (see page 42), and then
Tun your program again. If you cannot allecate more string
space, try using smaller strings or less string variables.

3) On page 42, under the "CLEAR" command, It is stated that "CLEAR" with
no argument sets the amount of string space to 200 bytes. This is in-
correct. 'CLEAR" with no argument leaves the amount of string space
unchanged. When BASIC is brought up, the amount of string space is
initially set to 50 bytes.

4} On page 30, under the "DATA" statement, the sentence "IN THE 4K VERSION
OF BASIC, DATA STATEMENTS MUST BE THE FIRST STATEMENTS ON A LINE,"
should be changed to read, "IN THE 4K VERSION OF BASIC, A DATA STATE-
MENT MUST BE ALONE ON A LINE."

5) If you desire to use & terminal interfaced to the ALTAIR with a
Parallel 1/0 board as your system console, you should lead from the
ACR interface (wired for address 6), Use the ACR load procedure de-
scribed in Appendix A, except that you should raise switches 15 § 13
when you start the boot. The Parallel [/0 board must be strapped to
address 0.

6) If you get a checksum errcr while loading BASIC from & paper tape or a
cassette, you may be able to restart the boot loader at location 0 with
the appropriate sense switch settings., This depends on when the error
occurs. The boot loader is not written over until the last block of
BASIC is being read; which occcurs during approximately the last two
feet of a paper tape, or the last 10 to 15 seconds of a cassette, If
the checksum error occurs during the reading of the last bicck of BASIC,
the boot will be overwritten and you will have to key it in again.

7) The number of nulls punched after a carriage return/line feed does not
need to be set »=3 for Teletypes or »=6 for 30 CPS paper tape terminals,
as described under the “NULL" command on page 23 of the BASIC manual.
In almost zll cases, no extra nulls need be punched after a CR/LF on
Teletypes, and & setting of nulls to 3 should be sufficient for 30 CPS
Paper tape terminals. If any problems occur when reading tape (the
first few characters of lines are lost), change the null setting te 1
for Teletypes and 4 for 30 CPS terminals.

&) If you have any problems loading BASIC, check to make sure that your \')
terminal interface board (S0 or FI0) is working properly. Key in the
appropriate echo program from below, and start it at location zero.

Each character typed should be typed or displayed on your terminal. If
this is not the case, first be sure that you are using the correct echo
program. If you are using the correct program, but it is not functiom-
ing properly, then most likely the interface board or the terminal is
not operating correctly.

ir the following program listings, the mumber to the left of the slash
te the oetal address and the number to the vright is the oetal code for that
addrese.

FOR REV 0 SERIAL I/0 BOARDS WITHOUT THE STATUS BIT MODIFICATION

G /7 333 1 /7 000 2 / Juk
3 / 040 4/ 312 5/ ooo
k / 000 ? /333 10 / 00L
1} / 323 12 / a0l 13 / 303
4 / 000 15 / 000
FOR REV 1 SERIAL 1/0 BOARDS (AND REV O MODIFIED BOARDS)
0/ 333 L / Ooo ¢ / 01?7
3/ 33 4 / 00D S/ 0on
&/ 333 7/ 001 10 / 323 \d)
L% / 00L 12 / 303 13 s 00O
34 / 000
FOR PARALLEL I/0 BOARDS
0/ 333 1 / 000 2/ 34k
3/ oo2 b/ 3le 5 7/ 000
B / 000 ? /333 10 s 4ol
1L 7 323 le / 001 13 ~ 303
4/ 000 15 +~ 00O

For these of you with the book, MY COMPUTER LIKES ME when i speak in
BASIC, by Bob Albrecht, the fellowing information may be helpful.

1) ALTAIR BASIC uses “"NEW" instead of "SCR" tc delete the current
program.

2) Use Control-C to stop execution of a pregram, Use a carriage-
return to sStop a program at an "INPUT" statement.

3) You don't need an "END'' statement at the end of a BASIC program.

W/

8/25/75

Introduction

Before a computer car perform any useful function, it wust be "told*
what to do. Unfortunately, at this time, computers are not capable of
understanding English or any other “human" language. This is primarily
because our languages are rich with ambiguities and implied meanings.

The computer must be told precise instructions and the exact sequence of
operations to be performed in order to accomplish any specific task.
Therefore, in order to facilitate human communication with a computer,
programming languages have been developed.

ALTAIR BASIC* is a programming language both easily understood and
simple to use. It serves as an excellent “tool" for applications in
areas such as business, science and education. With only a few hours of
using BASIC, you will find that you can already write programs with an
ease that few other computer languages can duplicate.

Originally develcped at Dartmouth University, BASIC language has
found wide acceptance in the computer field. Although it is one of the
simplest computer languages to use, it is very powerful. BASIC uses a
small set of common English words as its "commands". Designed specifi-
cally as an "interactive" language, you can give a command such as
"PRINT 2 + 2", and ALTAIR BASIC will immediately reply with "4". It
1sn't necessary to submit a card deck with your program on it and then
wait hours for the results. Instead the full power of the ALTAIR is “at
your fingertips".

Generally, if the computer does not solve a particular problem the
way you expected it to, there 1s a “Bug® or error in your program, or
else there is an error in the data which the program used to calculate
its answer. If you encounter any errors in BASIC itself, please let us
know and we'll see that it's corrected. Write a letter to us containing
the following information:

1) System Configuration

2} Version of BASIC

3} A detailed description of the error
Include all pertinent information
such as a 1isting of the program in
which the error occurred, the data
placed into the program and BASIC's
printout.

All of the information listed above will be necessary in order to pro-
perly evaluaste the problem and correct it as quickly as pessible. We
wish to maintain as high a level of quality as possible with all of our
ALTAIR software.

* BASIC is a registered trademark of Dartmouth University.

I

We hope that you enjoy ALTAIR BASIC, and are successful in using it
to solve all of your programming needs.

In order to maintain a maximum quality level in our documentation,
we Will be continuously revising this manual. If you have any sugges-
tions on how we can improve it, please let us know.

If you are already familiar with BASIC programming, the following
section may be skipped. Turn directly to the Reference Material on
page 22.

NOTE: MITS ALTAIR BASIC ie available under license or purchase
agreements. Copying or otherwise distributing MITS eoftware out-
eide the terme of such an agreement may he a violation of copyright
lawe or the agreement itself.

If any immediate problems with MITS software are encountered, feel
free to give us a call at (505) 265-7553. The Software Department

is at Ext. 3; ‘and the joint authors of the ALTAIR BASIC Interpreter, Q ’
Bill Gates, Paul Allen and Monte Davidoff, will be glad to assist you.

Irx

N T e N e N M N e

GETTING
STARTED

WA

BASIC

e

This section is not intended to be a detailed coursc in BASIC pro-
gramming. It will, however, serve as an excellent introduction for those
of you unfamiliar with the language.

The text here will introduce the primary concepts amd uscs of BASIC
enough to get you started writing programs. For further recading sugges-
tions, see Appendix M.

If your ALTAIR does not have BASIC loaded and running, follow the
procedures in Appendices A § B to bring it up.

We recommend that you try each example in this section as it is pre-
sented. This will enhance your "feel" for BASIC and how it is used.

Once your L1/0 device has typed * QK ', you are ready to use ALTAIR
BASIC.

NOTE: All ecmmands to ALTAIR BASIC should end with a carriage
return. The carriage return tells BASIC that you have finished
typing the command. IF you make a typiwng errovr, type & buek-
arrow { +), uwenally ehift/0, or an wnderline to eliminate the
lagt character. Rapented wse of " + " will eliminate previous
characters. An at-sign (@ } will eliminate the entire line
that you are typing.

Now, try typing in the following:

PRINT 10-4 (end with carriage return)

ALTAIR BASIC will immediately print:

&
oK

The print statement you typed in was executed as scon as you hit the
carriage return key. BASIC evajuated the formula after the “PRINT" and
then typed out its value, in this case 6.

Now try typing in this:

PRINT 1/2,3*10 (P4 meang multiply, /" means divide)

ALTAIR BASIC will print:

5 E 1]

As you can see, ALTAIR BASIC can do division and multiplication as
well as subtraction. MNote how a " , ™ (comma) was used in the print com-
mand to print two values instead of just one. The comma divides the 72
character line into S5 columns, each 14 characters wide. The last two of
the positiens en the line are not used. The result is a " , " causes

BASIC to skip to the next 14 column field on the terminal, where the
value 30 was printed.

2

Commands such as the "PRINT" statements you have just typed in are
called Direct Commands. There is another type of command called an In-
direct Command. Every Indirect command begins with a Line Number. A
Line Number is any integer from 0 to (65529,

Try typing in the following lines:

10 FRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a “Program". Instead of
executing indirect statements immediately, ALTAIR BASIC saves Indirect
Commands in the ALTAIR's memory. When you type in RUN , BASIC will
execute the lowest numbered indirect statement that has been typed in
first, then the next highest, etc. for as many as were typed in.

Suppose we type in RUN now:

RUN
ALTAIR BASIC will type out:

5
-1

oK

In the example above, wo typed in line 10 first and line 20 second.
However, it makes no difference in what order you type in indirect state-
ments, BASIC always puts them into correct numerical order according to
the Line Number.

If we want a listing of the complete program currently in memory,
we type in LIST . Type this in:

LIST
ALTAIR BASIC will Treply with:
10 PRINT 2+3
20 PRINT 2-3
oK
Sometimes it is desirable to delete & line of a program altogether.
This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carriageé return.

Type in the following:

12
LIST

ALTALR BASIC will reply with:

20 PRINT 2-3
0K

We have now deleted line 10 from the program. There is no way to

get it back. To insert a new line 10, just type in 10 followed by the
statement we want BASIC to execute.

Type in the following:

10 PRINT 2*3
LIST

ALTAIR BASIC will reply with:
1D PRINT &*3
20 PRINT 2-3
oK
There 1s an easier way to replace line 10 than deleting it and then
inserting a new line. You can do this by just typing the new line 10 and
hitting the carriage return. BASIC throws away the old line 10 and re-
places it with the new one.

Type in the following:

10 PRINT 3-3
LIST

ALTAIR BASIC will repliy with:
10 PRINT 3-3
20 PRINT 2-3
0K

It is not recommended that lines be numbered consecutively. It may
become necessary to insert & new line between two existing lines. An in-
crement of 10 between line numbers is generally sufficient.

If you want to erase the complete program currently stored in memory,
type in " NEW ". 1If you are finished running one program and are about
to read in & new one, be sure to type in * NEW " first. This should be
done in order to prevent & mixture of the old and new programs.

Type in the following:

NEW
ALTAIR BASIC will reply with:

oK

Now type in:
LIST

ALTAIR BASIC will reply with:
OK

Often it is desirable to include text along with answers that are
printed cut, in order te explain the meaning of the numbers,

Type in the following:
PRINT "ONE THIRD IS EQUAL TO",1/3
ALTAIR BASIC will reply with:
ONE THIRD IS EQUAL TO .393333
oK
As explained earlier, including a " , " in a print statement causes
it to space over to the next fourteen ¢olumn field before the value fol-
lowing the * , " is printed.
If we use a " ; ' instead of a comma, the value next will be printed

immediately following the previocus value.

NOTE: Numbers are alwaye printed with at leaet one trailing epace.
Any text to be printed {a alwaye te¢ be enciosed in double gquotes.

Try the following examples:

A} PRINT "ONE THIRD IS EQUAL TO";1/3
ONE THIRD IS EQUAL TO -333333

oK

B) PRINT 1,2,3
oK

€) PRINT 1;2;3
12 3

oK

D} PRINT -1;2;-3
-1 2-3

oK

We will digress for a moment to explain the format of numbers in
ALTAIR BASIC. Numbers are stored internally to over six digits of ac-
curacy. When a number is printed, only six digits are shown, Every
number may also have an exponent {a power of ten scaling factor).

The largest number that may be representsd in ALTAIR BASIC is
1.70141*1038, while the smallest positive number is 2.93874*10739,

When a number is printed, the following rules are used to determine
the exact format:

1) If the number is negative, a minus sign (-) is printed.
If the number is positive, a space is printed.

2) If the absolute value of the number is an integer in the
range 0 to 995993, it is printed as an integer,

3) If the absclute value of the number 1s greater than or
equal to .1 and less than or equal te 999999, it is printed
in fixed point notation, with no expoment.

4) 1f the number does not fall under categoxies 2 or 3,
scientific notation is used.

Scientific notation is formatted as follows: SX.XXXXXESTT .
(each X being some integer O to 9)

The leading "5" is the sign of the number, a space for a
positlve number and a ' - © for a negative one. One non-
zero digit is printed before the decimal point. This is
followed by the decimal point and then the other five digits
of the mantissa. An "E" is then printed (for exponent),
followed by the sign (5) of the exponent; then the two
digits (TT) of the exponent itself. Leading zeroes are
never printed; i.e. the digit before the decimal is never
zero. Also, trailing zeroes are never printed. If there
is only one digit to print after all trailing zerocs arg
suppressed, no decimal point is printed. The exponent
sign will be " + " for positive and " - ™ for negative.
Two digits of the exponent are always printed; that is
zeroes are not suppressed in the expeonent field. The
value of any number expressed thus is the mumber to the
left of the "E" times 10 raised to the power of the number
to the right of the "E",

No matter what format is used, a space is always printed following
a number. The 8K version of BASIC checks to see if the entire number
will fit on the current line. If not, a carriage return/line feed is
executed before printing the number,

The following are examples of varicus numbers and the cutput format
ALTAIR BASIC will place them inte:

NUMBER OUIPUT FORMAT
+1 1

-1 -1

6523 bB523
-23.460 —23. 46

1C20 1E+20
-12.3456E-7 =-L.2345LE-0k
1.234567E-11) 1.23457E-10
1000000 1E+0k
999999 999999

ot «L

.01 1E-D2
000123 1.c3E-04

A number input from the terminal or a numeric constant used in a
BASIC program may have as many digits as desired, up to the maximum length
of a line (72 characters). However, only the first 7 digits are signifi-
cant, and the seventh digit is rounded up.

PRINT 1.2345678901234567890
1.23487

0K

The following is an example of a program that reads a value from the
terminal and uses that value to calculate and print a result:

10 TNPUT R
20 PRINT 3.14159*R*R
RUN
? 10
314.159

oK

Here's what’s happening. When BASIC encounters the input statement,
it types a question mark (?) on the terminal and then waits for you to
type in a number. When you do (in the above example 10 was typed), execu-
tion continues with the next statement in the program after the variable
(R) has been set (in this case to 10). In the above example, line 20
would now be executed., When the formula after the PRINT statement is
evaluated, the value 10 is substituted for the variable R each time R ap-
pears in the formula. Therefore, the formula becomes 3,14159*10%10, eor
314.159.

If you haven't already guessed, what the program above actually does
is to calculate the area of a circle with the radius "R".

IF we wanted to calenlate the urea of various ¢ircles, we could ke
re-running the program over sach time for cach successive cirele. But,
there’s an easier way te do it simply by adding another line to the pro-
gram as follows:

30 GOTO 10

RUN

10
314.159

?3
24.2743

4.7

E9.3977
?

OK

By putting a ' GOTO " statement on the end of our program, we have
caused it to go back to lime 10 after it prints each answer for the suc-
cessive circles. This could have gone on indefinitely, but we decided
to stop after calculating the area for three circles. This was accom-
plished by typing a carriage return to the input statement {thus a blank
line}.

NOTE: Typing a carriage return to an input statement in the 4K
version of BASIC will cause a SN error (see Referemce Material).

The letter ™R" in the program we just used was termed a ''variable™.
A variable name can be any alphabetic character and may be followed by
any alphanumeric character. .

In the 4K version of BASIC, the second character must be numeric
or omitted. In the 8K version of BASIC, any alphanumeric characters
after the first two are ignored. An alphanumeric character is any let-
ter (A-Z) or any number (0-9).

Below are some examples of legal and illegal variable names:

LEGAL ILLEGAL

IN 4K VERSION

A % (1st character must be alphabetic)
21 Z1A (variable name too long}
QR (2nd character must be numeric)
IN 8K VERSION

TP TO (variable names cannot be reserved
PSTGS woTds)
COUNT RGOT¢ (variable names cannot contain

reserved words)

J

The words used as BASIC statements are "reserved" for this specific

purpese. You cannot use these words as variable names or inside of any
variable name. For instance, "FEND" would be illegal because "FNI' is a
reserved word,

The following is a list of the reserved words in ALTAIR BASIC:

4K RESERVED WORDS

ABS CLEAR DATA DIM END FOR GOSUB GOTO IF INPUT
INT LET LIST NEW NEXT PRINT READ REM RESTORE
RETURN RN RUN SGN SIN SQR STEF STOP TAB(THEN

T3 USR

8K RESERVED WORDS INCLUDE ALL THOSE ABOVE, AND IN ADDITION

ASC AND ATN CHR$ CLOAD CONT COS CSAVE DEF EXP
F& FRE INP LEFT§ LEN LOG MID§ NULL ON OR NOT
QUT PEEK POKE POS RIGHT$ SPC(STR§ TAN VAL WAIT

Remember, in the 4K version of BASIC variable names are only a letter

or a letter followed by a number. Therefore, there is no possibility of
a conflict with a reserved word.

Besides having values assigned to variables with an input statement,

you can also set the value of a variable with a LET or assignment state-

Try the following examples:
A=5
oK

PRINT A,A%2
3 10

oK
LET Z=7

oK

PRINT Z, Z-A
7 g

oK

As can be seen from the examples, the "LET" is optional in an assign-
ment statement.

BASLC "remembers" the values that have been assigned to variables
using this type of statement. This "remembering" process uses space in
the ALTAIR's memory to store the data.

The values of variables are thrown awszy and the space in memory
used to store them is released when one of four things occur:

1) A new line is typed into the program or an old
line is deleted

2) A CLEAR command is typed in
3) A RUN command is typed in
4) NEW is typed in

Another important fact is that if a varlable is encountered in a
formula before it is assigned a value, it is automatically assigned the
value zero, Zero is then substituted as the value of the variable in
the particular formula. Try the example below:

PRINT Q,Q+2,Q%2
D 2

oK

Another statement is the REM statement. REM is short for remark.
This statement is used to insert comments or notes into a program. When
BASIC encounters a REM statement the rest of the line is ignored.

This serves mainly as an aid for the programmer himself, and serves
no useful function as far as the operation of the program in solving a
particular problem.

Suppose we wanted to write a program to check 1f 2 number is zero
or not. With the statements we've gone over sc far this could not be
done. What is needed is a statement which can be used to conditionally
branch to another statement. The "IF-THEN" statement does just that.

Tty typing in the following program: (remember, type NEW first)

10 INPUT B

20 IF B=0 THEN 50
30 PRINT "NON-ZERO"
490 GOTO 10

50 PRINT "ZERQ"

60 GOTO 10

When this program is typed into the ALTAIR and tun, it will ask for
a value for B, Type any value you wish in. The ALTAIR will then come to
the "IF" statement. Between the "IF" and the “"THEN" portion of the state-
ment there are twe expressions separated by a relation,

A relation is oune of the follewing six symbols:

RELATION MEANING
= EQUAL TO
> GREATER THAN
< LESS THAN
<> NOT EQUAL TO
<= LESS THAN OR EQUAL TO
=> GREATER THAN OR EQUAL TO

The LF statement is either true or false, depending upon whether the
two expressions satisfy the relation or not. For example, in the pro-
gram we just did, if 0 was typed in for B the IF statement would be true
because Q=0. 1In this case, since the number after the THEN is 50, execu-
tion of the program would continue at line 50. Thersfore, "“ZERQ" would
be printed and then the program would jump back to line 10 (because of
the GOTO statement in line 60).

