
Arrays of Objects
Morten Kromberg 

Dyalog Ltd. 
South Barn, Minchens Court, 

 Minchens Lane, Bramley RG26 5BH, UK 
+44 1256 830 030 

mkrom@dyalog.com 

  

ABSTRACT 

This paper discusses key design decisions faced by a language 

design team while adding Object Oriented language features to 

Dyalog, a modern dialect of APL. Although classes and interfaces 

are first-class language elements in the new language, and arrays 

can both contain and be contained by objects, arrays are not 

objects. The use of object oriented features is optional, and users 

can elect to remain entirely in the functional and array paradigms 

of traditional APL. The choice of arrays as a “higher” level of 

organization allows APL‟s elegant notation for array manipulation 

to extend smoothly to arrays of objects. 

Categories and Subject Descriptors 

D.3.2 [Programming Languages]: Language Classifications – 

Object-oriented languages, APL; D.3.3 [Programming 

Languages]: Language Constructs and Features –classes and 

objects, data types and structures, patterns.  

General Terms 

Algorithms, Performance, Design, Economics, Reliability, 

Experimentation, Human Factors, Languages, Theory. 

Keywords 

Arrays, Object Orientation, Functional Programming, Multi-

paradigm Languages, Language Design. 

1. INTRODUCTION 
“APL is a mistake, carried through to perfection. It is the 

language of the future for the programming techniques of the 

past: it creates a new generation of coding bums.” Edsger 

Dijkstra, 1975. [6] 

It is hard to be sure what Edsger Dijkstra was so unhappy about, 

but it is clear that APL was not invented as a notation for the 

description of loops, tree traversals and other algorithms that 

traditional “Computer Science” wants to teach. APL is a very 

simple notation designed by Dr. Kenneth E. Iverson, a 

Mathematician, as an extensible “domain oriented notation” for 

describing operations on arrays of data. [3] 

 

 

 

 

 

1.1 Typical Uses of APL 
Users of APL tend to “live in their data”. Interactive interpreters 

allow them to inspect, almost feel their way forward, discovering 

successful snippets of code through experimentation and 

collecting them into imperative or functional programs according 

to taste. This does not mean that experienced APL developers 

who understand the task never plan ahead; they sometimes do 

“architect” and write pages of code without running them first 

(there do exist APL systems with more than a million lines of 

code), but the ability to stop a program at any point and return to 

experimentation is a key factor for those individuals who are 

attracted to the use of APL as a tool of thought. 

Many of the most successful APL programmers are domain 

experts from other engineering fields than computer science or 

software engineering; they are stock brokers and traders who 

became coders, actuaries and crystallographers, electrical and 

chemical engineers or other people who chose APL because it 

allowed them to convert ideas directly into an executable notation 

and create marketable products without learning “how to 

program” or (worse) complete and negotiate a requirement 

specification.  

The following examples will hopefully illustrate how APL can be 

used to explore a problem space. The user typically starts by 

extracting data from a source, in this case an Excel spreadsheet: 

   'XL' ⎕WC 'OLEClient' 'Excel.Application' 
   data←XL.ActiveSheet.UsedRange.Value2 

Commentary: ⎕WC  is a built-in system function which is used to 

create Windows objects (WC is short for Window Create). It is 

typically used to create forms and other GUI objects, but can also 

be used to create an OLE Client object. To avoid conflicts with 

user-defined names, all APL  primitive functions are denoted 

using non-alphabetic symbols, and all  system functions 

(corresponding to core library methods in other systems) have 

names which begin with the symbol ⎕ (quad). The user proceeds 

to examine the data extracted from Excel: 

   data 
 Sales     [Null]  [Null]  
 Region  Quantity   Price  
 East          10    25  
 East           5    27.5  
 West          15    22  
 West          10    24  
 West          12    21  
 South         11    29 

In an APL session, user input is indented from the left margin 

(and in this article, will also be bold). Output starts at the margin. 



Referring to data without assigning the result causes APL to 

display the array in the session log. This paper will not explain all 

the details of the APL expressions shown. Further documentation 

is available free of charge in electronic form [4]. 

Imagine that our task is to calculate the average unit price by 

region. To do this, we need to compute the total sales value for 

each region and divide it by the number of units sold in the 

region. The user sets out by extracting the relevant data from the 

sheet into three variables: 

data←2 0↓data 
   ↓data 
 East 10 25  East 5 27.5  West 15 22 … 
   region quantity price←↓[1]data 

As most of the symbols used in APL, the down arrow (↓) has two 

flavours: When called with a left argument it is called drop. The  

2 0↓ means drop 2 rows and 0 columns from the (two 

dimensional) right argument. When called without a left 

argument, ↓ is called split, and removes a dimension of the right 

argument by splitting the array into nested elements “along” that 

dimension. 