Suppose a 1 was typed in for B. Since 1=0 is false, the IF state-
ment would be false and the program would continue execution with the
next line. Therefore, "NON-ZERO" would be printed and the GOTO in line
40 would send the program back to line 10.

Now try the following program for comparing two numbers:

10 INPUT A,B

20 IF A<=B THEN 50

30 PRINT "A IS BIGGER"

40 GOTO 14

50 IF A<B TBEN 80

60 PRINT "THEY ARE THE SAME"
70 GOTO 10

80 PRINT "B IS BIGGER"

90 GOTQ 10

When this program is run, line 10 will input two numbers from the
terminal. At line 20, if A is greater than B, A<=B will be false, This
will cause the next statement to be executed, printing "A IS BIGGER" and
then line 40 sends the computer back to line 10 to begin again.

At line 20, if A has the same value as B, A<=B is true s0 we go te
line 50. At line 50, since A has the same value as B, A<BE is false;
therefore, we go to the following statement and print “THEY ARE THE SAME".
Then line 70 sends us back to the beginning again.

At line 20, if A is smaller than B, A<=B is true so we go to line 50.
At line 50, A<B will be true so we then go to line 80. "B IS BIGGER" is
then printed and again we go back to the beginning.

Try running the last two programs several times. [t may make it
easier to understand if you try writing your own program at this time
using the IF-THCN statement. Actually trying programs of your own is
the quickest and easiest way to understand how BASIC works. Remember,
to stop these programs just give a carfiage return to the input state-
ment.

n

One advantage of computers is their ability to perform repetitive
tasks. Let's take a closer look and see how this works,

Supposc we want z table of square roots from 1 to 10. The BASIC
function for square root is "SQR"; the form being SQR(X), X being the
number you wish the square root calculated from. We could write the pro-
gram as follows:

10 PRINT 1,5QR(1)
20 PRINT 2,SQR(2]
30 PRINT 3,5QR(3)
40 PRINT 4,SQR(4)
50 PRINT 5,5QR{5)
60 PRINT 6,SQR(6)
70 PRINT 7,5QR(7)
80 PRINT &,5QR(8)
80 PRINT 9,SQR(9)
100 PRINT 10,SQR(10)

This program will do the job; however, it is terribly inefficient.
We can improve the program tremendously by using the IF statement just
introduced as follows:

10 N=1

20 PRINT N,SQR(N)
30 N=N+1

40 IF Ne=10 THEN 20

When this program is run, its output will look exactly like that of
the 10 statement program above it. Let's look at how it works.

At line 10 we have a LET statement which sets the value of the vari-
able N at 1. At line 20 we print N and the square root of N using its
current value, It thus becomes 20 PRINT 1,5QR(1}, and this calculation
is printed ocut.

At line 30 we use what will appear at first to be a rather unusual
LET statement. Mathematically, the statement N=N+l1 is nonsense. However,
the important thing to remember is that in a LET statement, the symbol
" = " does not signify equality. In this ¢ase " = " means "to be replaced
with". All the statement does is to take the current value of N and add
1l to it. Thus, after the first time through line 30, N becomes 2,

At line 40, since N now equals 2, N<=10 is true so the THEN portion
branches us back to line 20, with N now at a value of 2,

The overall result is that lines 20 through 40 are repeated, each
time adding 1 to the value of N. When N finally equals 10 at line 20,
the next line will increment it to 11, This results in a false state-
ment at line 40, and since there are ne further statements to the pro-
gram it stops.

This technique is referred to as "looping" or "iteration". Since
it is used quite extensively in programming, there are special BASIC
statements for using it. We can show these with the following pro-
gram.

12

10 FOR N=1 TQ 10
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the same as
the previous two programs.

At line 10, N is set to equal 1, Line 20 causes the value of N and
the square root of N to be printed. At line 30 we see a new type of
statement. The "KEXT N'" statement causes one to be added to N, and then
if N<=10 we go back to the statement following the "FOR" statement. The
overall operaticon then is the same as with the previous program,

Notice that the variable following the "FOR" is exactly the same as
the variable after the "NEXT". There is nothing special asbout the N in
this ¢ase, Any variable could be used, as long as they are the same in
both the "FOR"™ and the "WEXT" statements. For instance, '"Z1" could be
substituted everywhere there is an "N in the above program and it would
function exactly the same.

Suppose we wanted to print a table of square roots from 10 to 20,
only counting by twe's. The follewing program would perform this task:

10 N=10

20 PRINT N,SQR{N}
30 N=N+2

40 IF N<=20 THEN 20

Note the similar structure between this program and the one listed
on page 12 for printing square roocts for the numbers 1 to 10. This pro-
gram can also be written using the "PFOR" loop just introduced.

10 FOR N=10 TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT N

Notice that the only major difference between this program and the
previous cne using "FOR" Joops is the addition of the "“STEP 2" clause.
This tells BASIC to add 2 to N each time, instead of 1 as in the
previous program. If no "STEP" is given in a "FOR" statement, BASIC as-
sumes that one is to be added each time. The "STEP" can be followed by
any expression.)

Suppose we wanted to count backwards from 10 to 1., A program for
doing this would be as follows:

10 I=1¢

20 PRINT I

30 I=1-1

40 IF I»=1 THEN 20

Notice that we are now checking to see that I is greater than or
egqual te the final value. The reason is that we are now counting by a
negative number. In the previous examples it was the oppeosite, so we
were checking for & variable less than or equal to the final value.

13

The "STEP" statement previously shown can also be used with megative
numbers to accomplish this same purpose., This can be done using the szme
format as in the other program, as follows:

10 FOR 1=10 TO 1 STEP -1
20 PRINT I
30 NEXT I

"FOR"™ loops can also be "nested'". An example of this procedure fol-
lows; .

10 FOR I=1 T
20 FOR J=1 T
30 PRINT I,J
40 NEXT J
50 NEXT 1

Q5
03

Notice that the "NEXT J" comes before the "NEXT I'. This is because
the J-loop is inside of the I-loop. The following program is incorrect;
run it and see what happens.

10 FOR I=1 TO 5
20 FOR J=1 TO 3
30 PRINT I1,J

40 NEXT I

50 NEXT J

It does mot work because when the "WEXT I' is encountered, all know-
ledge of the J-loep is lost. This happens because the J-loop is "inside"
of the I-joop.

It is often coenvenient to be able to select any element in a table
of numbers. BASIC allows this to be done through the use of matrices.

A matrix is a table of numbers. The name of this table, called the
matrix name, is any legal variable name, “A'' for example. The matrix
name "A"™ is distinct and separate from the simple variable "A", and you
could use both in the same program.

To select an element of the table, we subscript ™A' : that is to
select the I'th element, we enclose I in parenthesis "(I}" and then fol-
low A" by this subscript. Therefore, "A(I}" is the 1'th element in the
matrix "AM.

NOTE; In this section of the manual we will be concerned with
one-dimenstonal matrices only. (See Reference Material)

"A(T)" is only one element of matrix A, and BASIC must be told how
much space to allocate for the entire matrix,

This is done with a “DIM" statement, using the format “DIM A(15)".
In this case, we have reserved space for the matrix index "I' to go from
0 to 15, Matrix subscripts always start at 0; therefore, in the above
example, we have allowed for 16 numbers in matrix A.

14

J

If "A(I)" is used in a program befere it has been dimensioned, BASIC
(_; reserves space for 11 elements (0 through 10).

As an example of how matrices are used, try the following program
to sort a list of & numbers with you picking the numbers to be sorted.

10 DIM A8}
20 FOR 1=1 TO 8

30 INPUT A(I}

50 NEXT I

70 F=0

80 FOR I=1 TO 7

90 IF A(I}<=A(I+1) THEN 140
100 T=A{I)

110 A(I}= A(I+1)

120 A(I+1)=T

130 F=l

140 NEXT 1

150 IF F=1 THEN 70

160 FOR I=1 TO 8

170 PRINT A(I),

180 NEXT I

When line 10 is executed, BASIC sets aside space for 9 numeric values,
A(0) through A(8). Lines 20 through 50 get the unsorted list from the
user. The sorting itself is done by going through the list of numbers and

(;/ upon finding any two that are not in order, we switch them. UF" is used

to indicate if any switches were done. If any were done, line 150 tells
BASIC to go back and check some more,

If we did not switch any numbers, or after they are all in oxnder,
lines 160 through 180 will print out the sorted list. Note that a sub-
script can be any expression.

Ancther useful pair of statements are “GOSUB" and “RETURN'. If you
have a program that performs the same action in several different places,
you could duplicate the same statements for the action in each place with-
in the program.

The "GOSUB"-"RETURN' statements can be used to avoid this duplication.
When a "GOSUB" is encountered, BASIC branches to the line whose number fol-
lows the "GOSUB'. However, BASIC remembers where it was in the program
before it branched. When the “RETURN" statement is encountered, BASIC
goes back to the first statement following the last "GOSUB" that was exe-
cuted. Observe the following program.

10 PRINT "WHAT IS THE NUMBER";

30 GOSUB 100

40 T=N

50 PRINT "WHAT IS THE SECOND NUMBER";

70 GOSUB 100

80 PRINT "THE SUM OF THE TWO NUMBERS IS",T+N

(_/ 80 STOP
100 INPUT N

15

L10 IF N = INT(N) THCN 140

120 PRINT "“S0RRY, NUMBIR MUST BL AN INTEGER. TRY AGAIN.Y
130 GOTO 100

140 RLTURN

What this program does is to ask for two numbers which must be inte-
gers, and then prints the sum of the two. The subroutine in this pro-
gram 1s lines 100 to 130. The subroutine asks for a number, and if it
is not an integer, asks for a number again. It will c¢ontinue to ask until
an integer value is typed in.

The main program priants " WHAT IS THE WUMBER ™, and then calls the
subroutine to get the value of the number inte N. When the subroutine
returns (to line 40), the value input is saved in the variable T. This
is done so that when the subroutine is called a second time, the value
of the first number will net be lost.

" WHAT IS THE SECOND NUMBER " is then printed, and the second value
is entered when the subroutine is again called.

When the subroutine returns the second time, ' THE SUM OF THE Two
NUMBERS IS ™ is printed, followed by the value of their sum. T contains
the value of the first number that was entered and N contains the value
of the second number,

The next statement in the program is a “STOP" statement. This causes
the program to stop execution at line 90. If the "STOP" statement was not
included in the program, we would "fall into" the subroutine at line 100.
This is undesirable because we would be asked to input another number, If
we did, the subroutine would try to return; 4nd since there was no "GOSUB"
which called the subroutine, an RG error would occur. Each "GOSUB" exe-
cuted in a program should have a matching "RETURN' executed later, and the
opposite applies, i.e. a "RETURN'" should be encountered only if it is
part of a subroutine which has been called by a "GOSUB".

Either "STOP" ox "END'" can be used to separate & progran from its
subroutines. In the 4K version of BASIC, there is no difference between
the "STOP" and the “END". In the 8K versien, "STOP" will print = mes-
sage saying at what line the "STOP" was encountered.

Suppose you had to enter numbers te your program that didn't change
cach time the program was run, but you would like it to be easy to change
them if necessary. BASIC contains special statements for this purpose,
called the “READM and "DATA" statements.

Consider the following program:

10 PRINT “GUESS A NUMBERM,

20 INPUT G

30 READ D

40 IF D=-999899 THEN 90

50 IF D<»>G THEN 30

60 PRINT "'YOU ARE CORRECT"

70 END

90 PRINT “BAD GUESS, TRY AGAIN."
95 RESTORE .

16

100 GATO 10
L1 DATA 1,3493,-39,28,391,-8,0,3.14,90
120 DATA B2,5,10,15,-34,-9945990

This is what happens when this program is run. When the "READ™
statement is encountered, the effect is the same as an INPUT stetement.
But, instead of getting a number from the terminal, @& mumber is read
from the "DATA"™ statements.

The first time a2 number is needed for a READ, the first number in
the first DATA statement is returned. The second time one is needed,
the second mumber in the first DATA statement is returned. When the en-
tire contents of the first DATA statement have been read in this manner,
the second DATA statement will then be used. DATA is always read se-
quentially in this manner, and there may be any number of DATA statements
in your program.

The purpose of this program is to play a little game in which you
try to guess one of the numbers contained in the DATA statements. For
each guess that is typed in, we read through all of the numbers in the
DATA statements until we find cone that matches the guess.

If more values are read than there are numbers in the DATA state-
ments, an out of data (0D) error occurs., That is why in line 40 we check
to see if -999999 was read. This is not one of the numbers to be matched,
but is used as a flag to indicate that all of the date (possible correct
guesses) has been read. Therefore, if -999999 was read, we know that the
guess given was incorrect. : .

Before going back to line 10 for another guess, we need to make the
READ's begin with the first piece of data again. This is the function of
the "RESTORE". After the RESTORE is encountered, the next piece of data
read will be the first piece in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only
READ statements make use of the DATA statements in a program, and any
other time they are encountered during program execution they will be
ignored.

THE FOLLOWING INFORMATION APPLIES T0 THE 8K VERSION
OF BASIC ONLY

A list of characters is referred to as a "String". MITS, ALTAIR,
~and THIS IS A TEST are all strings. Like numeric variables, string
variables can be assigned specific values. String variables are distin-
guished from numeric variables by a "§" after the variable name.
For example, try the following:
A$="ALTAIR 8800O"
oK
PRINT A%
ALTAIR 8400

0K

7

In this example, we set the string variable A$ to the string value
YALTAIR 8800'. Note that we also enclesed the character siring te be as-
signed to A$ in quotes.

Now that we have set A$ to a string value, we can find out what the
iength of this value is (the number of characters it contains). We do
this as follows:

PRINT LEN({A$),LEN("MITS"}
1L 4

oK

The “LEN" function returns an integer equal to the number of chara-
cters in a string.

The numier of characters in a string expression may range from 0 to
255. A string which contains O characters is called the "NULLY string.
Before a string variable is set to & value in the program, it is initial-
ized to the mull string. Printing a null string on the terminal will
cause no characters to be printed, and the print head or cursor will not
be advanced to the next column. Try the following:

PRINT LEN(Q$);Q8;3
0 3

0K

Another Way 1o create the null string is: Q="
Setting & string variable to the null string can be used to free up
the string space used by a mon-null string variable.

Often it is desirable to access parts of a string and manipulate
them. Now that we have set A§ to “ALTAIR 88(00", we might want to print
out only the first six characters of A$. We would do so like this:

PRINT LEFTS(A$,6)
ALTAIR

oK

ULEFT$" is a string function which returns a striang compesed of the
leftmost N characters of its string argument. Here's another example:

FOR N=1 TO LEN(A$):PRINT LEFTS(A$,N):NEXT N
A

AL

ALT

ALTA

ALTAI

ALTAIR

ALTAIR

ALTAIR &

ALTAIR &b

J

J

ALTAIR &bl
ALTAIR 4800

oK

Since A§ has 11 characters, this leop will be executed with N=1,2,
3,...,10,11. The first time through only the first chatacter will be
printed, the second time the first two characters will be printed, etc.

There is another string function called "RIGHT$' which returns the
right N characters from a string expression. Try substituting RIGHTS$"
for “LEFT§" in the previous example and see what happens.

There is alsoc a string function which allows us to take characters
from the middle of a string. Try the following:

FOR N=1 TO LEN(A$):PRINT MID$ (A$,N]:NEXT N
ALTAIR 800
LTAIR aa00
TAIR 8800
AIR 8800

IR 8800

R 8800

8800

&800

800

DO

il

oK

MID$" returns a string starting at the Nth position of A$ to the
end (last character) of Af§. The first position of the string is posi-
tion 1 and the last possible position of a string is position 255.

Very often it is desirable to extract only the Nth character from
a string. This can be done by calling MID$ with three arguments. The
third argument specifies the number of characters to return.

For example:

FOR N=1 TO LEN(A$):PRINT MID§(A$,N,1),MID$(A$,N,2] :NEXT N
AL
#T

A
AL
IR
R

B
&8

~ a0
oo
0

oo o AHX> A =

<
Ea)

See the Reference Material for more details on the workings of
YLEFT$", “RIGHT$" and “MIDS".

Strings may also be concatenated (put or joined together) through
the use of the "+ operator. Try the following:

B$="M1TS"+” ||+A$
0K

PRINT B3

MITS ALTAIR 8800
oK

Concatenation is especially useful if you wish to take 2 string apart
and then put it back together with slight modifications. For instance:

C§=LEFT§{B$,4)+"-"+MIDS (B$,6,6)+""-"+RIGHTS (B}, 4)

oK

FRINT C%

MITS-ALTAIR-8800

oK
Sometimes it is desirable to convert a number to its string repre-

sentation and vice-versa. "VAL" and 'STR$" perform these functions.

Try the following:

STRINGE="567.8"

oK

PRINT VAL(STRING3)

8k7-8

oK
STRING$=5TR$(3.1415)

ok
PRINT STRING$, LEFT$ (STRINGS,5)
3-1415 3.14
QK
"STR$" can be used to perform formatted I/0 on numbers. You can
convert a number to a string and then use LLFT$, RIGHT§, MID$ and con-
catenation to reformat the number as desired.

"'STR$" can also be used to conveniently find out how many print
columins a number will take. For example:

PRINT LEN{STR$(3.157)}
b

|

0K

If you have an application where a4 user is typing in o yuestion such
as "WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FLET, OF HEIGHT 3.1
FEET?" you can use "VAL" to extract the numeric values 5.36 and 5.1 trom
the question. For further functions “CHR$" and “ASC" see Appendix K.

The following program sorts & list of string data and prints out
the sorted Iist., This program is very similar to the one givem earlier
for sorting a numeric list.

100 DIM A$(15):REM ALLOCATE SPACE FOR STRING MATRIX)

110 FOR I=1 TO 15:READ A$(I):NEXT I:REM READ IN STRINGS .

120 F=0:I=1:REM SET EXCHANGE FLAG TQ ZERQ AND SUBSCRIPT TC 1

130 IF A$(I)<=A$(I+1) THEN 180:REM DON'T EXCHANGE IF ELEMENTS
IN ORDER

140 T$=A5(I+1):REM USE T$ TO SAVE AS(I+1)

150 A$(I+1)=A$ (1) :REM EXCHANGE TWO CONSECUTIVE ELEMENTS

160 A$(I)=T$:

170 F=1:REM FLAG THAT WE EXCHANGED TWO ELEMENTS

180 I=I+1: IF I<15 GOTOQ 130

185 REM ONCE WE HAVE MADE A PASS THRU ALL ELEMENTS, CHECK

187 REM TQ SEE IF WE EXCHANGED ANY., IF NOT, DONE SCRTING.

180 IF F THEN 120:REM EQUIVALENT TO IF F<»0 THEN 120

200 FOR I=1 TQ 15:PRINT A$(I1Y:NEXT I: REM PRINT SORTED LIST

210 REM STRING DATA FOLLOWS

220 DATA APPLE,DOG,CAT,MITS,ALTAIR,RANDGOM

230 DATA MONDAY,""#**ANSWER*#*' ' FOQ"

240 DATA COMPUTER, FOD,ELP,MILWAUKEE,SEATTLE, ALBUQUERQUE

2

Ft4

- BASIC LANGUAGE

N
REFERENCIE

P — ——]

MATERIAL

L

COMMANDS

A command is usually given after BASIC has typed CK,
the "Command Level™.

Commands may be used as program statements,

This is called

Certain

commands, such as LIST, NEW and CLOAD will terminate program execution

PURPOSE/USE

*(SEE PAGE 42 FOR EXAMPLES AND EXPLANATION)

when they finish.

NAME EXAMPLE

CLEAR

LIST LIST
LIST 100

MHULL NULL 32

RUN RUN

Lists current program

optionally starting at specified line.
List can be control-C'd (BASIC will

finish listing the current line)

(Null command only in 8K version, but
paragraph applicable to 4K version also)
Sets the number of null (ASCIT Q) charac-
ters printed after a carriage return/line
feed. The number of nuils printed may

be set from § te 71. This is a must for
hardcopy terminals that require a delay
after a CRLFY It is necessary to set the
number of nulls typed on CRLF to 0 before
a paper tape of a program is read in from
a Teletype (TELETYPE is a registered
trademark of the TELETYPR CORPORATION).
In the BK version, use the null command

to set the number of nulls to zero.

In

the 4K version, this is accomplished by
patching location 46 octal to contain the

number of nulls to be typed plus 1.

(Depositing a 1 in location 46 would set

the number of nulls typed to zerc.)

When

you punch a paper tape of a program using
the list command, null should be set »=3
for 10 CPS terminals, »=6 for 30 CPS ter-
mipals. When not making a tape, we recom-
mend that you use a null setting of 0 or 1
for Teletypes, and 2 or 3 for hard copy
30 CP5 terminals. A setting of 0 will
work with'Teletype compatible CRT's.

Starts execution of the program currently
in memory at the lowest numbered state-
ment. Run deletes all variables {does a
CLEAR} and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTD statement to start
execution of your program at the desired

line.

L]

*CRLF=carriage return/line feed

J

NEW

CONT

RUN 200

NEL
THE FOLLOWING COMMANDS ARE

CONT

(8K version only} optionally starting
at the specified line number

Deletes current program and all variables
IN THE 8K VERSION ONLY

Continues program execution after a
control/C is typed or a STOP statement

is executed. You cannot continue after
any error, after modifying your program,
or before your program has been run.

One of the main purposes of CONT is de-
bugging. Suppose at some point after
running your program, nothing is printed.
This may be because your program ls per-
forming some time consuming calculation,
but it may be because you have fallen

into an "infinite loop". An infinite loop
is a series of BASIC statements from
which there is no escape. The ALTAIR will
keep executing the series of statements
over and over, until vou lntervene or
until power to the ALTAIR is cut off.

If you suspect your program is iIn an
infinite loop, type in a control/C. In
the 8K version, the line number of the

" statement BASIC was executing will be

typed out. After BASIC has typed out ¢K,
you can use FRINT to type out some of the
values of your variables. After examining
these values you may become satisfied that
your program is functioning correctly.

You should then type in CONT to continue
executing your program where it left off,
or type a direct GOTO statement to resume
execution of the program at a different
line. You could also use assignment (LET)
statements to set some of your variables
to different values. Remember, if you
control/C a program and expect to continue
it later, you must not get any errors or
type in any new program lines. If you

do, you won't be able to continue and will
get a "CN" (continue not) error. It is
impossible to continue a direct command.
CONT always resumes execution at the next
statement to be executed in your program
when contrel/C was typed.

25

THE FOLLOWING TWO CUMMANDS ARE AVAILABLE IK THE 8K CASSETTE

CLOAD CLOAD P

CSAVE CSAVE P

OPERATORS

SYMBOL SAMPLE STATEMENT

VERSION ONLY

Loads the program named P from the
cassette tape. A NEW command is auto-
matically done before the CLOAD com-
mand is executed. When done, the GLOAD
will type out OK as usual. The one-
character program designator may be any
printing character, CSAVE and CLOAD
use I/0 ports 6 § 7.

See Appendix I for more information.

Saves on cassette tape the current pro-
gram in the ALTAIR's memory. The pro-
gram in memory is left unchanged. More
than one program may be stored on cassette
using this command. CSAVL and CLOAD use
I/0 ports 6 & 7.

See Appendix I for more information

PURPQSE/USE

= A=100
LET Z=2.5

- B=-A

t 130 PRINT X+3
{usually a shift/K}

* 148 X=R*(B*D)

/ 150 PRINT %/3.3
+ L0 Z=R+T+d

- 170 J=100-I

Assigns a value to a variable
The LET is optional

Negation. Note that 0-A is subtraction,

while -A4 is negation.

Exponentiation (8K version)

(equal to X*X*X in the sample statement)
0+0=1 0 to any other power = 0

A+B, with A negative and B not an integer
gives an FC error,

Multiplication

Division

Addition

Subtraction

RULES FOR EVALUATING EXPRESSIONS:
1) Operations of higher precedence are performed before opera-
tions of lower precedence. This means the multiplication and
divisions are performed before additions and subtractions. As
an example, 2+10/5 equals 4, not 2.4. When operations of equal
precedence are found in a formula, the left hand one is executed
first: 6-3+5=8, not -2.

i

\J

2) The order in which operations are performed can always be
specified explicitly through the use of parentheses. For in-
stance, to add 5 to 3 and then divide that by 4, we would use
(5+3)/4, which equals 2. If instead we had used 5+3/4, we
would get 5.75 as a result (5 plus 3/4),

The precedence of operators used in evaluating expressions is as
follows, in order beginning with the highest precedence:
(Note: (perators listed on the same line have the same precedence.)

1} FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST

2) + EXPONENTIATION (8K VERSION ONLY)
3) NEGATION -X WHERE X MHAY BE A FORMULA
4y * 7 MULTIPLICATION AND DIVISION
5) + - ADDITION AND SLBTRACTION
L) RELATIONAL OPERATORS: = EdUAL
{equal precedence for <> NOT EQUAL
all stxt < LESS THAN

> GREATER THAN
<= LESS THAN OR ERUAL
»= GREATER THAN OR EQUAL

(6K VERSION ONLY) (These 3 below are Logieal Uperatora)

?) neT LOGICAL AND BITWISE “NOT"
LIKE NEGATION, NOT TAKES ONLY THE
FORMULA TO ITS RIGHT AS AN ARGUMENT

8) AND LOGICAL AND BITWISE "AND"
9) R LOGICAL AND BITWISE "OR

In the 4K version of BASIC, relaticnal operators can only be used
once in an IF statement. However, in the 8K version a relational ex-
pression can be used as part of any expression.

Relational Operator expressions will always have a value of True (-1}
or a value of False (0). Therefore, (5«4)=0, (5=5)=-1, (4>5)}=0, (4<5)=-1,
oatc.)

The THEN clause of an IF statement is executed whenever the formula
after the IF is not equal to 0. That is to say, IF X THEN... is equivalent
te IF X<»>0 THEN... .

2

SYMBOL SAMPLE STATEMENT PURPOSE/USE

= 10 IF A=15 THEN 4D Expression Equals Lxpression

<> 70 IF A<>0 THEN 5 Expression Does Not Lgual Expression
> 30 IF B»100 THEN 8 Expression Greater Than Expression

< 1b0 IF B<2 THEN 10 Expression Less Than Expression

<m, =< L0 IF 100<=8+C THEN 10 Expression Less Than Or Equal

Te Expression

rm, = 190 IF @=>R THEN 50 Expression Greater Than Or Equal
To Expression

AND 2 IF A<5 AND B<2 THEN ? (8K Version oniy) If expression 1
{A<5) AND expression 2 (B<2} are both
true, then branch to line 7

R IF A<l OR B<c THEN 2 {8K Version only) 1f either expres-
sion 1 {A<l) OR expression 2 (B<Z) is
true, then branch to line 2

NOT IF NOT @3 THEN 4 (9K Version only) If expression
"HOT Q3" is true [because Q3 is
false), then branch to line 4
Note: NOT -1=0 (NOT trug=false)

AND, OR and NOT can be used feor bit manipulation, and for performing
boolean operations.

These three operators convert their arguments to sixteen bit, signed
two's, complement integers in the range -32768 to +32767. They then per-
form the specified logical opgration on them and return a result within
the same range. If the arguments are not in this range, an "FC" error
results.

The operations are performed in bitwise fashion, this means that each
bit of the result is obtained by examining the bit in the same position
for each argument.

The following truth table shows the logical relationship between bits:

OPEFATOR. ARG. 1 ARG. 2 RESULT
AND 1 1 1
a L 3]
1 0 1
1] 1] 0
{eont.)

2

OPERATOR ARG.

OR I
1

g

a

NOT 1
)

EXAMPLES:

ARG. 2 RESULT
i 1
o 1L
L L
g a

[l |

(In all of the evampiles below, leading zerves on bimary

vumbera are not ghoun.)

b3 AND 1lk=lb

15 AND 24=24

-1 AND B=&

4 AND E=0

4 OR E=b

10 oR 10=10

-1 0R -2=-]

NOT D=~

NOT X

NOT l=-2

Since 63 equals binary 111111 and 16 equals bimary
10000, the result of the AND is binary 10000 or 16.

15 equals binary 1111 and 14 equals binary 1110, so
15 AND 14 equals bipary 1110 or 14.

-1 equals binary 1111111111111111 and B equals binary
1000, so the result is binary 1000 or 8 decimal.

4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

Binary 100 OR'd with binary 10 eguals binary 114, or
6 decimal.

Binary 1010 OR'd with binary 1010 equals bipary 1010,
or 10 decimal.

Bipary 1111111111111111 (-1) OR'd with binary
1111111111111110 (-2) equals binary 1111111113111111,
ar -1.

The bit complement of binary 0 to 16 piaces 1s sixteen
ones (1111111111111111) or -1. Also NOT -1=0.

NOT X is equal to -(x+l). This is because to form the
sixteen bit twe's complement of the number, you take the
bit (one's) complement and add one.

The sixteen bit complement of 1 1s 1111111111111110,
which is equal to -(I1+1) or -Z.

A typical use of the bitwise operators is to test bits set in the
ALTAIR's inport perts which reflect the state of some external device.

Bit position 7 is the most significant bit of a byte, while position
0 is the least significant.

For instance, suppose bit 1 of I/0 port 5 is O when the door to Room
X is closed, and 1 if the door is open. The following program will print
"Intruder Alert" if the door is opened:

10 IF NOT (INP(5) AND 2) THEM 1D This line will execute over
and over until bit 1 (mask-
ed or selected by the 2) be-
comes a 1. When that happens,
we go to line 20 .

20 PRINT "INTRUDER ALERT" Line 20 will output "INTRUDER
ALERT™,

However, we can replace statement 10 with a "WAIT" statement, which
has exactly the same effect.

10 WAIT 5.2 This line delays the execution of the next
statement in the program until bit 1 of
I[/0 port 5 becomes 1. The WAIT is much
faster than the equivalent IF statement
and also takes less bytes of program
storage.

The ALTAIR's sense switches may also be used as an input device by
the INP function. The program below prints out any changes in the sense
switches,

10 A=300:REM SET A& T A VALUE THAT WILL FORCE PRINTING
<0 J=INP(255):IF J=A THEN 20
30 PRINT J;:4=J:G0T¢ 20

The following is another useful way of using relational operators:

125 A=-(B>{}*BE-(B<={)*C This statement will set the variable
A to MAX{B,C) = the larger of the two
variables B and C.

STATEMENTS

Note: In the following description of atatemente, an avqument of V
or ¥ denotes a numerice variable, ¥ denotes a numeris exprepsion, i de-
notes a string expression and an I or J denotes an expreseion that fe
truncated to an integer before the statement ie emecuted., Trumcation
means that any fractional part of the number 1o lost, e.g. 3.9 becomes
3, 4,01 becomas 4.

An axpression ie a eeries of variables, operators, function calls

and constants whioh after the operatione and Funetion ocalls ave performed
uging the precedence rules, evaluatee to a ruymeric or atring value.

4 constant ie either a number (3.14) or a etring literal ("Foo").

£l

NAME

DATA

DEF

I

10 DATA 143.-1E3..04

20 DATA " FOO",Z00

100 DEF FNA(V)=V/B+C

110 Z=FNA(3)

113 DIN A{3},B{10)

DURPGSE/USH

Specifies data, read from left to right.
Information appears in data statements
in the same order as it will be read in
the program. IN THE 4K VERSION OF BASIC,
DATA STATEMENTS MUST BE THE FIRST STATE-
MENTS ON A LINE. Expressions may also
appear in the 4K version data statements.

(8K Veraion) B5Strings may be read from
DATA statements, If you want the string
to contain leading spaces (blanks), colons
(:} or commas {,], you must enclose the
string in double quotes. It is lmpossible
to have a double quote within string data
or a string literal. ("MITS"" is illegal}

{8K Veraion) The user can define functions
like the built-in functions (SQR, SGK, ABS,
etc,) through the use of the DEF statement.
The name of the function is "FN'' followed
by any legal variable name, for example:
FNX, FNJ7, FNKO, FNRZ, User defined
functions are restricted to one line., A
function may be defined to be any expres-
5ion, but may only have one argument. In
the example B § C are variables that are
used in the program. Executing the DEF
statement defines the function. User de-
fined functions can be redefined by exe-
cuting ancther DEF statement for the same
function., User defined string functions
are not allowed, "V!" is called the dummy
variable.

Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

Allocates space for matrices. All matrix
elements are set to zero by the DIM state-
ment.

114 DIM R3(5,5),D6(2,2,2) (8K Versicn) Matrices can have more

115 DIN @L(N),Z(2*I)

than one dimension. Up to 255 dimen-
sions are allowed, but due to the re-
striction of 72 characters per line
the practical maximum is about 34
dimensions.
Matrices can be dimensioned dynamically
during program execution. If a marrix
is not explicitly dimensioned with a DIM
statement, it is assumed to bhe & single
dimensioned matrix of whose single subscript

A

LL7? A(B)=4

END 999 END

may rvange from 0 to 10 (eleven elements).
If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(10)
had been executed previous to the execu-
tion of line 117. All subscripts start
at zero (0), which mesns that DIM X(100)
really allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (see STOP)
CONT after an END statement causes exe-
cution to resume at the statement after
the END statement. END can be used any-
where in the program, and is optional.

FCR 300 FOR ¥el TO 9.3 STEP +& (see NEXT statement} V is set

3ud FOR v=1 TO 9.3

equal to the value of the expres-
sion following the equal sign, in
this case 1. This value is called
the initial value. Then the state-
ments between FOR and NEXT are
executed. The final value is the
value of the expression follewing
the TO. The step is the value of
the expression following STEP.

When the NEXT statement is encoun-
tered, the step is added to the
variable.

If no STEP was specified, it is
assumed to be one., If the step is
positive and the new value of the
variable is <= the final value (9.3
in this example), or the step value
is negative and the new value of
the variable is =» the final value,
then the first statement following
the FOR statement is executed.
Otherwise, the statement following
the NEXT statement is executed.

All FOR loops execute the statements
between the FOR and the NEXT at
least once, even in cases like

FOR V=1 TO 0.

315 FOR W=LO*N T¢ 3.4/Q STEP SGR{R) Note that expressions

{formulas) may be used for the in-
itial, final and step values in a
FOR loop. The values of the ex-
pressions are computed only once,
before the body of the FOR....NEXT
loop is executed,

n

GOTO
GoSLd

IF...GOTO

IF...THEN

320 FOR ¥=9 T¢ 1 STEFP -1 When the statement after the KEXT
is executed, the loop variable is
never equal to the final value,
but is equal to whatever value
caused the FOR...NEXT loop to ter-
minate. The statements between
the FOR and its corresponding NEXT
in both examples above (310 § 320}
would be executed 9 times.

330 FOR W=1 T¢ 10: FOR W=L T¢ :NEXT L:NEXT W Errer: do not
use nested FOR...NEXT laops with
the same index variable.

FOR locp nesting is limited only
by the available memory.
(see Appendix D)

50 GOTO 100 Branches to the statement specified.

10 GOSUB 510 Branches to the specified statement (910)
until & RETURN is encountered; whan a
branch is then made to the statement
after the GOSUB. GOSUB nesting is limited
only by the avallable memory.

(see Appendix D)

32 IF N<=¥Y+23.4 GOTO 92 (8K Version) Equivalent to IF...THEN,
except that IF...GOTC must be followed
by &4 line number, while IF...THEN can
be followed by either a line number
or another statement.

IF X<10 THEN 5 Branches to specified statement if the
relatien is True.
20 IF X<O THEN PRINT "X LESI THAN O" Executes all of the

statements on the remainder of the line
after the THEN if the relation is True.
25 IF X=5 THEN E{:Z=A WARNING. The "Z=A" will never be
executed because if the relation is
true, BASIC will branch to line 50.
If the relation is false Basic will
proceed to the line after line 25.
2k IF X<0 THEN PRINT "ERROR, X NEGATIVE™: GOTO 35D
In this example, if X is less than 0,
the PRINT statement will be executed
and then the GOTQ statement will
branch to line 350, If the X was 0 or
positive, BASIC will proceed to
execute the lines after line 26.

n

INPUT

LET

NEXT

ON. « . GOTO

3 INPUT V,u.ue

5 INPUT "WALUE™;V

00 LET W=X
310 veh.L

340 NEXT ¥
345 NEXT

350 NEXT V.u

Requests data from the terminal {tc be
typed in). Lach value must be separated
from the preceeding value by a comma (,).
The last value typed should be followed
by a carriage return. A ¥ iz typed as
a prompt character. In the 3K version, a
value typed in as a response to an INPUT
statement may be a formula, such as
2*5IN(.16)1-3. However, in the 8K versiom,
only constants may be typed in as a re-
sponse to an INPUT statement, such as
4.5E-3 or "CAT". If more data was re-
quested in an INPUT statement than was
typed in, a "7 is printed and the rest
of the data should be typed in. If more
data was typed in than was requested,

the extra data will be ignored. The BK
version will print the warning “LEXTRA
IGNORED'" when this happens. The 4K ver-
sion will not print a warning message.
{8F Veraion) Strings must be input in the
same format as they are specificd in DATA
statements.

{8K Version) Optionally types a prompt
string ("VALUE") before requesting data
from the terminal. If cgrriage return

is typed to ap input statement, BASIC
returns tc command mode. Typing CONT
after an INPUT command has been inter-
rupted will cause execution to resume at
the INPUT statement.

Assigns a value to 2 variable.
MLET" is optional.

Marks the end of a FOR loop.

(8K Version) 1f no variable is given,
matches the most recent FOR loop.

(8K Version) A single REXT may be used
to match multiple FOR statements.
Equivalent to NEXT V:NEXT W.

100 N I 64TO 10,28,30,40 (8K Versionm! Branches to the line

indicated by the I'th number after
the GOTO. That is:

IF I=1, THEN GOTD LINE L0

IF 1=2, THEN GOTC LINE 20

iF I=3, THEN GOTO LINE 30

IF I=4, THEN GOTO LINE 40.

M

If I=0 or I attempts to Select a non.-
existent line (»=5 in this case), the
statement after the ON statement is
executed. However, if I is »255 or
<0, an FC error message will result.
As many line numbers as will fit on
a line can follow an ON...GOTOQ.