Above, the user drops the 2 title rows from data. He splits data but 

discovers that the default is to split along the last dimension, 

while he wanted to split the array into individual columns. This is 

done by identifying the axis which is to be removed in square 

brackets following the function symbol (↓[1]). Finally, each 

column is assigned to the three variables, which are (in some 

ways) more convenient to use than the original matrix. To get 

comfortable with the new variables, the user performs a couple of 

experimental calculations and selections: 

⊃region (quantity×price) 
 East   East  West  West  West  South  
  250  137.5   330   240   252    319 
   (region∊'West' 'South')/quantity 
15 10 12 11 

The function mix (⊃) is the inverse of split, it joins the two arrays 

on the right (region, and the result of quantity×price) 

together, to form a two-row matrix (in this case, simply for 

display purposes). The final expression above performs a 

selection, displaying quantity for regions West and South. The 

users‟ next task is to find a way to do arithmetic “by region”: 

   region 
 East East West  West  West  South 
   ∪region 
 East  West  South  
   (∪region)⍳region 
1 1 2 2 2 3 

The symbol ∪  is the function unique, which finds the unique 

elements)  of its right argument.. The function index of, denoted 

by ⍳, returns the first position in the left argument where each 

element of its right argument is found. Having interactively 

developed a successful algorithm for classifying a vector, the used 

can now create a dynamic function from it, which is the equivalent 

of a lambda expression[7]: 

classify←{(∪⍵)⍳⍵} 

In its simplest form, a dynamic function is an expression within 

curly braces, within which the right argument is referred to as ⍵ 
and the left argument (if present) as ⍺: 

   classify region 
1 1 2 2 2 3 

Note that all APL functions, primitive or user-defined, have the 

same precedence and take the result of the entire expression to 

their right as an argument (as in mathematical expressions of the 

form f g h x). Arguments do not need to be parenthesized. Many 

functions also accept a left argument, which often does need to be 

in parentheses in order to force it to be completely evaluated 

before the function is called, as in: 

   (classify region) ⊂ quantity 
 10 5   15 10 12   11 

In the expression above, the function partitioned enclose (⊂) is 

used to cut the right argument into pieces according to the result 

of (classify region). The user has realized that he can 

compute region sums by applying the plus reduction (+/) to each 

partition using the each operator (¨): 

   +/¨ (classify region) ⊂ quantity 
15 37 11 

Reduction  (/) is an operator, which has the effect of inserting 

function to its left between each element of a list. For example, 

(+/1 2 3) is equivalent to (1+2+3), and (×/1 2 3) is 

equivalent to (1×2×3). 

On a roll now, our user defines a function to do the regional sum 

for any argument which has the same length as the region 

variable: 

   sumReg←{+/¨(classify region)⊂⍵} 
   sumReg quantity 
15 37 11 
   (sumReg quantity×price) ÷ sumReg quantity 
25.83333333 22.21621622 29 

In other words, the average price by region is the regional sales 

total divided by the regional number of units sold. 

The point of this example is not to suggest that the resulting 

expression is particularly elegant for this simple case. Some 

would argue that SQL might be a better choice for this simple 

calculation.   

Array purists will probably argue that naming the columns was a 

bad thing to do, because it removed our ability to apply the 

partitioned enclose to the original two-dimensional data matrix, 

and that we should re-factor the entire solution based only on 

data: 

regdata←(classify data[;1])⊂[1]0 1↓data 
   (∪region),regdata 
 East   10 5      25 27.5   
 West   15 10 12  22 24 21 
 South  11        29      

The first statement above uses the classification of the first 

column of data (regions) to partition the 2 columns containing 

quantity and price (0 1↓data). The result of this is stored in 

regdata,  a 2-column matrix with one row per unique region. 

The first column contains lists of prices, the second lists of prices 



(as can be seen in the result of the second statement above, which 

catenates unique regions to regdata). We can define a general 

function to compute weighted averages: 

wtdavg←{(+/⍺⍶⍵)÷+/⍺} 
   1 2 wtdavg 10 16 
14 

… and reduce each row of regdata using this function:  
   wtdavg/regdata 
25.83333333 22.21621622 29 

Since each row of regdata has two elements, the function is 

called once for each row, with the content of the two columns as 

the left and right arguments, respectively. 

It is interesting to compare the two alternative expressions that we 

have arrived at: 

(sumReg quantity×price) ÷ sumReg quantity 

wtdavg/ ({classify data[;1]) ⊂[1] 0 1↓data 

The first algorithm, where we have separated data by kind and 

named the groups, may appear more maintainable and flexible at 

first glance. Unfortunately, this approach is closely bound to the 

data structure given in this example. 

On the other hand, the more "array-oriented" algorithm can 

relatively easily be extended to other data structures, for example 

computing weighted averages of any three-column matrix 

containing keys, values and weights. If we were to add more 

information, either in the form of discounts and discounted prices, 

or other classifications than region, it is easy to reuse the 

expression or extend it to compute everything at once. Keeping 

the data together as columns of an array is key to the brevity and 

flexibility of the array-oriented solution. 

Hopefully, the example has illustrated the experimental nature of 

working with arrays that APL users take for granted. An object 

oriented APL implementation which removed this capability 

would not be tolerated. 

2. ARRAYS CONTAINING OBJECTS 
The preceding example did contain one use of an object, in the 

reference to XL.ActiveSheet.UsedRange.Value21. 

Dyalog supports the “classical” dot notation for navigation of 

internal and (in this case external) object hierarchies. The example 

uses a reference to a single Excel Range object, which has an 

array property called Value2 – which APL very comfortably turns 

into an APL array for manipulation by the APL user. No problems 

here. But let us take a look at what happens if we introduce an 

object based representation of data using a very simple Sale class 

with three fields: 

                                                                 
1 Dyalog supports COM and .NET objects on Windows platforms. 

Under Linux and Unixes, only internal objects are currently 

supported. 

:Class Sale 
    :Field Public Region 
    :Field Public Quantity 
    :Field Public Price 
 
    ⍷ make(r q p) 
      :Access Public 
      :Implements Constructor 
      Region Quantity Price←r q p 
    ⍷ 
     
:EndClass 

We can now “cast” each row of the data array into an instance of 

the Sale class using the following expression: 

     sales←{⎕NEW Sale ⍵}¨↓data 

The each operator (¨) is often used where other languages would 

use a loop. Here, an instance of Sale is created for each row of 

data. The result is an array of instances of Sale. 

2.1 Array.MemberName 
In order for the object representation to be attractive to APL users, 

they need to be able to make selections and computations as easily 

as before. In particular, each array of member data embedded 

within (any selection from) the array of objects needs to be as 

easily accessible as it was when all the data was held in an array. 

We want to be able to do things like partition sales.Price by 

sales.Region: 

   sales.Region 
 East  East  West  West  West  South  
   (classify sales.Region)⊂sales.Price 

 25 27.5   22 24 21   29  

Select by Region (and so forth): 

   selection←sales.Region∊⊂'East' 
   (selection/sales).Quantity 
10 5 

In order to provide APL users with easy access to the arrays of 

member data that are contained within an array of objects, we 

decided that an expression in the form array.member  should be 

mapped to each object contained in the array, rather than the 

member property of the array. This means that the language views 

arrays as a “higher” level of organization than objects. The arrays 

themselves have no named members – in this sense, arrays are 

not objects, as far as the APL user is concerned. 

The only generally available language that we are aware of which 

uses the dot in this way is SQL, where names in the form 

table.column can be viewed as a reference to the “column” 

property of all the records contained in the “table” array. One 

wonders whether it is relevant, or merely a curiosity, that early 

work on SQL (prototypes of IBM‟s “System R”) were modeled in 

APL, back in 1977 [2]. 

An experimental extension to C# called C⍵ [1] supports 

generalized member access to streams, which are described as 

structural types. As Dyalog, C⍵ maps a name following the dot to 

each element of the stream2. Thus, the semantics of the dot vary 

depending on the type of object, and this seems problematic. 

                                                                 
2 I learned of C⍵ from one of my reviewers – thanks! 



There is also a scripting language for the Macintosh called f-script 

which embeds an APL-inspired extension to Smalltalk called 

OOPAL, which has similar capabilities to the above, but uses a 

notation derived from Smalltalk [5]. 