105 ON SGM(X)+2 GOTO 40,50,E0
This statement will branch to line 40
if the expression X is less than zero,
to line 50 if it equals zero, and to
line 60 if it is greater than zero,

ON. . .GOSUB
110 ON I GOSUB 50,60 (8K Version) Identical te “ON...GOTOQ",
except that a subroutine call (GOSUB) is
executed instead of a GOTO. RETURN from
the GOSUB branches to the statement after
the ON...GOSUB.

ouT 355 oUT I,4J {8K Vension) Sends the byte J to the
output port I. Both I § J must be »=0
and <=255.

POKE 357 PCKE I.d {8K Version! The POKE statement stores

the byte specified by its second argu-
ment (J) into the location given by its
first argument (I). The byte to be stored
must be =>0 and <=255, or an FC error will
occur. The address {I} must be =»0 and
«=32767, or an FC error will result.
Careless use of the POKE statement will
probably cause you to "poke™ BASIC to
death; that is, the machine will hang, and
you will have to reload BASIC and will
lose any program you had typed in. A
POKE te a non-existent memory lecation is
harmless. COne of the main uses of POKE

is to pass arguments to machine language
subreutines. (see Appendix J) You could
also use PEEK and POKE to write a memory
diagnostic or an assembler in BASIC.

PRINT 360 PRINT %,Y:Z Prints the value of expressions on the
370 PRINT terminal. If the 1list of values to be
340 PRINT X,Y; printed out does not end with a comma (,)
390 PRINT "WALUE IS";A or a semicolon {;}, then a carriage
40D PRINT AgE,B, return/line feed is executed after all the

values have been printed. Strings enclosed
in guotes (') may alsc be printed. If a
semicolon separates two expressions in the
list, thelr values are printed next to
each other, If a comma appears after an

3

expression in the list, and the print head
is at print position 56 or more, then a
carriage return/line feed is executed.
If the print head is before print position
536, then spaces are printed until the car-
riage is at the beginning of the next 14
column field (until the carriage is at
column 14, 28, 42 or 56...). If there is no
list of expressions to be printed, as in
line 370 of the examples, then a carriage
return/line feed is executed.

410 PRINT MID®(A%,2); (8K Version) String expressions may be
printed.

READ Y50 READ Vil Reads data into specified variables from
@ DATA statement. The first piece of data
read will be the first piece of data 1ist-
ed in the first DATA statement of the pro-
gram. The second piece of data read will
be the second piece listed in the first
DATA statement, and s0 on. When all of
the data have been read from the first
DATA statement, the next piece of data to
be read will be the first piece listed in
the second DATA statement of the program.
Attempting to read more data than there
is in all the DATA statements in a pro-
gram will cause an OD (out of data) error.
In the 4K version, an SN error from a READ
statement can mean the data it was at-
tempting to read from a DATA statement was.
improperly formatted. In the 8K version,
the line number given in the SN error will
refer to the line number where the error
actually is located.

REM SO0 REM NOW SET ¥=0 Allows the programmer to put comments in
his program. REM statements are not exe-
cuted, but can be branched to. A REM
statement is terminated by end of line,
but not by a ":",

505 REM SET ¥=0: V=0 In this case the V=0 will never be exe-
cuted by BASIC,
50b V=0: REM SET V=l In this case V=0 will be executed

RESTORE S10 RESTORE Aliows the re-reading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in
the first DATA statement of the program.
The second piece of data read will be
the second piece listed in the first DATA
statement, and 50 on 25 in a normal
READ operatiom,

3

RETURN

§ToP

WAIT

4K _INTRINSIC FUNCTIONS

S0 RETURN

9000 STOP

405 WAIT I,J,K
80k WALT I,J

ABS (X)

INT(X)

RNI(X)

120 PRINT ABS (X}

140 PRINT INT(X)

1?0 PRINT RND(X)

Causes a subroutine to return to the
statement atter the most recently exe-
cuted GOSUB.

Causes a program to stop executlon and te
enter command mode.

{8K Versicom) Prints BREAK IN LINE 9000.
(as per this example) CONT after a STOP
branches to the statement following the
STOP.

{8% Version) This statement reads the
status of input port I, exclusive OR's

K with the status, and then AND's the re-
sult with J until a non-zero result is
obtained. Executicn of the program con-
tinues at the statement following the
WAIT statement. If the WAIT statement
only has two arguments, K is assumed to
be zeroc. If you are wailting for a bit
to become zero, there should be a cone in
the corresponding position of K, I, J
and K must be =»0 and <=255.

Gives the absolute value of the expression
X. ABS returns X if X==0, -X otherwise.

Returns the largest integer less than or
equal to its argument X. For example:
INT(.23)=0, INT{7)=7, INT(-.1}=-1, INT
(-2)= -2, INT(1.1)=1.
The following would round X to D decimal
places:

INT(X*10+D+.5) /101D

Generates a random number between O and 1.

The argument X controls the generation of

random numbers as follows:
X<0 starts 4 new sequence of random
numbers using X. Calling BRND with
the same ¥ starts the same random
number sequence., X=0 gives the last
rapdom number generated, Repeated
calls to RND(0) will always return
the same randem pumber. X>0 gener-
ates a new random number between 0
and 1.
Nete that (B-A)*RND(1}4A will gener-
ate a random number between A § B.

3

SGN{X]
SIN(X)

SRR(X)

TAB(I)

USR(I}

8K FUNCTIONS

ATN(X)

COS(X)

EXP(X)

FRE(X)

INP(I)

230 PRINT SGN(X)
1190 PRINT SIN(X)

180 PRINT SdR{X)

2l PRINT TAB(I}

cl0 PRINT USR(I}

Gives 1 if X»0, 0 if X=0, and -1 if X<0.

Gives the sine of the expression X. X is
interpreted as being in radians. Note:
CO5 (X)=SIN(X+3.14159/2) and that 1 Radian
=180/P1 degrees=57.2958 degrees; so that
the sine of X degrees= SIN({X/57.2958}.

Gives the square root of the argument ¥.
An FC error will occur if X is less than
zero,

Spaces to the specified print position
{column) on the terminal. May be used
only in PRINT statements, Zerc is the
leftmost column on the terminal, 71 the
rightmost. If the carriage is beyond
position I, then no printing is done. I
must be =>0 and <=255.

Calls the user's machine language sub-
routine with the argument I. See POKE,
PEEK and Appendix J.

fIneludes all those listed wnder 4K INTRINSIC FUNCTIONS

pius the foliowing in addition.)

2.0 PRINT ATN(X)

200 PRINT COS(X)

150 PRINT EXP(X)

2?0 PRINT FRE(O)

2bS PRINT INP(I)

Glves the arctangent of the argument X,
The result is returned in radians and
ranges from -PI/2 to PL/2. (PI/2=1.5708)

Gives the cosine of the expression X. X
is interpreted as Deing in radianms.

Gives the constant "E' (2.71828) raised
to the power X. (E+X) The maximum
argument that can be passed to EXP with-
out overflow occuring is §7.336%

Gives tie number of memory bytes currently
unused by BASIC, Memory allocated for
STRING space is not included in the count
returned by FRE. To find the number of
free bytes in STRING space, call FRE with
a STRING argument. (see FRE under STRING
FUNCTIONS)

Gives the status of {reads a byte from)
input port I. Result is =>0 and <=255.

J

LOGIX) LLD PRINT LOGIX) Gives the natural (Base) Jogarithn of

its argument X. l'o obtain the Base ¥

logarithm of X use the formula LOG(X}/LOG(Y).

Example: The base 10 (common) log of
7 o= LOG(7)/ LOG{10).

PEEK 3SL PRINT PEEK(I) The PEEK function returns the contents of
memory address I. The value returned will
be =>0 and «=255. If I is >32767 or <0,
an FC error will occur. An attempt to
read & non-existent memory address will
return 255. (see POKE statement)

POS(I) 2b0 PRINT PCE(I) Gives the current position of the terminal
print head (or cursor on CRT's). The
leftmost character position on the terminal
is position zerc and the rightmost is 71.

SPC{I) 258 PRINT SPC(IJ Prints I space (or blank) characters on
the terminal. May be used culy in a
PRINT statement. X must be =»>(} and <=255
or an FC error will result.

TAN{X) 200 PRINT TAN(X) Gives the tangent of the expression X.

X is interpreted as being in radians.
STRINGS (8K Version Only)

1) A string may be from 0 to 255 characters in length. All string
variables end in a dollar sign { §); for example, A§, B9S, K§,
HELLOS.

2) String matrices may be dimensioned exactly like nimeric matrices.
For instance, DIM A$(10,10} creates & string matrix of 121 elements,
eleven Tows by eleven columns (Trows 0 to 10 and columns 0 to 10).
Each string matrix element is a complete string, which can be up to
255 characters in length.

33 The total number of characters in use in strings at any time during
program execution cannot execeed the amount of string space, or an
05 error will result. At initialization, you sheuld set up string
space 5¢ that it can contain the maximum number of characters which
can be used by strings at any one time during program execution.

NAME EXAMPLE PURPOSE/USE

DINM 25 IIM A%(10,10) Allocates space for a pointer and length

for each element of a string matrix. No
string space 1s allocated. See Appendix D.

£l

LET 27 LET AS="FOQ"+y%

+ 30 LET Zs=Ré+as

INPUT 40 INPUT X%

READ 50 READ X%

PRINT b0 PRINT X%
70 PRINT '"FQO''+A%

Assigns the value of a string cxpression
to a string variable. LET is optional.

String comparison operators. Comparison
is made on the basis of ASCII codes, a
character at a time until a difference
is found. If during the comparison of
two strings, the end of one is reached,
the shorter string is considered smaller.
Note that "A " is greater than "A" since
trailing spaces are significant.

String concatentation. The resulting
string must be less than 256 characters
in length or an LS error will occur.

Reads a string from the user's terminal.
String does not have to be quoted; but if
not, leading blanks will be ignored and
the string will be terminated on a “," or
":" character,

Reads a string from DATA statements within
the program. Strings do not have ta be
gquoted; but if they are not, they are
termninated on a *,'" or '":" character or
end of line and leading spaces are ignored.
See DATA for the format of string data.

Prints the string expression on the user's
terminal.

STRING FUNCTIONS (8K Vereion Only)

ASC{Xs) 30D PRINT ASC(X%)

CHR%(I) 275 PRINT CHR&(I)

FRE(X¥) 272 PRINT FRE('"")

LEFTS(X%,I)
310 PRINT LEFTS(X%,I)

Returns the ASCII numeric value of the
first character of the string expression
X3, See Appendix K for an ASCII /number
conversion table. An FC error will occur
if X§ is the null string.

Returns 2 one character string whose single
character is the ASCII equivalent of the
value of the argument (I) which must be
=>0 and <=255., See Appendix K.

When called with a string argument, FRE
gives the number of free bytes in string
space.

Gives the leftmost I characters of the
string expression X§. If I<=0 or »255
an FC error occurs.

0

LEN(X%) 220 PRINT LEN{X%) Gives the length of the string expression
X$ in characters (bytes). Non-printing
characters and blanks are counted as part
of the length.

MID®(%w,I) MID$ called with two arguments returns
330 PRINT MID#(X%,I} characters from the string expression X§
starting at character position I, If
I>LEN(I$), then MID§ returns a nul] (zero
length) string. If I<=0 or »255, an FC
8Tror Occurs.
MID%(X$,1,d) MID$ called with three arguments returns
340 PRINT MIDS (X&,I,4) a string expression composed of the
characters of the string expression X§
starting at the Ith character for J char-
acters. If [>LEN(X$), MID$ returns a null
string, If I or J <=0 or »255, an IC
error occurs. If J specifies more char-
acters than are left in the string, all
characters from the Ith on are returned.

RIGHTS (X%, 1) Gives the rightmost [characters of
320 PRINT RIGHT#(X%,1) the string expression X$. When T<=0
or »255 an FC error will cccur. If
I>=LEN{X$) then RIGHTS returns all of
x$.

STR&(X} 290 PRINT STR&(X) Gives a string which is the character
representation of the numeric expression
X. For instance, STR§(3.1}=" 3,1".

VAL (X%) 280 PRINT WAL (X%) Returns the string expression X$ converted
to a number. For instance, VAL{"3.1")=3.1.
If the first non-space character of the
string is net a plus (+) or minus (-) sign,
a digit or a decimal point (.) then zerc
will be returned.

SPECIAL CHARACTERS

CHARAGTER ust

@ Erases current line being typed, and types a carriage
return/line feed. An "&" is usually a shift/P.

+ {buckarrow or underiine) Erases last character typed.

If no more characters are left on the line, types a
carriage return/line feed. "+ is usually a shift/0.

4

CARRIAGL RETURN A carringe return must end every line typed in., Re- _)

turns print head or CRI cursor to the Tirst position
(lefwmost) on line. A line feed is always executed
after 3 carriage return.

CONTRGL/C Interrupts execution of a program or a list command.

Control/C has effect when a statement finishes exe-
cution, or in the case of interrupting a LIST cem-
mand, when a complete line has finished printing. In
both cases & return is made to BASIC's command level
and 0K is typed.

{6K Version) Prints "BREAK IN LINE XXXX" , where
XXXX 1is the line number of the next statement to

be executed.

(colon} A colon is used to separate statements on a line.
Colons may be used in direct and indirect statements.
The only limit on the number of statements per line
is the line length. It is net possible ta GOTQ or
GOSUB to the middle of a line.

{8X Version Only)

CONTROL/C Typing a Contrel/0 once causes BASIC to suppress all

1}

output until a return is made to command level, an
input statement is encountered, another contral/0 is ’
typed, or an error occurs.

Question marks are equivalent to PRINT. For instance,
? 242 is equivalent to PRINT 2+2. Question marks can
alsec be used in indirect statements. 10 ? X, when
listed will be typed as 10 PRINT X,

MISCELLANEOUS

To read in a paper tape with a program on it (8K Version], type a
contrel/0 and feed in tape. There will be no printing as the tape

is read in. Type control/0 again when the tape is through.
Alternatively, set nulls=0 and feed in the paper tape, and when done
reset nulls to the appropriate setting for your terminal.

Each line must be followed by two rubouts, or any other non-printing
character. If there are lines without line numbers {direct commands)
the ALTAIR will fall behind the input coming from paper tape, so
this in not recommending. '

Using null in this fashion will produce a listing of your tape in
the 8K version (use control/0 method if you don't want a listing).
The null method is the only way to read in a tape in the 4K version.

To read in a paper tape of a program in the 4K version, set the
number of nulls typed on carriage return/line feed to zerc by patch- \.)
ing location 46 (octal) to be a 1. Feed in the paper tape. When

42

2)

3)

4}

the tape has finished reading, stop the CPU and repatch location 46
to be the appropriate number of null characters (usually 0, so de-

posit a 1). When the tape is finished, BASIC will print SN ERRCR

because of the "QK" at the end of the tape.

To punch a paper tape of a program, set the number of nulls te 3 for
110 BAUD terminals (Teletypes} and 6 for 300 BAUD terminals. Thern,
type LIST; but, do not type a carriage return.

Now, turn on the terminal's paper tape punch. Put the terminal on
local and hold down the Repeat, Control, Shifr and P keys at the same
time, Stop after you have punched about a 6 to 8 inch leader of
muils. These nulls will be ignored by BASIC when the paper tape is
read in. Put the terminal back on line.

Now hit carriage return. After the program has finished punching,
put some trailer on the paper tape by helding down the same four
keys as before, with the terminal on local. After you have punched
about & six inch trailer, tear off the paper tape and save for

later use as desired.

Restarting BASIC at location zero (by toggling STOP, Examine loca-
tion 0, and RUN) will cause BASIC te return to command level and
type "OK". However, typing Contrcl/C is preferred because Control/
C is guaranteed not to leave garbage on the stack and in variables,
and a Contrel ('d program may be continued. (see CONT command}

The maximum line length is 72 characters®™ If you attempt to type too
many characters inte a line, a bell (ASCII 7) is executed, and the
character you typed in will not be echeoed. At this point you can
either type backarrow to delete part of the ling, or at-sign to delete
thewhole line. The character you typed which caused BASIC to type
the bell is not inserted in the line as it occupies the character
position one beyond the end of the line.

*CLEAR CLEAR Delstes all variables.

CLEAR X (8K Version) Deletes all variables. When
used with an argument "X", sets the amount
of space to be allocated for use by string
variables to the number. indicated by its
argument. “X'".

10 CLEAR 50 (8K Version) Same as above; but, may be used
at the beginning of & program to set the exact
amount of string space needed, leaving a maxi-
mum amount of memory for the program itself.

NOTE: If no argument is given, the string
space is set at 200 by default. An OM error
will cccur if an attempt is made to alleocate
more string space than there is available

MEMGTY .

*For inputting only.

L

44

APPENDIX A

HOW TO LOAD BASIC

When the ALTAIR is first turned on, there is random garbage in its
memoTy. BASIC is supplied on a paper tape or audio cassette. Somehow
the information on the paper tape or cassette must be transfered into the
computer. Pregrams that perform this typs of information transfer are
called loaders.

Since initially there is nothing of use in memory; you must toggle
in, using the switches on the front panel, a 20 instruction bootstrap
loader. This loader will then load BASIC.

To load BASIC follow these steps:

1} Turn the ALTAIR on.
2) Raise the STOP switch and RESET switch simultaneously.
3 Turn your terminal (such as a Teletype) to LINE.

Because the instructions must be toggled in via the switches on the
front panel, it is rather inconvenient to specify the positions of each .
switch as "up" or "down". Therefore, the switches are arranged in groups
of 3 as indicated by the broken lines below switches 0 through 15. To
specify the positions of each switch, we use the numbers 0 through 7 as
shown below:

3 SWITCH GROUP

QCTAL
LEFTMOST MIDDLE RIGHTMOST NIMBER
Down Dawn Down 0
Down Down Up 1
Down Up Down 2
Down Up Up 3
Up Down Down 4
Up Dawn Up 5
Up Up Down 6
Up up Up 7

So, to put the octal number 315 in switches 0 through 7, the switches
would have the following positions;

7 6 5 4 3 2 1 O -—SWITCH
ue up DOWK DOWN up up DOWN UP -€—POSITION

s == OCTAL NC.

J

Note that switches 8 through 15 were not used. Switches 0 through
7 correspond to the switches labeled DATA on the front panel. A memory
address would use all 16 switches.

The following program is the bootstrap loader for users loading from
paper tape, and not using a REV { Serial 1/0 Board.

OCTAL ADDRESS OCTAL DATA
000 041
0al 175
002 037 (for 8K; for 3K use 017)
003 061
004 Q22
0os 000
Q06 333
007 0aa
014 017
011 330
012 333
013 aol
Q14 275
01s 310
0le 055
017 167
020 300
02} 351
022 Q03
023 000

The following 21 byte bootstrap loader is for users loading from a
paper tape and using a REV 0 Serial 1/0 Board on which the update changing
the flag bits has not been made. If the update has been made, use the
above bootstrap loader.

OCTAL ADDRESS OCTAL DATA
000 041
001 175
002 037 (for 8K; for 4K use 017)
003 061
004 023
a0s 00
008 333
007 000
010 346
011 040
02 310
013 333
014 001
0l5 275
016 310
a7 055
020 167

47

OUTAL_ADDRESS OCTAL DATA

{cont.)
021 300
022 351
023 003
024 000

The following bootstrap loader is for users with BASIC supplied on

an audio cassette.

1)
2)
3
4)
5)
6)
7
8)
9

13

OCTAL ADDRESS OCTAL DATA
006 041
ool 175
op2 037 (for BK; for 4K use 017)
003 oGl
004 032
0a5 oo
06 333
ao7? qos
G10 017
011 336
01z 333
013 007
014 275
015 310
gle 055
o017 167
020 300
021 351
022 003
023 00

To ioad a bootstrap lecader:

Put switches O through 15 in the down position.

Raise EXAMINE.

Pur 041 (data for address 000) in switches 0 through 7.
Raise DEPOSIT.

Put the data for the next address in switches 0 through 7.
Depress DEPOSIT NEXT.

Repeat steps 5 § 6 until the entire loader is toggled in.
Put switches 0 through 15 in the down position.

Raise EXAMINE.

Check that lights DO through D7 correspond with the data that should
48

11)
12)
13)

14}

15}

16)

17}
18)
158)

203

21)

be in address Q00. A light on means the switch was up, a light off
means the switch was down. So for address 000, lights Dl through D4
and lights D6 & D7 should be off, and lights DO and DS should be on.

If the correct value is there, go to step [3. If the value is wrong,
continue with step 11.

Put the correct value in switches 0 through 7.
Raise DEPOSIT.
Depress CXAMINE NEXT.

Repeat steps 10 through 13, checking to see that the correct data is
in each corresponding address for the entire loader.

If you encountered any mistakes while checking the loader, go back
now and re-check the whole program to be sure it is corrected.

Put the tape of BASIC into the tape reader. Be sure the tape is
positioned at the beginning of the leader. The leader is the section
of tape at the beginning with 6 out of the 8 holes punched.

If you are loading from audio cassette, put the cassette in the re-
corder. Be sure the tape is fully rewound.

Put switches 0 through 15 in the down positionm.
Raise EXAMINE.

If you have connected to your terminal a REV 0 Serial 1/0 Board

on which the update changing the flag bits has not been made, rzise
switch 14; if you are loading from an audio cassette, raise switch
15 also.

If you have a REV 0 Serial I/O.Board which has been updated, or have
a BEV 1 I/0 Board, switch 14 should remain down and switch 15 should
be raised only if you are loading from audioc cassette.

Turn on the tape reader and then depress RUN. Be sure RUN is depres-
sed while the reader is still on the leader. Do not depress run be-
fore turning on the readsr, since this may cause the tape to be read
incorrectly.

If you are leading from a cassette, turn the cassette recorder to
Play. Wait 15 seconds and then depress RUN.

Wait for the tape to be read in. This should take about 12 minutes
for 8K BASIC and 6 minutes for 4K BASIC. It takes about 4 minutes
to lead 8K BASIC from cassette, and about 2 minutes for 4K BASIC.

Do not move the switches while the tape is being read in.
L

22y

23}

24)

I a € oran U is printed on the termingl as the tape reads in, the
tape has been mis-read and you should start over at step 1 on page
4.

When the tape finishes reading, BASIC should start up and print
MEMORY SIZE?, See Appendix B for the initializatien precedure.

If BASIC refuses to load from the Audio Cassette, the ACR Demodulator
may need aligmment. The flip side of the cassette contains 90 seconds
of 125's (octal) which were recorded at the same tape speed as BASIC,
Use the Input Test Program described on pages 22 and 28 of the ACR
manual te perform the necessary alignment.

90

J

TNITIATIZATION DIALG

STARTING BASIC

Leave the sense switches as they were set for loading BASIC (Appen-
dix A). After the initialization dialog is complete, and BASIC types 0K,
you are free to use the sense switches as an input device (1/0 port 255}.

After you have loaded BASIC, it will respond:
MEMERY SIZE?

If you type a carriage return to MEMORY SIZE?, BASIC will use all
the contiguous memory upwards from location zere that it can find. BASIC
will stop searching when it finds one byte of ROM or non-existent memory.

If you wish te allocate only part of the ALTAIR'S memory to BASIC,
type the number of bytes of memory you wish to allocate in decimal. This
might be done, for instance, if you were using part of the memory for a
machine language subroutine.

There are 4006 bytes of memory in a 4K system, and 8192 bytes in an
BK system.

BASIC will then ask:

TERMINAL WIDTH? This is to set the output line width for
PRINT statements only. Type in the number
of characters for the line width for the
particular terminal or other output device
you are using. This may be any number
from 1 to 255, depending on the terminal.
If no answer is given (i.e. a carriage
return is typed) the line width is set
to 72 characters.

Now ALTAIR BASIC will enter a dialog which will allow you to delete
some of the arithmetic functions. Deleting these functions will give
more MemoTy space to $tore your programs and variables. However, you will
not be able to call the functions you delete. Attempting to do so will
result in an FC error. The only way to restore & function that has been
deleted is to reload BASIC,

The following is the dialog which will oceur:

4K Versicn

WANT SIN? Answer " Y " to retain SIN, SQR and RND.
If you answer " N ", asks next question.
WANT ZQR? Answer " Y " to retain SQR and RND.
If you answer ' N ", asks next question.

5

WANT RND? Answer ™ Y " to retain RND.
Answer ™ N " to delete RND.

4K Version

WANT SIN-COS-TAN-ATN? Answer " Y " to retain ail four of
the functions, " N " to delete all four,

or " A" to deletae ATN only.

Now BASIC will type out:
XXXX BYTES FREE

ALTAIR BASIC VERSION 3.0

[FOUR-K VERSION] "XXXX" is the number of bytes
(or) available for program, variables,
[EIGHT-K VERSION] matrix storage and the stack. It

does not include string space.
oK

You will now be ready to begin using ALTAIR BASIC.

52

APFENDIX C

ERROR MESSAGES

After an error occurs, BASIC returns te command level and types 0K,
Variable values and the program text remain intact, but the program can
not be continued and all GOSUB and FOR context is Jost.

When an error occurs in a direct statement, no liné number is printed.

Format of error messages:
Direct Statement #XX ERROR
Indirect Statement ?XX ERROGR IN YYYYY

In both of the above examples, "XX" will be the errcr code. The
"YYYYY' will be the line number where the error cccured for the indirect
statement.

The follewing are the possible error codes and their meanings:

ERROR CODE MEANING
4K VERSION

BS Bad Subscript. An attempt was made to reference a
matrix element which is cutside the dimensions of the
matrix. Inm the 8K version, this error can occur if
the wrong number of dimensions are used ip a matrix
reference; for instance, LET A(1,1,1)=7 when A has
been dimensicned DIM A{2,2).

D Double Dimension. After a matrix was dimensioned,
another dimension statement for the same matrix was
encountered. This error often cccurs if a matrix
has been given the default dimension 10 because a
statement like A[I)=3 is encountered and then later
in the preogram a DIM A{100) is found.

FC Function Call error. The parameter passed to a math
or string function was out of range.
FC errors can cccur due to:

a) a negative matrix subscript (LET A(-1)=0)

b) an unreascnably large matrix subscript
(>32767)

¢} LOG-negative or zero argument

d) SQR-negative argument
53

Ib

NF

op

of

oY

3N

RG

us

/0

¢) At} with A nepative and B not an inteper

f) a call to USR before the addeess of the
machine languige subroutine has been
patched in

g) calls to MID$, LEFT$, RIGHTS$, INP, CUT,
WAIT, PEEK, POKE, TAB, SPC or ON...GOTO
with an improper argument.

Illegal Direct. You cannot use an INPUT or (in &X Vewsion)
DEFFK statement as a direct command.

NEXT without FOR., The variable in a NEXT statement
corresponds to no previously executed FOR statement.

Out of Data. A READ statement was executed but all of
the DATA statements in the program have already been
read. The program tried te read too much data or insuf-
ficient data was included in the program,

Out of Memory. Program too large, too many variables,
too many FOR loops, too many GOSUB's, too complicated
an expression or any combination of the above. (see
Appendix D)

Overflow. The result of a calculation was too large to

be represented in BASIC's number format. If an underflow
occurs, zero is given as the result and execution continues
without any error message being printed.

Syntax error. Missing parenthesis in an expression,
illegal character in a line, incorrect punctuation, etc.

RETURN without GOSUB, A RETURN statement was encountered
without 2 previous GOSUB statement being executed.

Undefined Statememt. An attempt was made to GOTO, GOSUR
or THEN to a statement which does not exist.

Division by Zero.

8K VERSION (Includes all of the previous codes in addition to the

N

Foliowing.)

Continue error. Attempt to continue a program when
none exists, an error occured, or after a new line
was typed into the program.

LS

03

T

™

UF

Long String, Attempt was made by use of the concatenation
operater to create a string more than 255 characters long.

Out of String Space. Save your program on paper tape or
cassette, reload BASIC and allocate more string space
or use smaller strings or less string variables,

String Temporaries. A string expression was too complex.
Break it into two or more shorter ones.

Type Mismatch. The left hand side of an assignment
statement was a numeric variable and the right hand
side was a string, or vice versa; or, a function which
expected a string argument was given a numeric one or
vice versa.,

Undefined Function. Reference was made to a user defined
function which had never been defined.

95

RPPERDIX D _

SPACE HINTS

In order to make your program smaller and save space, the following
hints miy be useful.

1) Use multiple statements per line. There is a small amount of
overhead (5bytes) associated with each line in the program. Two of these
five bytes centain the line number of the line in binary. This means
that no matter how many digits you have in your line number (minimum line
number is 0, maximum is 65529), it takes the same number of brtes. Put-
ting as many statements as possible on a line will cut down on the number
of bytes used by your program,

2) Delete all unpecessary spaces from your program, For instance:
10 PRINT X, ¥, Z
uses three more bytes than
10 PRINTX,Y,Z :
Note: All spaces between the line number and the first non-
blank character are ignored.

3) Leiete all REM statements, FEach RICM statement uses at least
one byte plus the number of bytes in the comment text. For instance,
the statement 130 REM THIS 1S A COMMENT uses up 24 bytes of memory.

In the statement 140 X=Xx+Y: REM UPDATE SUM, the REM uses 14 bytes of
memery including the colon before the REM.

4} Use variables instead of constants. Suppose you use the constant
3.14159 ten times in your program. If you insert a statement
10 P=3.14158
in the program, and use P instead of 3,14159 each time it is needed, you
will save 40 bytes. This will also result in a speed improvement.

5) A program need not end with an END; 59, an END statement at
the end of a program may be deleted.

€} Reuse the same variables. If you have a variable T which is used
to hold a temporary result in one part of the program and you need a tem-
porary variable later in your program, use it again. Or, if you are asking
the terminal user to give a YES or NO answer to two different questions
at two different times during the execution of the program, use the same
tempoTary variable A§ to store the reply.

7) Use GOSUB's to execute sections of program statements that per-
form ildentical actions.

8) 1f you are using the 8K version and don't need the features of
the 8K version teo run your program, consider using the 4K version in-
stead. This will give you approximately 4.7K to work with in an 8K machine,
as opposed to the 1.6K you have availeble in an 8K machine running the
8K version of BASIC,

56

J

93 Use the zero elements of matrices; for instance, A(0), B(0,%).
STORAGE ALLOCATION INFORMATION

Simple (non-matrix) numeric variables like V use 6 bytes; 2 for the
variable name, and 4 for the value. Simple non-matrix string variables
also-use ¢ bytes; 2 for the variable name, 2 for the length, and 2 for a
peinter.

Matrix variables use a minimum of 12 bytes. Twp bytes are used for
the variable name, two for the size of the matrix, two for the number of
dimensions and twe for each dimension along with four bytes for each of
the matrix elements. \

String variables also use one byte of string space for each character
in the string. This is true whether the string variable is a simple string
variable like A§, or an element of a string matrix such as Q1$(5,2).

When a new function is defined by a DEF statement, 6 bytes are used
to store the definition.

Reserved words such as FOR, GOTO or NOT, and the names or the
intrinsic functions such as C0S, INT and 5TR% take up only one byte of
program storage. All other characters in programs use one byte of pro-
gram storage each.

When a program is being executed, space is dynamically allocated on
the stack as follows: i

1) Each active FOR...NEXT loop uses 16 bytes.
2) Each active GOSUB (cne that has not returned yet) uses 6 bytes.

3) Each parenthesis ehcountered in an expression uses 4 bytes and
each temporary result caleulated in an expression uses 12 bytes,

-

__AFPENDIX E__

SPEED HINTS

The hints below should improve the execution time of your BASIC pro-
gram. Note that some of these hints are the same as those used to decrease
the space used by your programs. This means that in many cases you can
increase the efficiency of both the speed and size of your programs at
the same time,

1) Delete all unnecessary spaces and REM's from the program. This
may cause a small decrease in execution time because BASIC would otherwise
have to ignore or skip over spaces and REM statements.

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR GOF 10.
Use variables instead of constants., It takes more time to con-
vert a constant to its floating point representation than it does to fetch
the value of a simple or matrix variable. This is especially important
within FOR...NEXT loops or other code that is executed repeatedly.

3] Variables which are encountered first during the execution of
a BASIC program are allocated at the start of the variable table, This
means that a statement such as 5 A=0:B=A:C=A, will place A first, B second,
and C third in the symbol table (assuming line 5 is the first statement
exocuted in the program). Later in the program, when BASIC finds a refer-
ence to the variable A, it will search only one entry in the symbol table
to find A, two entries to find B and three entries to find C, etc.

4) (8% Vergion) MNEXT statements without the index variable. NEXT
is scmewhat faster than NEXT I because mo check is made to see if the
variable specified in the NEXT is the same as the variable in the most re-
cent FOR statement.

3) Use the 8K version instead of the 4K version. The 8K version
is about 40% fastor than the 4K due to improvements in the floating point
arithmetic routines.

6) The math functions in the 8K version are much faster than their
counterparis simulated in the 4K version. (see Appendix G)

APPENDIX F

DERIVED FUNCTIONS

The following functions, while not intrinsic to ALTAIR BASIC, can be
calculated using the existing BASIC functions.

FUNCTION FUNCTION EXPRESSED IN TCRMS OF BASIC FUNCTIONS
SECANT SEC{X} = 1/COS(X)

COSECANT CSC(X) = 1/8IK(X)

COTANGENT COT(X) = 1/TAN(X}

INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X*X+1))

INVERSE COSINE ARCCOS(X) = -ATN(X/SQR{-X*X¥+1})+1.5708

INVERSE SECANT ARCSEC (X} = ATN(SQR(X*X-1))+(5GN(X)-1]*1.5708
INVERSE COSECANT ARCCSC{X) = ATN{1/SQR(X*X-1))+(SGN(X)-1}*1.5708
INVERSE COTANGENT ARCCOT (X) = -ATN(X)+1.5708

HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(-X)}/2

HYPLRBOLIC TANGENT TANH(X) = -EXP(-X)/(EXP(X)}+EXP(-X)}*2+1
HYPERBOLIC SECANT SECH(X} = 2/ (EXP(X)+EXP(-X)}

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)-EXP(-X})

HYPERBOLIC COTANGENT COTH(X)
INVERSE HYPERBOLIC

EXP({-X)/ (EXP{X)-EXP(-X))*2+1

SIKE ARGSINH(X) = LOG{X+SQR(X*X+1})
INVERSE 1IYPERBOLIC

COSINE ARGCOSH(X) = LOG(X+SQR(X*X-1))
INVERSE HYPERBOLIC

TANGENT ARGTANH(X) = LOG((1+X)/(1-X))/2
INVERSE HYPERBOLIC

SECANT ARGSECH(X) = LOG{(SQR{-X*"X+1}+1)/X]
INVERSE HYPERBOLIC

COSECANT ARGCSCH(X) = LOG((SGN(X)*SQR(X*X+1)+1)/X)
INVERSE HYPERBOLIC

COTANGENT ARGCOTH(X) = LOG((X+1)/(X-1}}/2

0

APPLNDIX G \a)

SIMULATED MATH FUNCTIONS

The following subroutines are intended for 4K BASIC users who want
to us¢ the transcendental functions not built into 4K BASIC. The cor-
responding routines for these functioms in the 8K version are much faster
and more accurate. The REM statements in these subroutines are given for
documentation purposes only, and should not be typed in because they take
up a large amount of memory.

The following are the subroutine calls and their 3K equivalents:

8K LQUIVALENT SUBROUTINE CALL

P9=X594Y9 GOSUB 60030
L9=LOG{X%) GOSUB 60080
L2=EXP(X5) GOSUB 60160
C3=COS(XY) GOSUB 60240
TY9=TAN(XS) GQSUB 60280
A9=ATN(X9) GOSUB 60310

The unneeded subroutines should not be typed in. Please note which
variables are used by each subroutine. Also note that TAN and COS require
that the SIN function be retained when BASIC is loaded and initialized. \-)

60000 REM EXPONENTIATION: P3=X91Y9
LOOMI REM NEED: EXP. LOG

0020 REM VARIABLES USED: AT:B3+C9-ETaLT-PaXT2Y4

G0030 P9= : ES=0 : IF Y9-D THEN RETURN

60040 IF X3<0 THEN IF INT(Y9)=Y9 THEN Po=l-2*YTY*INT(Y9/2) : XF=-X9

50050 IF X%<>0 THEN GOSUB LOOYD : X9=Y9*LH : GOSUB LOLkD

LODLG PO=PI*ER : RETURN

0070 REM NATURAL LOGARITHM: L=LOG(XT)

LOOA0 REM VARIABLES USED: A9B9+CT-E9+L5+X9

LOOF0 E9=0 : IF X9<=0 THEN PRINT "L0G FC ERROR": : STOP

LODIS A9=1 : BF=2 : (%=.5 : REM THIS WILL SPEED UP THE FOLLOWING

GOLOD IF X9>=A9 THEN XG=C*X3 : £9=EF+AT : GOTC bOLOD

LOLLO IF X9<C9 THEN X9=B9*X9 : E9=E9-A9 : 60TO LOLLD

k0120 X9=(X3-. 707107)/ (X3+.707107) ¢ LI=X5*X9

BOL30 L% ({ (« 59897910+ TalH71) *LIA+2. BA53H) *XF+ET-. §) * . LITLY?

BOL35 RETURN

BOL4D REM EXPONENTIAL: ES=EXP(XT)

bO150 REM VARIABLES USED: AS-ES-L5.X9

BOILE L9=INT (1 UU2P*XT)+1 : IF L9<127 THEN 60180

60170 IF X9>0 THEN PRINT “EXP OV ERROR™S : STOP

LOL75 ES=0 : RETURN

LOLAD E9=.B93147*L3-X9 ¢ Ad=}.32988E-3-1- 4LILEE-U*ET

LOLA0 A= ((A9*ETF-&-3013bE-3) *E9+H. 16574E-2) *ET ;
LO1AS E9=(((A9-.1GLELS) *E9+. 5}*ES-1)*ESHL & AS=2 WJ
BOLT? IF L<=0 THEN A%=-5 : L3=-L4 : IF L9=0 THEN RETURN

LOZ00 FOR XT=1 T¢ L9 i £9=AT*ET : NEXT X3 : RETURN

BOZL0 REM COSINE: (9=COS(XT)

LO220 REM N.B- SIN MUST BE RETAINED AT LQAD-TIME

BJ230 REM VARIABLES USED: C9.X9

b0248 CI=SIN(X+1.5708) : RETURN

EO250 REM TANGENT: T9=TAN(Xd)

B0260 REM NEEDS C0S. (SIN MUST BE RETAINED AT LOAD-TIME)

EU270 REM VARTABLES LSED: (9.T9.XH

BE0cal GOSUB LOZ40 ¢ TI=SIN(XS)/CT : RETURN

B0290 REM ARCTANGENT: AS=ATN(X9)

L0300 REM VARIABLES USED: A9.B9.{9.T9.X4

BO31D TY=SGN(XT): XT=ABS(XT}: (=0 : IF X9>) THEN (=1 : XG=1/X%
E0320 A9=x9*X7 : B={(2.8kL23E-3*49-1.L1L57E-2) *AHY . BIGTLE-2) * AT
50330 BY={({(B9-7. 5389E-2) *AT+. LORSEI) *ATF-. LUGET) * AT+, 19793k) *AT
bO340 A%=((B%-.333332} *A9+1}*XT = IF (F=l THEN A9=1.5708-49
L0350 A9=T9*A7 : RETURN

o

APPENDIX H \)

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR THE ALTAIR

Though implementations of BASIC on different computers are in many
ways similar, there are some incompatibilites which you should watch for
if you are planning to convert some BASIC programs that were not written
for the ALTAIR.

1) Matrix subscripts. Some BASICs use " [" and "] * to dencte
matrix subscripts. ALTAIR BASIC uses ™ (™ and ™) ".

2} Strings. A number of BASICs force you to dimensicr (declare)

the length of strings before you use them. You should remove all
dimension statements of this type from the program. In some of

these BASICs, a declaration of the form DIM A$(I1,J) declares a string
matrix of J elements each of which has a length I. Convert DIM
statements of this type to equivalent ones in ALTAIR BASIC: ODIM A$(J).

ALTAIR BASIC uses " + " for string concatenation, not " , " or ' § .

ALTAIR BASIC uses LEFT§, RIGHT§ and MID$ to take substrings of
strings. Other BASICs use A$(I) to access the Ith character of
the string A$, and A$(I,J) to take a substring of A$ from charac-
ter position I to character position J. Convert as follows:

oLy NEW
AS(I) MID$ (A%,I,1)
A$(I,0) MID$ (A$,I,J-1+1)

This assumes that the reference to a substring of A§ is in an expres-
sien or is on the right side of an assignment. If the reference to
A$ is on the left hand side of an assignment, and X§ is the string
expression used to replace characters in A$§, convert as follows:

LD NEW
A$(I)=X3$ A$=LEFT$(A$,1-1)+X$+MIDS (AS,I+1]
A$(1,7)=X$ AB=LEFTS (A%, I-1)+X$+MID$ {(A§,T+1)

3] Multiple assigrments. Some BASICs allow statements of the
form: 500 LET B=C=0, This statement would set the variables B
§ C to zero.

In 8K ALTAIR BASIC this has an entirely different effect, All the

" ='s " to the right of the first one would be interpreted as logical
comparison operators. This would set the variable B to -1 if C

equaled 0. If C did not equal 0, B would be set to 0. The easiest \‘)
way to convert statements like this one is to rewrite them as follows:

82

S0 C=1; b=C.

4) Some BASICs use "'\ " instead of " : " to delimit multiple
statements per line, Change the " \'s " to " :'s " in the program.

5} Paper tapes punched by cther BASICs may have no nulls at the end
of each line, instead of the three per line recommended for use with
ALTAIR BASIC.

To get arcund this, try to use the tape feed control on the Teletype
to stop the tape from reading as scon as ALTAIR BASIC types a car-
riage return at the end of the line. Wait a second, and then continue
feeding in the tape,

When you have finished reading in the paper tape of the program, be
sure to punch & new tape in ALTAIR BASIC's format. This will save
you from having to repeat this process a second time,

&) Programs which use the MAT functions available in some BASICs

will have to be re-written using FOR...NEXT loops to perform the
appropriate operations.

63

USING THE ACR INTERFACE

NOTE: The cassette features, CLOAD and CSAVE, are only
present in BX BASICe which are distriluted on cassette.
8K BASIC om paper tupe will give the user about 130 mecre
bytee of free memory, but it will mot recognize the CLOAD
or CSAVE cormands.

The CSAVE command saves a program on cassette tape. CSAVE takes one
argument which can be any printing character. CSAVE can be given directly
or in a program. Before giving the CSAVE command start your audio recorder
on Record, noting the position of the tape,

CSAVE writes data on channel 7 and expects the device status from
channel 6. Patches can easily be made to change these channel numbers,

When CSAVE is finished, execution will continue with the next state-
ment. What is written onto the tape is BASIC's ipternal representation
of the program in memory. The amount of data written onto the tape will
be equal to the size of the program in memory plus seven.

Variable values are not saved on the tape, nor are they affected by
the CSAVE command. The number of nulls being printed on your terminal
at the start of each line has ne affect on the CSAVE or CLOAD commands.

CLOAD takes its one character argument just like the CSAVE command ,
For example, CLOAD E.

The CLOAD comnand first executes a '"NEW" command, erasing the cur-
Tent program and all variable values. The CLOAD command should be given
before you put your cassette recorder on Play.

BASIC will Tead a byte from channel 7 whenever the character ready
flag comes up on channel 6. When BASIC finds the program on the tape,
it will read all characters received from the tape into memory until it
finds three consecutive zeros which mark the end of the program. Then
BASIC will return to command level and type "OK¥,

Statements given on the seme line as a CLOAD command are ignored.
The program on the cassette is not in a checkswimed format, s¢ the pro-
gram must be checked to make sure it read in properly.

If BASIC does not return to command level and type "OK", it means
that BASIC either never found a file with the right filename character,
or that BASIC found the file but the file mever ended with three con-
secutive zeros. By carefully watching the front panel lights, you can
tell if BASIC ever finds a file with the right name.

Stopping the ALTAIR and restarting it at location O will prevent
BASIC from searching forsver, However, it is likely that there will
either be no program in the machine, or a partial program that has errors,
Typing NEW will always clear out whatever pregram is in the machine.

Reading and writing data from the cassette is done with the INP, OUT
and WAIT statements. Any block of data written on the tape should have
its beginning marked with a character. The main thing to be careful of
is allowing your program to fall behind while data passes by unread.

Data read from the cassette should be stored in a matrix, since

64

therg isn't time to process data as it is being read in. You will pro-
bably want to detect the end of data on the tape with a special character.

APPENDIX J

BASIC/MACHINE LANGUAGE INTERFACE

In all versions of BASIC the user can link to a machine language
subroutine. The first step is to set aside enough memory for the sub-
routine. When BASIC asks "MEMORY SIZE?", vou shouldn't type a return,
because BASIC would then write into all of memory trying to find out
how much memory your machine has and then use whatever memory it finds.

The memory that BASIC actually uses is constantly modified, so you
cannet store your machine language routine in those locations,

BASIC always uses memory starting at location 0 and as high upwards
as you let it. BASIC cannot use non-contiguous blocks of memory. There-
fore, it is best to reserve the top locations of memory for your machine
language program,

For example, if you have a 4K machine and want to use a 200 byte sub-
routine, you should set memory size to 3896. Remember, BASIC always ac-
cepts numbers in decimal and that 4K is really 241224096 rather than 4000,
Now BASIC will not use any location = Z886.

If you try to allocate too much memory for your machine language pro-
gram, you will get an OM (out of memory) error. This is because there is
a certain amount of memory that BASIC must have or it will give an OM
errer and go back to the "MEMORY SIZE?" guestion.

The starting location of your routine must be stored in a location
known as "USRLOC". The exact octal location of USRLOC will be given with
each distributed version of BASIC. It is not the same for the 4K and 8K
versions.
USRLOC for Version 3.0: BK (both paper tape § cassetts) = ill(octal)
4K = 103 {octai)

Initially USRLOC is set up to contain the address of “ILLFUN", which
is the routine that gives an FC (function call) error. USRLOC is the two
byte absclute address of the location BASIC calls when USR is invoked.

USR is a function just like ABS or INT and is called as follows:

10 X=USR(3).

Khen your routine is called the stack pointer is set up and you are
allowed to use up to 8 levels of stack (16 bytes). If you want to use
more, you have to save BASIC's stack pointer (SP), set up your own, and
restore BASIC's before you return back to BASIC.

All of the registers (A, B, C, D, E, H, L and PSW) can be changed.

It is dangerous to modify locations in BASIC itself unless you know what
you are doing. This is unlikely unless you have purchased a source capy
of BASIC. Popping more entries off of the stack than you put on is almost
guaranteed to cause trouble,

To retrieve the argument passed to USR, you must call the routine
whose address is given in location 4 and 5 (DEINT). The low order 8 bits
of an address are always stored in the lower address (4 in this case), and
the high order B bits are stored in the next (higher) memory address (5
in this case).

]

J

The argument to USR is truncated to an integer (calling USR with 3.8
is the same as calling it with 3). If the argument is greater than 32767
or less than -32768, an FC error will result, When DEINT returns, the
two byte signed value of the argument will be in registers D § . The
high order byte would be in D, the low order byte in E. For instance:
if the argument to USR was -1, D would equal 255 and E would equal 255;
if the argument was 400, D would equal 1 and E would equal 144.

To pass back a value from USR, set up a two byte value in registers
A & B and call the routine whose address is given in locations 6 and 7.

A § B should be set up in the same manner that D § E are when a value is
passed to USR (A should contain the high order byte and B the low order
byte).

If the routine whose address is given in locations 6 and 7 is not
called, the function USR in the user's program will be an identity func-
tion. That is, USR(X) will equal X.

At the end of the USR routine a RET must be done to get back to
BASIC. The BASIC program is completely stopped while USR is being exe-
cuted and the program will not be continued until USR returns.

In the 4K version, the USR routine should not enable interrupts from
a device. 4K BASIC uses the RST 7 location {56 decimal, 70 octal) to store
a subroutine. If an interrupt occurs, this subroutine will be called which
will have an undetermined and undesirable effect on the way BASIC behaves.
In the 8K BASIC, locations 56, 57 and 58 decimal have been set aside
tc store a JMP to a user-provided interrupt service routine. Ipitially
a RET ipstruction is stored at location 56, so until a user sets up the
call to his interrupt service routine, interrupts will have no effect.
Care must be taken in interrupt routines to save and restore the
stack peinter, (A, B, C, D, E, H § L) and the PSW. Interrupt routines
can pass data using PEEK, and can receive data using POKE.

The interrupt service routine should re-enable interrupts with an EI
instruction before it returns, as interrupts are automatically disabled
when the interrupt occurs. If this procedure is not followed, the inter-
rupt service routine will never "see" another interrupt.

Though there is only one way of calling a maching language subroutine,
this does not restrict the user to a single subroutine. The argument pas-
sed to USR can be used to determine which routine gets called. Multiple
arguments to a machine language routine can be passed with POKE or through
multiple calls to USR by the BASIC program,

The machine language routine can be loaded from paper tape or cassette
before or after BASIC is loaded. The checksum loadexr, an unchecksummed
loader, the console switches, or more conveniently the POKE function can be
used to load the rToutine. ')

A common use of USR for 4K users will be doing IN's and OUT's to
special devices. For example, on a 4K machine a user wants USR to pass
back the value of the front panel switch register:

Answer to MEMORY SIZE? : 4050
USRLOC patched to contain [17,322]=7722 Base 8=4050 decimal

67

At location 4050=7722 Base 8 put:

77227333 1IN 255 ; (255 Base 10=377 Base 8) Get
7723/377 jthe value of the switches in A
77245107 MoV B,A ;B gets low part of answer
77257257 XRA A ;& gets high part of answer
7726/052 LHLD 6 ;get address of routine
77277006

7730000 ;that floats [A,B]

7731/351 PCHL ;80 to that routine which will

;Teturn to BASIC
swith the answer

MORE ON PEEK AND POKE (8K VERSION ONLY)

As mentioned before, POKE can be used to set up your machine language
routine in high memory., BASIC does not restrict which addresses you can
POKE. Modifying USRLOC can be accomplished using two successive calls to
POKE. Patches whizh a user wishes to include in his BASIC can also be
made using POKE,

Using the PEEK function and OUT statement of 8K BASIC, the user can
write a binary dump program in BASIC, Using INP and POKE it is possible
to write a binary loader,

PEEK and POKE can be used to store byte oriented information. When
you initialize BASIC, answer the MEMORY SIZE? question with the amount of
memory in your ALTAIR minus the amount of memory you wish to use as stor-
age for byte formatted data.

You are now free to use the memory im the top of memory in your ALTAIR
as byte storage. See PEEK and POKE in the Reference Material for a further
description of their paramsters.

APPENDIX K

ASCIT CHARACTER CODLS

DECIMAL CHAR, DECIMAL CHAR. DECIMAL CHAR.
Qoo NUL 043 + 086 V
001 SOH 044 ’ 087 L
002 STX 045 - 088 X
003 ETX 046 . 089 Y
004 EQT 047 / 090 Z
aos ENQ 048 0 081 [
06 ACK 049 1 092 bt
007 BEL 050 2 093]
008 BS 051 3 0g4 +
009 HT 052 4 095 +
a10 LF 053 5 096 b
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 098 ¢
014 50 Q457 9 100 d
(23] 51 a58 : lo1 [
0l DLE 055 : 102 £
017 DC1 060 < 103 g
018 Dcz 061 = 104 h
ale De3 o062 > 105 i
020 Dc4 063 ? 106 i
021 NAK 064 e 107 k
022 SYN 065 A 108 1
023 ETB 066 B 108 m
024 CAN 067 c 110 n
025 EM 068 b 111 o
026 SUB 069 E 112 p
027 ESCAPE 070 F 113 q
028 FS 071 G 114 T
629 GS 072 H i15 s
030 RS a73 1 116 t
031 us 074 J 117 u
032 SPACE 075 K 118 v
033 1 076 L 119 W
034 " i M 120 x
035 # 078 N 121 ¥
036 $ 079 o] 122 z
037 % 080 p 4 123 i
038 & 081 qQ 124 |
038 - 082 R 125 ¥
040 (083 s 126 o
041) 084 T 127 DEL
42 * 085 u

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

CHR} is a string function which returns a one character string which
contains the ASCII equivalent of the argument, according to the conversion
table on the preceeding page. ASC takes the first character of a string
and converts it to its ASCII decimal value.

One of the most common uses of CHR$ is to send a special character
to the user's terminal. The most often used of these characters is the
BEL (ASCIT 7). Printing this character will cause a bell to ring on some
terminals and a "beep' on many CRT's. This may be used as a preface to
an error message, as a novelty, or just to wake up the user if he has
fallen esleep. (Example: PRINT CHR$(7);)

A major use of speclal characters is on those CRT's that have cursor
positioning and other special functions (such as turning on a hard copy
printer).

As an example, try sending a form feed {(CHR$(12)) to your CRT. On
most CRT's this will usually cause the screen to erase and the cursor to
"home" or move to the upper left corner.

Some CRT's give the user the capability of drawing graphs and curves

in a special point-plotter mode. This feature may easily be taken advan-
tage of through use of ALTAIR BASIC's CHR$ function.

0

J

APPLRDIX L

EXTENDED BASIC

When EXTENDED BASIC is sent out, the BASIC manual will be updated
to contain an extensive section about EXTENDED BASIC, Also, at this time
the part of the manual relating to the 4K and 8K versions will be revised
to correct any errors and explain more carefully the areas users are hav-
ing trouble with. This section is here mainly to explain what EXTENDED
BASIC will contain.

INTEGER VARIABLES These are stored as double byte signed quantities
ranging from -32768 to +32767. They take up half as much space as normal
variables and are about ten times as fast for arithmetic. They are denoted
by using a percent sign (%) after the variable name. The user doesn't
have to worry about conversion and can mix integers with other variable
types in expressions. The speed improvement caused by using integers for
loop variables, matrix indices, and as arguments to functions such as
AND, OR or NOT will be substantial. An integer matrix of the same dimen-
sions as a floating point matrix will require half as much nemory .

DOUBLE-PRECISION Double-Precision variables are almost the oppo-
site of integer variables, requiring twice as much space (8bytes per value)
and taking 2 te I times as long to do arithmetic as single-precisicn
variables. Double-Precision variables are dencted by using a number sign
{#) after the variable name. They provide over 16 digits of accuracy.
Functions like SIN, ATN and EXP will convert their arguments to single-
Precision, so the results of these functions will only be good to 6 digits.
Negation, addition, subtraction, multiplication, divisien, comparision,
input, output and conversion are the only routines that deal with Double-
Frecision values. Once again, formulas may freely mix Double-Precision
valuos with other numeric values and conversion of the other values to
Double-Frecision will be done automatically.

PRINT USING Much like COBOL picturs clauses or FORTRAN format
statements, PRINT USING provides a BASIC user with complete control over
his cutput format. The user can control how many digits of a number are
printed, whether the number is printed in scientific notation and the
placement of text in ocutput. All of this can be done in the BK version
using string functions such as STRY and MID$, but PRINT USING makes it
much easier.

DISK I/G EXTENDED BASIC will come in two versions, disk and non-
disk, There will only be a copying charge to switch from one to the
other. With disk features, EXTENDED BASIC will zllow the user to save and
recall programs and data files from the ALTAIR FLOPPY DISK. Random ac-
cess as well as sequential access will be provided. Simultaneous use of
multiple data files will be allowed. Utilities will format new disks,
delete files and print directories. These will be BASIC programs using
special BASIC functions to get access to disk information such as file
length, etc. User programs can 21so0 access these disk functions, enabling
the user to write his own file access method or other special purpose

i

disk routine. The file format can be chanped to allow the use ol other
(non-{loppy) disks. ‘This type of modification will be donc by MITS under
special arrangement.

OTHER FEATURES Other nice features which will be added are:

Fancy Error Messages

An ELSE clause in IF statements

LIST, DELETE commands with line range as arguments

Deleting Matrices in a program

TRACE ON/OFF commands to monitor program flow

EXCHANGE statement to sWwitch variable values (this will speed
up string sorts by at least a factor of two).

Multi-Argument, user defined functions with string arguments
and values aliowed

Gther features contemplated for future release are:

A multiple user BASIC
Lxplicit matrix manipulatien
Virtual matrices

Statement modifiers

Record 170
Paramaterized GOSUB
Compilation

Multiple USR functions
"Chaining"

EXTENDED BASIC will use about 11K of metory for its own code (10K
for the non-disk version) leaving IK free on a 12K machine. It will take
almost 20 winutes to load from paper tape, 7 minutes from cassette, and
less than 5 seconds to load from disk.

We welcome any suggestions concerning current features or possible

additions of extra features. Just send them to the ALTAIR SOFTWARE
DEPARTMENT .

12

APPENDLX M
BAS L TLXTS
Below are a few of the many texts that may be helpful in learning
BASIC.

13 BASIC PROGRAMMING, John G. Kemeny, Thomas E Kurtz, 1967, pld4s

2] BASIC, Albrecht, Finkel and Brown, 1973

3} A GUIDED TOUR OF COMPUTER PROGRAMMING IN BASIC, Thomas A Dwyer
and Michael S, Kaufman; Boston: Houghton Mifflin Co., 1973

Books numbered 1 & 2 may be obtained from:
Feople's Computer Company
P.0O. Box 310
Menlo Park, Califeornia
94025
They also have other books of interest, such as:
101 BASIC GAMES, Ed. David Ahl, 1974 p25s0

WHAT TQ 0DQ AFTER YOU HIT RETURN or PCC's FIRST
BOOK OF COMPUTER GAMES

COMPUTER LIB § DREAM MACHINES, Theodore H. Nelson, 1974, plée

13

MIITS

ALTAlR

IBX T BN IDIEID

B45IC

15

ALTATR EXTENLDED BASIC ,

FRELIMINARY DOCUMENTATION

THE FOLLOWING PAGES CONTAIN R CONDENSED VERSION OF THE
COMPLETE “"ALTAIR EXTENDED BASIC" DOCUMENTATION.

In order to get this software to our customers with a

minimum of delay, it was decided to print this prelim-

inary documentation. This will help to expedite the .
deliveries. The complete manual will ke printed at a :
later date, and will be in much the same format as the

previous existing BASIC documentation.

RERD THESE PAGES OVER CAREFULLY. SOME OF THE INFOR-
MATION CONTAINED HERE ALSC APPLIES TO THE 4K AND BX
VERSIONS OF BASIC.

This is meant to be an additional section to the
“ALTAIR BASIC REFERENCE MANUAL", and not a sepa- \J
rate manual in itself,

December ‘75

MITS

“Creative Electronics”
16

ALTAIR EXTENDED BASIC

ALTAIR EXTENDED BASIC includes all of the features found in the 8K
version of BASIC, with some varfatfons. There are alsc a large number of
add1t1g?al features making this version one of the most powerful BASICs
available.

The following section contains the EXTENDED BASIC features and its
varfations from the 8K BASIC,

COMMANDS
NAME EXAMPLE PURPOSE/USE
DELETE DELETE X Deletes Tine in a program with
the 1ine number "X". "ILLEGAL
FUNCTION CALL" error occurs {f
there is no Tine "X".
DELETE -X Deletes all lines in a program up
to and Tncluding line number "X".
"ILLEGAL FUNCTION CALL" 1f no 1ine
uxe,
DELETE Y-X Deletes all 1ines in a program from

the Tine number equal to or greater
than "Y" up to and Tncluding the
first 1ine equal to or less than
"X", “ILLEGAL FUNCTION CALL" if no
1ine “X".

If deletion is performed, all variable values are lost.
Also continuing is not allowed, and all "FOR"s and “GOSUB"s
are made fnactive. (This is the same effect caused when-
ever a program is modified,)

LIST LIST X tists 1ine "X" if there {is one.

LIST or LIST- Lists the entire program.

LIST X- Lists all Tines in & program with a
1ine number equal to or greater than
llxll.

LIST -X Lists all of the lines in a program
with a Tine number Tess than or equal
to lell .

LIST ¥-x Lists all of the lines within a pro-

gram with 1ine numbers equal to or
greater than "Y", and less than or

equal to "X".
n

STATEMENTS

NAME EXAMPLE PURPDSE/USE
ERASE ERASE J% Eliminates an array. If no such
array exists an "ILLEGAL FUNCTION
ERASE X%,I# CALL" error will cccur. ERASE must
refer to an array, not an array ele-
ERASE A$ ment [ERASE B(9) would be 11Tegall].
The space the array is using is freed
ERASE DF ,NMS% up and made avaflable for cther uses.

The array can be dimensfioned again,
but the values before the ERASE are

lost,
SWAP SWAP I%,J% Exchanges the value of two variables.
(1f X=] & Y=5, after SWAP X,Y the
SWAP B$(7).T$ values would be switched; that fs,
now X=5 & Y=1.] Both, one or neither
SWAP D#(I),D¥(I+1) of the varfables may be array elements.

If a non-array variable that has not
been assigned a value 1s referenced
an "ILLEGAL FUNCTION CALL" error will
occur, Both variabjes must be of
the same type {both integers, both
strings, both double precision or
both single precisian?, otherwise a
"TYPE MISMATCH" error will occur.

TRON TRON Turns on the trace flag.
TROFF TROFF Turns off the trace flag.

TRON & TROFF can be given in either
direct or indirect {program) mode,
When the trace flag is on, each time
a new program 1ine is started, that
l1ine number is printed enclosed in
“[J*. Mo spaces are printed. For
example:

TROKR

CK

10 PRINT 1: PRINT "A"
20 STOP

RUN

[1c] 1

A

[20]
BREAK IN 20

"NEW" will also turn off the trace
18 flag altong with its other functions.

STATEMENTS
IF-THEN-ELSE

(Similar to 8K version IF-THEN state-
ment, only with the addition of a new
"ELSE" clause.)

IF X>Y¥ THEN PRINT "GREATER" ELSE PRINT “NOT GREATER"

In the above example, first the
refational condition would be tested.
If it is true, the THEN clause would
be executed ("GREATER" would be
printed). If 1t 1s false, the ELSE
clause would be executed ("NOT GREATER"
would be printed).

10 IF A»B THEN PRINT "A>B" ELSE IF B>A THEN PRINT "B»A" ELSE PRINT "A=B"

The above example would indicate
which of the fwo variables was the
largest, or if they were equal.

As this example indicates, IF state-
ments may be nested to any desired
Tevel {regulated only by the maximum
line Tength}. An IF-THEN-ELSE state-
ment may appear anywhere within a mul-
tiple-statement line; the THEN clause
being always mandatory with each IF
clause and the ELSE clause optional.
Care myst be taken to Tnsure that IFs
without ELSE clauses do not cause an
ELSE to be associated with the wrong
IF,

5 IF A=B THEN IF A=C THEN PRINT “A=(" ELSE PRINT "A<>C" ELSE PRINT "A<>B"

19

In the above example, the double
under-lined portion of the line is

an IF-THEN-ELSE statement which is
all a part of the THEN clause of the
Frst IF statement in the 1ine. The
second ELSE (single under-lined) is
part of the first IF, and will be
executed only if the first relationa)l
expression is false (A<>B). If &
Tine does not contain the same number
of ELSE and THEN clauses, the last
ELSE is matched with the ¢losest THEN.

TYPING

Kormally, numbers used in BASIC operations are stored and acted upon as single
precision floating pofnt numbers. This allows for 7 digits of accuracy.

In the extended version of BASIC greater accuracy may be obtained by typing
numbers as double precision. This allows for 16 digits of accuracy. In
cases where speed 1s critical, 1t 1s, however, slower than single precision.

The greatest advantage, 1n both speed and storage space can be obtained by using
1nteger operations whenever possible. These fall within the rage <=32767 to
»=-32768,

Examples:
(single precision) PRINT 1/3
. 3333333
{double precision) PRINT 1/30
.3333333333333333
{integer) PRINT 1/3%
0

PRINT 2.76%
2

The use of these types of numbers will become clearer further on in the
text.

Examples:
12(10) uses (M1 *2) + 6+ (2* 1) = 30
I (5,5) uses (6 * 6% 4) +6+ (2*2) =154

C

TYPING

There are four types of values used Tn EXTENDED BASIC programming:

NAME SYMBOL # OF BYTES/VALUE

STRINGS {0 top 255 $ 3
characters)

INTEGERS (must be 4 2
-32768 and =<
32767)

DOUBLE PRECISION ¥ 8

{exponent: -38
to +38) 16 digits

SINGLE PRECISION ! 4
{exponent: -38
to +38) 7 digits

The type a variable will be is explicitly declared by using one of the

four symbols listed above. Otherwise, the first letter of the variable is
used to Jogk into the table that indicates the default type for that letter.
Inttially (after CLEAR, after RUN, after NEW, or after modifying a program)
all letters are defaulted to SINGLE PRECISION.

The following four statements can be used to medify the DEFAULT table:

STATEMENT DEFAULTS VARIABLE TO
DEFINT r INTEGER

DEFSTR r STRING

DEFDBL v DOUBLE PRECISION
DEFSNG r SINGLE PRECISION

r above fndicates the position for the range to be given. This
is to be of the following format: Tletter or letter 1 - letter 2.
{In the second format, the "-" indicates from letter 1 through
letter 2 1nclusive.)

In the above four statements the default type of all of the letters within
the range is changed, depending on which DEF "type" is used. Initially,
DEFSNG A-7 s assumed. Care should be taken when using these statements
since variables referred to without type indicators may not be the same after
the statement is executed. It is recommended that these statements be used
only at the start of a program, before any other statements are executed.

The following will 11lustrate some of the above information:

81

10 %=1

20 I1=2 The example on the Teft would
30 I#=3 print out:

40 1§="ABC" 2 at line # 50

50 PRINT 1 1 at line # 70

60 DEFINT I ABC at line # 90

70 PRINT I 3 at line # 110
80 DEFSTR 1

90 PRINT 1

100 DEFDBL I

110 PRINT I

TYPING OF CONSTANTS

The type that a particular constant will be is determined by the following:

1) 1f it is more than 7 digits or "0" s used in the exponent,
then it will be DOUBLE PRECISIQN.

2} if it is >32767 or <-~32768, a decimal point (.} is used,
or an "E" is ysed, then it is SINGLE PRECISION.

3) otherwise, it is an fnteger.

When a + or * operation or a comparison fs performed, the ocperands are
converted to both be of the same type as the most accurate operand. There-
fore, if one or both operands are double precision, the operation is done
in double precisfon {accurate but slow). If neither is double prectsion
but one or more operands are single precision floating point, then the
operation will be done in singie precision floating point. Otherwise,

both operands must be integers, and the operation is performed in integer
representation.

If the result of an integer + or * is toco big to be an integer, the oper-
ation will be done 1n single precision and the result will be single preci-
sion. Division (/) is done the same as the above operator, except it is never
done at the integer level. If both operands are integers, the operation is
done as a single precision divide.

The operators AND, OR, NOT, \, and MOD force both operands to be integers
before the operation is done. If one of the operands is >32767 or <-32768, an
overflow error will occur. The result of these operators will always be an
integer. (Except -3276B\-1 gives single precision.)}

No matter what the operands to + are, they will both be converted to single
precision. The functions SIN, C0S, ATN, TAN, SQR, LOG, EXP, arid RND also
convert thelr arguments to single precision and give the result as such, ac-
curate to & digits.

Using a subscript »32767 and assigning an integer variable a value too
large to be an integer gives an overfiow error.

8

TYPE_CONVERSION

When a number 15 converted to an integer, 1t is truncated {rounded down}.
For example:

[%=.959 A%=-.01
PRIKT I% PRINT A%
v} -1

It will perform as if the INT function was applied.

When a double precision number is converted to single precision, it is
rounded off. For example:

Df=77777777
I1=D#

PRINT I!
7.77778E+07

No automatic conversion 1s dome between strings and numbers. See the STR3,
NUM, ASC, and CHRY functions for this purpose.

NEW FUNCTIONS

CINT Convert the argument to an integer number
CSNG Convert the argument to a single precision number
CDBL Convert the argument to a double precisfon number
Examples: CDBL(3}=3D
CINT(3.9)=3

CINT{-.01}=-1
CSNG(312456.8)=312457

NOTE: 1f X<=32767 and =>-32768 then CINT(X)}=INT(X)
otherwise, CINT will give an overflow arror

NEW OPERATORS

\{backsiash=shift L} The integer divisjon operator forces
Integer Division both arguments to integers and gives
the integer value of the division
Examples: 143=0 operation. {The only exception to this
\2=3 : 1s -37268%-1, which results in a value
-3\-1=3 too Farge to be an integer.)
30087=42 NOTE: A\B does not equal INT{A/B)
~B\3=-2 (1f A=-T & B=7, 0 does not
-1\3=0 equal -1)

Integer division 1s about elght times
as fast as single pracision divis{on.
itz ?recedence is Jjust below that of

L]

NEW OPERATORS {cont.)

J

MOD The MOD aperator forces both arguments
to integers and returns a result
Examples: 4 MOD 7=4 according to the following formula:
13 MOD 3=1
7 MOD -11=7 AMDD B=A - [B* (A\B)]
-6 MOD -4=-2

If B=0 then a division by zero error
will oceur. MODs precedence 15 just
below that of integer division and
Jjust above + and -.

USER-DEF INED-FUNCTIONS

In the Extended version of BASIC, a user-defined function can be of any
type and can take any number of arguments of any type.

Examples: DEF FNRANDOMZ=10*RND(3)+1
DEF FNTWO$(X$)=X$+X$
DEF FNA(X,Y,Z,I%)=X4Z+I%*Y

The result of the function will be forced to the function type before
the value s substituted into the formula with the function call.

FOR_LOOPS (Integer) J

The Joop variable in a FOR loop can be an integer as well as a single
precision number. Attempting to use a string or double precision vari-
able as the Toop variable will cause a Type Mismatch error to occur.
Integer FOR loops are about three times as fast as single precisfon FOR
loops. If the addition of the increment to the loop variable gives a
result that is too big to be an integer, an overflow error will occur. The
initial loop value, increment value and the final value must all be in the
legal r:nge for integers or an overflow error will occur when the FOR is
executed,

Example: 1 FOR I%=20000 TO 30000 STEP 20000
2 PRINT I%
3 NEXT 1%
RUN
20000
OYERFLOW IN 3
0K

8

NEW ERROR MESSAGES

These messages replace the old error messages T1sted in APPENDIX C {p. 53) of
the BASIC manual.

NEXT WITHOUT FOR

SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL FUNCTION CALL
OVERFLOW

QUT OF MEMORY

UNDEFINED STATEMENT
SUBSCRIPT QUT OF RANGE
REDIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

QUT OF STRING SPACE
STRING TOO LONG

STRING FORMULA TOO COMPLEX
CAN'T CONTINUE
UNDEFINED USER FUNCTION

C

Examples: 10 GOTO 50
RUN
UNDEFINED STATEMENT IN 50
0K
PRINT 1/0
(-/ DINISION BY ZERQ
0K

ADDITIONAL NOTES ON EXTENDED BASIC

PEEK & POKE In the 8K version of BASIC you can't PEEK at or POKE
into memory locations above 32767. In the Extended
version this can be done by using a negative argument.
If the address to be PEEKed or POKEd {s greater than
32767, subtract 65536 Trom 1t to give the proper

argument.
Examples: to PEEK at 65535 PEEK{-1)
to POKE at 32768 POKE -32768,1%
INT The INT function will work on numbers both

single & double precision which are too large to
be integers., Double precision numbers maintain
full accuracy. (see CINT)

Examples: INT(1E£38)=1E38

INT{123456789.6}=123456789

C 8

ADBITIDNAL NOTES (comt.} (miscellaneous)
Extended BASIC uses 10.2K of memory to reside.
String space is defaulted to 100 in the Extended version.
A comma before the THEN in an IF statement 1s allowed.

USR pass routine [4,5] passes in [H,L] not [D,E], and the pass back routine
[6,75 recefives in [H,L] not [A,B].

Files CSAVEd in 8K BASIC cannot be CLOADed in EXTENDED BASIC, nor the opposite.
UPDATE TO EXISTING MATERIAL

In cassette BASICs (both 8K* and Extended}, CLOAD? some character file name,
reads the specified file ard checks it against the file in core. If the
f1les do not match, the message "NO GOOD® is printed. If they do match,
BASIC returns to command level and prints "OK".

In the Extended version of BASIC, active FOR loops (integer or single
precision) require 17 bytes.

Each non-array ('Etring “Jvariable uses [& | bytes.
integer 5
double 11
precision
single 7
precision
TE{S is because- 1t takes 3 bytes to store the name of a vari-
able.
Each array uses: (# of elements)* [INT=2| +6+2*(# of dimensions).
DBL=8
STR=3
SNG=4

Examples:
1£(10} uses (11%2)+6+{2*1)=30 bytes
1{5,5) uses {6*G*§)+6+{2*2}=154 bytes
Stored programs take exactly the same amount of space as in the 8K version of

BASIC, except the reserved word ELSE takes 2 bytes instead of 1 byte as with
the other reserved words.

UPDATE TO EXISTING MATERIAL
pplies to 8K versions 3.Z and later.)

In both Extended & 8K* BASIC, if a number {s between »>=1£-2 and <IE-1,
the number will be printed as:

LOXXXXXX (trafling zeros suppressed)
instead of X, XXXXXXE-2

An 8K BASIC program should run exactly the same under Extended BASIC.
No conversion should be necessary.

USRLOC in extended is:

101 octal=65 decimal,
sti11 111 in 8K and 4K to load.

EXTENDed:

{Non-disk} location D02 in the BOOT
should be 57 (BK=37, 4k=17)

UPDATE TQ EXISTING MATERIAL
{AppTies to page 57 of version 3.2 and later.)

Each active GOSUB takes 5 bytes.
Each active FOR loop tzkes 16 bytes.

87

EDIT COMMAND

The EDIT command is for the purpose of allowing modifications and additions
to be made to existing program 1imes without having to retype the entire
Tine each time.

Commands typed in the EDIT mode are, as a rule, not echoed. Most commands
may be preceded by an optional numeric repetition factor which may be used
to repeat the command a number of times, This repetition factor should be
In the range 0 to 255 {0 1s equivalent to 1). If the repetition factor is
omitted, 1t 1s assumed to be 1. In the following examples a lower case
"n" before the command stands for the repetition factor.

In the following description of the EDIT commands, the "cursor” refers to
& pointer which is positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the line and hit the
carriage return. The line number of the 1ine being EDITed will be printed,
followed by a space. The cursor will now be positioned to the left of

the first character in the line.

NOTE: The best way of getting the "feel" of the EDIT command is to try
EDITing a few lines yourself. Commands not recognized as part of
the EDIT commands will be ignored.

MOVING THE CURSOR

A space typed in will move the cursor to the right and cause the character
passed over to be printed out. A number preceding the space {nS) will
c:use the cursor to pass over and print out the number (n) of characters
chosen,

INSERTING CHARACTERS

I Inserts new characters into the line being edited. After the
I is typed, each character typed in will be inserted at the
current cursor position and typed on the terminal. To stop
insert}ng characters, type "escape® (or Alt<mode on some ter-
wminals].

If an attempt is made to insert a character that will make

the 1ine longer than the maximum allowed (72 characters),

a bell will be typed {control G} on the terminal and the

character will not be inserted.

WARNING: It is possible using EDIT to create a 1ine which,
when listed with its 1ipe number, is Jonger than
72 characters. Punched paper tapes containing such
11nes will not be read in properly. However, such
lines may be CSAVEd and CLOADed without error.

J

INSERTING CHARACTERS (cont.)}

+ A backarrow (or underlfne) typed during an insert command will
{or_) delete the character to the left of the cursor. Characters
up to the beginning of the 11ne may be deleted in this manner,
and a backarrow will be achoed for each character deleted.
However, 1f no characters exist to the Teft of the cursor, a
bell s echoed {nstead of a backarrow.

If a carrlage return is typed during an insert command, it
wi1l be as if an escape and then carriage return was typed.
That 1s, all characters to the right of the cursor will be
printed and the EDITed 1ine will replace the original line.

X X is the same as I, except that all characters to the right
of the cursor are printed, and the cursor moves to the end
of the line. At this point it will automatically enter the
{nsert mode (see I command).

X 1s very useful when you wish to add a new statement to the
end of an existing line. For example:

Typed by User EDIT 50 (carriage return)
Typed by ALTAIR 50 A=X+1:Y=Y+]
Typed by User X :Y=¥+1 {carriage return)

In the above example, the original 1ine #50 was:
50 X=X+1i
The new EDITed line #50 will now read:
50 X=X+1:¥=Y+]
H H is the same as I, except that all characters to the right
of the cursor are deleted (they will not be typed}. The insert
mode (see I command) will then automatically be entered.

H is most useful when you wish to replace the last statements
on a line with new ones.

DELETING CHARACTERS

D nD deletes n number of characters to the right of the cursor. If
less than n characters exist to the right of the cursor, only that
many characters will be deleted. The cursor is positive to the
right of the last character deleted. The characters deleted are
enclosed in backslashes (\). For example:

Typed by User 20 X=X+1:REM JUST INCREMEKT X
Typed by User EDIT 20 {carrfage return)

Typed by ALTAIR 20 AX=X+)1:\REM JUST INCREMENT X
Typed by User 60 (carrfage return)

The new 1ine #20 will no longer contain the characters which
are enclosed by the backslashes.

SEARCHING

) The nSy command searches for the nth occurance of the character K')
¥ in the 11ine. The search begins at the character one to the
right of the cursor, A1l characters passed over during the
search are printed. If the character is not found, the eursor
will be at the end of the line. If it is found, the curser wiil
stop at that point and all of the characters to its left will
have been printed.
For example;
Typed by User 50 REM IMCREMENT X
Typed by User EDIT 50
Typed by ALTAIR 50 REM INCR
Typed by User 2SE
K nky is equivalent to S, except that all of the characters
passed over during the search are deleted. The deleted char-
acters are enclosed in backslashes. For example:
Typed by User 10 TEST LINE
Typed by User EQIT 10
Typed by ALTAIR 10 NTESTY
Typed by User KL
TEXT REPLACEMENT _)
C A character in a line may be changed by the use of the ¢ command,
Cy, where y is some character, will change the character to the
right of the cursor to y. The y will be typed on the terminal
and the cursor will be advanced one position. nly may be used
to change n number of characters in a line as they are typed in
from the terminal. {(See example below.}
If an attempt 1s made to change a character which does net exist,
the change mode will be exited.
Example:
Typed by User 10 FOR I=1 TO 100
Typed by User EDIT 10
Typed by ALTAIR 10 FOR I=1 TO 256
Typed by User 251 3C256
ENDING AND RESTARTING
Carriage Return Tells the computer to finish editing and print the re-
mainder of the line. The edited line raplaces the origfnal
line,
E E is the same as a carriage return, except the remainder
of the line 1s not printed. o

) Quit. Changes to a line do not take effect until an L
or carriage return is typed. Q allows the user to restore
the original line without any changes which may have been
made, 1f an E or carriage return has not yet been typed.
YOK" will be typed and BASIC will await further commands.

L Causes the remainder of the Vine to be printed, and then
prints the 1ine number and restarts EDITing at the begimming
of the 1ine. The cursor will be positioned to the left of the
first character in the 1ine.

L is most useful when you wish toc see how the changes in a 1ine

/ look so that you can decide if further EDITs are necessary.
Example:
Typed by liser EDIT 50
Typed by ALTAIR 50 REM INGCREMENT X
Typed by User 25M L
Typed by ALTAIR 50
A Causes the original copy of the line to be restored, and EDITing
to be restarted at the beginning of the 1ine. For example:
Typed by User 10 TEST LINE
Typed by User EDIT 10
Typed by ALTAIR 10 A\TEST LINEN
Typed by User iob A
Typed by ALTAIR 10

In the above example, the user made a mistake when he deieted
TEST LINE. Suppose that he wants to type "1D" instead of “10D"
By using A command, the original line 10 is reentered and is
ready for further EDITIng.

IMPORTANT

Whenever a SYNTAX ERROR 1s discovered during the execution of a source
program, BASIC will automatically begin ERITing the 1ine that caused the
error as if an EDIT command had been typed. For Example:

10 APPLE

RUN

SYNTAX ERROR IN 10
10

Complete editing of a line causes the line edited to be re-inserted.
Re-1nserting a Tine causes all variable values to be deleted, therefore
you may want to exit the EDIT command without correcting the line so that
you can examine the variable values.

This can be easily accomplished by typing the { command while in the EDIT
mode. If this is done, BASIC will type 0K and all variable values will
he preserved.

]|

PRINT USING

The PRINT USING statement can be employed in situations where a specific
output format is desired. This situation might be encountered in such
applications as printing payroll checks or an accounting report. Other
uses for this statement will become more apparent as you go through the
text.

The general format for the PRINT USING statement is as follows:
(1ine number) PRINT USING <string>; <value list>

The "string" may be efther a string variable, string expression or a string
constant which 1s a precise copy of the 1fne to be printed. A1l of the char-
acters 1in the string will be printed just as they appear, with the exception
of the formatting characters. The "value 1ist" is a list of the items to

be printed. The string will be repeatedly scanned until: 1} the string ends
and there are np values in the value 1ist 2) a field is scanned in the string,
but the value 1ist is exhausted.

The string should be constructed according to the following rules:
STRING FIELDS

! Specifies a single character string field. {The string itself
is specified in the value 1ist.)

yvm spaces\ Specifies a string fleld consisting of 2+n characters. Backslashes \.)
with no spaces between them would {ndicate a field of 2 characters
width, one space between them would indicate a field 3 characters
in width, etc.

In both cases above, 1f the string has wmore characters than the field width,
the extra characters will be ignored. [f the string has less characters
than the field width, extra spaces will be printed to 111 out the entire
fleld.

Trying to print a number in a string field will cause a TYPE MISMATCH error
to occur.

Example: 10 A$="ABCDE" :B$="FGH"
20 PRINT USING "!";A$,B%
30 PRINT USING "\ \";B$,A$

(the above would print out)

AF
FGH ABCD

Note that where the "!" was used only the first letter of each string was printed.

Where the backslashes were enclosed by two spaces, four letters from each string

were printed {(an extra space was printed for Bf which has only three characters).

The extra characters in the first case and for A in the second case were ignored. _)

92

NUMERIC FIELDS

With the PRINT USING statement, numeric prin-outs may be altered to suit almost
any applicatfons which may be found necessary. This should be done according
to the following rules:

Numeric fields are specified by the # sfgn, each of which will
represent & digit position. These digit positions are always
filled. The numeric field will be right justiffed; that is,
if the number printed 1s too smal] to i1l all of the digit
positions specified, leading spaces will be printed as necessary
to fi171 the entire field.

. The decimal point positfon may be specified in any particular
arrangement as desired; rounding is performed as necessary.
If the field format specifies a digit is to precede the decimal
point, that digit will always be printed {(as 0 if necessary).

The following program will help 11lustrate these rules:

10 INPUT A$,A

20 PRINT USING A$;A
30 GOTO 10

RUN

? ##,12

1z

T #H,12
1z

? FHEEF, 12

1z
THE.##,12
12.00
T ##f.,12

2.

? 4.#44,.02
0.020

T ##.4,2.36
&Y

+ This sign may be used at efther the beginning or end of the
numeric field, and will force the + sign to be printed at
either end of the field as specified, 1f the number is positive.
If it 1s used at the end of the field, and the number is negative,
a -sign will be forced at the end of the number.

- The - sign when used at the end of the numeric field designatian
will force the sign to be printed trailing the number, if it is
negative. If the number 1s positive, a space is printed.

NOTE: There are cases where forcing the sign of a number to
be printed on the tralling sfde will free an extra space
for Teading digits. (See exponential format.)

93

lalad The ** placed at the beginning of a numeric field designation will _)
cause any unused spaces 1n the leading portion of the number
printed out to be filled with asterisks. The ** also specifies
positions for 2 more digits. (Termed "asterisk F111")

3 When the $3 s used at the beginning of a numeric field desfgnatfon,
a 5 s1gn will be printed in the space ifmmedfately preceding the
number printed. Note that the $$ also specifies positions for
two more digits, but the $ itself takes up one of these spaces.
Exponential format cannot be used leading $ signs, nor can nega-
tive numbers be output unless the sign is forced to be trailing.

whg The **$ used at the beginning of a numeric field designation
causes both of the above (** & $3) to be performed on the number
being printed out. A1) of the previous conditions apply, except
tﬂat$**? allows for 3 additional digit positions, one of which 1s
the ¥ sign.

. A comma appearing to the left of the decimal point im a numeric
field designation will cause a comma to be printed every three
digits to the left of the decimal pofnt in the number being
printed cut. The comma also specifies another digit position.

A comma to the right of the decimal point in a numeric field de-
signation s considered a part of the string itself and will be
treated as a printing character.

1t Exponential Format. If the exponential format of a number is ‘-)
desired in the print out, the numeric field designation should
be followed by t111t (allows space for EiXX). As with the other
formats, any decimal point arrangement is allowed. In this case,
the significant digits are left justified and the exponent is
adjusted.

% If the number to be printed out is larger than the specified numeric
fleld, a % character will be printed and then the number {tself
Tn its standard format. (The user will see the entire number.)
If rounding a number causes it to exceed the specified field,
the % character will be printed followed by the rounded number.
{Such as field= .##, and the number is .999 will print % 1.00.)

It the number of digits specified exceeds 24, a FUNCTION CALL error will occur.
Try going through the following examples to help 11lustrate the preceding
rules. S? single program such as follows fs the easiest method for learning
PRINT USING.

94

Examples: Type the short program intc your machine as it is
listed below. This program will keep looping and
allow you to experiment with PRINT USING as you
go along.

Program: 10 INPUT a§,A
20 PEINT USING AS:A
30 GOTO 10
RUN

The computer will start by typing a ?. Fill in the numeric
field designater and value list as desired, or follow along
below,

? +4,9
+
? +4#,10
Z+10
? O##,-2
-2
? o+, -2
-2
? #,-2
%2
? +.iEE,.02
+.020
? #E#4.4,100
.o
T OEE,2
o+
? THIS IS A NUMBER #it,2
THIT IS A NUMBER 2
? BEFORE ¥# AFTER,12
BEFORE 12 AFTER
T OHHHE, 44444
Zluyyy
? *¥E4,1
***l
T ORRYH 12
i*le
7 *eiE,123
*123
7 k4, 1234
123y
? *kgd 12345
%12345
7 **'1

PorRRdeE, L

Akhx],

{note: not floating $) T SHERE. H¥,12.34
4 12.34
{note; floating $) P OBSREEYSLER 12,56
al2. 5k
? §5.4%,1.23
*1.23
? $5.4#,12.24
“%12 .34
? SSHER,0.23
0
7 OSEHARE.HE,O
50.00
7 ORESREN.HH,1.23
*hxxg],, 23
T ORES_H,L1.23
*51.23
7 OAASERE,L
***ﬁ‘l

E_

7 ##TTIT,2

2E+00

7 ##1111,12

LE+0L

7 ERBHE RA#TTTT, 2.45678
245k, 7ADE-03

7 oR.HERTTTT, 123
0-1i23+03

7 F.HATTTT,-123
--1l2e+03

7 HEBis, 484, ¥,1234567.89
1.234.567.9

APPENDIX A SUPPLEMENT

HOW TO LOAD BRSIC

For BASIC wersions 3.2 and later, the load procedure has been updated to
allow the use of the new I/0 bhoards (25I0 & 4PIC}, the old 88-PIO board,
and more general channel assignments.

Location 001 of the bootstrap loaders listed in APFENDIX A must be changed
from 175 to 256 to load BASIC versions 3.2 and later. For the older ver—
slons of BASIC, the location ghould be left at 175,

For EXTENDED BASIC, location 002 (set at 0l7 for 4K & 037 for 8K} should
be set at 057.

The checksum loader has a new error message "M" which indicates that the
data that was loaded into memory did not read back properly (see step 22
on page 50 of APPENDIX A). Loading into non-exisgtent, protected or mal-
functioning memory can cause this to occur. The new error message will
alsc be sent repeatedly, instead of only once. The message is sent on
channels 1, 21 and 23; so, if no terminal device is on one of these three
channels, the panel lights must be examined to see if a checksum error has
occured.

Error Detection

The new checksum loader {BASIC versions 3.2 & later) will display X7647
on the address lights when running properly. (X above will be O for 4K
BASIC, 1 for 8K or 2 for EXTENLED.)}

When an error occurs (checksum "C"-bad tape data, memory "MM-data won't
store properly, overlay "O"-attempt to load over top of the checksum
loader) the address lights will then display %7637. The ASCII error
code will be stored in the accumulator (a).

More simply, A5 should be on with A4 & A2 off during proper loading.
When an error occurs, AS will turn off and A4 & A3 will turn on.

Load options

OCTAL STATUS BITS OCTAL
LOARD DEVICE SWITCHES UP CHANNELS ACTIVE MASKS
5I0A,B,C (not REV. O} none a,l low 1/200
ACR 215 {and 6,7 low 1/200

terminal opts.)

5I08,B,C (REV 0) Al4 0,1 high 40/2
88-PIC Al3 0,1 high 271
4PIO Al2 20,21 high 100/100
28I0 all fand Al0 20,21 high 1/2

up=lstop bit
down=2 gtop bits) 87

There are six different bootstrap loaders, one for sach of the six types
of I/0 boards listed in the Load Option chart. Be sure that you use the
correct one for your particular board.

If the load device is an ACR, the Terminal Options (see second chart)
can be set in the switches (along with AlS) before the lcading is done.
If AlS is get, the checksum loader will ignore all of the other switches
and BASIC will ignore AL5,

If the load device and the terminal device are not the same, and the load
device is not an ACR, then only the load options should be set before the
locading. When the load completes, BASIC will start-up and try to send a

message Lo the load device. STOP BASIC, EXAMINE LOCATION 0, SET THE TER-
MINAL OPTION SWITCHES, AND THEN DEPRESS RUN.

If the initialization dialog hasn't completed, evervtime BASIC is restarted
at zero, it will examine the sense switches and reconfigure the terminal
input/cutput options. Once the initialization dialog i complete, the
gense aswitches are no longer examined and the 1/0 configuration is fixed
witil BASIC is relcaded.

Terminal Options

TERMINAL DEVICE SWITCHES UP QCTAL CHANMEL DEFAULT
5ICA,B,C (not REV O} none a,1

SIOA,B,C (REV 0) al4 G,l

B8-PIO al3 0,1

4PI0 R12 20,21 {(INPUT)

22,23 (OUTPUT)

2510 All 20,21 (Al0 up=1 stop bit
down=2 gtop bite)

The default chdnnels listed above may be changed as desired by raising
A8 and storing the lowest channel number (Input flag channel) in one
of the following locations: 7777 (ocetal)l for 4K BASIC
17777 (octal) for 8K BASIC
27777 {octal) for EXTENDED BASIC
(non-disk version)

NOTE: The "Input flag channel" may also be refered to as the "control
channel” in other ALTATR documentation.

The above information is useful only when the load device and terminal
device are not the same. During the load procedure AS will be ignored;
therefore, the board from which BASIC iz loaded must be strapped for the
channeéls listed in the load Option chart.

The following page contains three new bootstrap loaders for the 88-PI0,
4PIO and 25I0 boards. The conditions for using the other loaders listed
in APPENDIX A are given at the beginning of this supplement.

C

C

B8-PIO (for versions 3.2 ¢ latex only)

OCTAL ADDRESS

OCTaAL CCODE

[elily}
001
002
Q03
o04
0G5
06
on7?
0lo
Ccl11
012
013
014
015
0le
a1y
020
021
022
023
024

041
256
017
OBl
023
000
333
[sl4]e}
346
040
310
333
01
275
310
035
147
00
351
a03
QQo

{(for 4K, 37 for 8K, 057 for EXTENDED)

HOTE: Switch A13 should be up:
B8-FIQ should be strapped
for channels 0,1.

2870 (for versions 3.2 & later only)

OCTAL ADDRESS

Q00
o0l
ooz
003
004
005
Qo6
oo?
010
011
01z
o013
014
15
0le
o17
020
ozl
02z
023
024
025
026
027

OCTAL CODE OCTAL ADDRESS OCTAL CODE
Q76 030 300
0a3 031 351
323 032 013
Q20 033 000
a7e
D21 (=2 stop bits,
323 025=1 stop bit)
az0
041
256
017 (for 4K, 037 for 8K, 057 for EXTENDEDR)
061
032 .
8+1s] NOTE: Switch All should be up;
333 If the 25I0 alsc is the
20 terminal device, set Al0
17 up for 1 stop bit ox down
320 for 2 stop bits. The 25I0
333 should be strapped for
021 channels 20,21,
275
310
055
167

4PI0 (for wversions 3.2 & later only}

OCTAL ADDRESS OCTAL CODE

Q00 2R7
slex} 323
002 20
003 slsl¢}
004 323
ooh 021
[uln] 3 Q76
007 004
010 3213
0l1 Q20
olz 041
013 256
014 Q17 (for 4K, 037 for BK, 057 fox EXTENDED)
015 o0&l
016 035
L7 000
020 333 NOTE: Switch R12 should be up.
021 020
022 46
023 100
024 310
025 333
026 021
027 278
030 310
031 055
Q32 167
033 300
034 351
035 01%
Q36 000

The following three programs are echo programs for the 88-P10, the 4PIO
and the 22I0 boards.

If you wish to test a device that does Input only, dump the echoed
characters on a faster device or store them in memory for examination.

For an Qutput only device, send the data in the sense switches or some
constant for the test character. Make sure to check the ready-to-receive
bit before deoing output.

If the eche program works, but BASIC doesn't; make sure the load device's
UART is strapped for 8 data bits and that the ready-to-receive flag gets
set properly on the terminal device.

100

@

ECHO PROGRAMS:

88-PIO

OCTAL ADDRESS OCTAL CODE

ooon 333
001 [ea]e}
a0z 346
Q03 040
004 312
005 ¢li]
Q06 040
2510
OCTAL ADDRESS OCTAL COLDE
ago G
001 003
0az2 323
003 020 (flag ch.)
oD4 0%
0os 021 {1 st. bt.,
006 323 025 for 2)
007 020
010 333
011 020
QL2 017
4PIC
QOCTAL ADDRESS QCTAL CODE
Q00 257
Qo1 323
[¢lo)] 020
Qa3 323
04 021
Q05 323
006 naz
Qa7 057
QLo 323
011 0212
012 a76
L3 Q04
0l4 323
015 0z0
0lé 323
Q17 022
020 333
021 020
Q22 346
023 100

OCTAL ADDRESS QOCTAL CODE
Q07 333
010 ool
Dl1 323
012 0ol
013 303
014 Q00
015 000
OCTAL ADDRESS QOCTAL CODE
013 322
014 0lo
015 000
0le 333
o017 021 {data ch.)
020 323
021 021
022 303
023 010
024 000
OCTAL ADDRESS OCTAL CODE
024 312
Q25 Q20
026 00
027 333
030 022
031 346
032 100
033 31z
034 0z7
035 000
036 333
037 0z1
040 323
041 023
042 303
a43 020
044 0o

01

A

2450 Alamo SE
Albuquergque, NM 87106

58-4M°§
PARTS LIST
. JAPRIL, 1976
< as «f Tuly 157
LAG 1 BAG 6
Z 741300 101069 3 6-32 x 3/8" Screw 100925
1 741504 101042 1 $#6-32 Nut 100933
3 741813 101124 1 #6 Lock Washer 100942
2 741814 101123 1 Heat Sink (Large) 101870
2 74367 101040 ¢ TFerrite Reads 101876
1 7805 101074
BAG 7
BAG 2 -
34 16 Pin Socket 102103
32 21024-4 101107 8 14 Pin Socket 102102
1 Dip Switch (4~8PDT) 102321
2 Card Guides 101714
bag 3 1 100 Pin Connector 101864
42 1MF 12-16V 100348
MISC,
BAG 4 1 P.C., Board 100187
. 1 4MCS Mammal 101533
(_/. 2 LO0IMF 16V-1KV 100321
1 uF 20v 100325
3 33MF 16V 100326
BAG 5
| \-11'.5- eyt Eu \017?7
1 4 Ohm 5W.10% 102007
2 100.0hm 3W 107 101924
2 2,2 & 10% 101945