2.2 Array.(Expression) 
An expression of the form Array.MemberName can be explained 

as the evaluation of MemberName in the context of each element 

of Array. A natural extension to this is to evaluate any 

parenthesized expression following the dot within the same 

contexts, for example: 

   sales.(Price×Quantity) 
250 137.5 330 240 252 319 

If we allow this, we can retain most of the expressive power of the 

pure array solution. Say we want to apply a volume-based 

discount in the East region. We select the relevant records: 

   eastsales←(sales.Region∊⊂'East')/sales 
   eastsales.(Price Quantity) 
25 10  27.5 5 

We have collected references to sales in region East into a smaller 

array called eastsales, and inspected the price and quantity. 

   eastsales.(Quantity+.≥10 20) 
1 0 

The inner product f.g is defined as the f reduction of the result of 

the application of g. Logical functions like ≥ return 0 for false and 

1 for true, so the +.≥ above counts the number of elements of the 

list (10 20) which each Quantity is greater than or equal to (10 

is greater than 1 value, 5 is greater than 0 values). Below, we 

adjust the price by 0, 10 or 20%, and check the results. 

  eastsales.(Price-←0.1⍶Quantity+.≥10 20) 
  ⊃eastsales.(Region Price Quantity) 
 East  22.5 10 
 East  27.5  5 

This interpretation of a parenthesized expression following the dot 

provides functionality similar to the map operators in Python, 

Mathematica, Ruby and others. In Ruby, we could write 

sales.(Price×Qty) as:  

sales.map { |item| item.Price * item.Qty } 
 
Indeed, Dyalog itself provides an almost identical mechanism to 

that of Pythons map: 

 

   {⍵.Price×⍵.Quantity}¨sales 
 
The each operator (¨) applies the function to its left to each 

element of the data argument (or arguments, if a left argument is 

also supplied). 

 

We feel that the simplification provided by direct references to 

members within a parenthesized expression is a significant one, 

making the notation a better tool of thought for data exploration 

without the “unnecessary” reference to item or (in Dyalog) ⍵. 

 

2.3 Array.(Expression1).(Expression2) 
Dotted expressions can be nested: If the result of 

Array.Expression1 is an array of objects, then Expression2 is 

mapped to the elements of that array. Nested expressions may 

result in nested results3: 

XL.(⌷Workbooks).(⌷Sheets).UsedRange.Count 
┌→─────────────────────────────────┐ 
│ ┌→────┐ ┌→─────┐.┌→────────────┐.│ 
│ │1.1.1│ │75.1.1│.│38.924.116.36│.│ 
│ └~────┘ └~─────┘.└~────────────┘.│ 
└∊─────────────────────────────────┘ 
The function all from (⌷) extracts all the items of an enumerable 

object into an array. In the above example, Excel had three 

workbooks open, the first one seems to have three empty sheets 

(Excel seems to think that even an empty sheet has one cell), the 

second has 75 used cells in the first sheet, and the third workbook 

has four sheets, all of which contain some data. Because arrays 

were returned at two levels in the dotted expression (XL, 

UsedRange and Count all return a single item), the result has two 

levels of nesting, the outer level corresponding to workbooks and 

the inner to sheets. 

Although Dyalog only supports internal classes from version 11 

(released in October 2006), the current form of the dot notation 

dates back to the year 2000, when support for arrays of 

references was added. We wholeheartedly agree with the creators 

of C⍵ that “the power is in the dot”. 

It is probably also worth pointing out that, because the main focus 

of this paper is the notation used to access data embedded in 

objects, this paper only shows a few of the object-oriented 

features of Dyalog. In a nutshell, Dyalog objects are modeled after 

C# objects, with support for features like properties, events and 

attributes. Dyalog classes can consume and derive from any .Net 

class (& vice versa). 

2.4 Introducing New Names 
Dyalog takes a strict view of encapsulation; privacy is not 

implemented by convention, but policed by the interpreter. An 

attempt to reference a private member of a class or instance gives 

the standard VALUE ERROR that APL would report for any 

reference to an unassigned name4. 

However, APL developers are not accustomed to declaring 

variables before use, and many will find it hard to understand why 

they should not be allowed to create temporary variables for 

analytical purposes. For example: 

   sales.(discount←0.1⍶Quantity+.≥10 20) 
   sales.(amt←(Price⍶Quantity)-discount) 
   sales.amt 
223.9 137.5 329.9 239.9 251.9 318.9 

The temporary variables discount and amt which are created 

above are not injected into the actual instances of the Sale objects. 

The above expressions are not Contextual Class Extensions as 

described in [8], nor do they modify the class in the way that 

some hash-table-based object systems (like Python) allow. 

                                                                 
3 The result has been specially formatted to show its structure.  

4 None of the extensions described in this document have required 

any deviations from the ISO 8485 standard for APL. 



Ad hoc definitions are placed in a namespace5 which surrounds 

each instance. The user of a class can inject variables and 

functions into this space, without breaking the encapsulation of 

the underlying objects. These names can be used in expressions 

mapped to the object, and Dyalog system functions for inspecting 

metadata can be used to separate the different classes of names if 

required: 

      sales[1].({⍵,[1.5] ⎕NC ⍵} ⎕NL -2) 
 amt        2.1 
 discount   2.1 
 Price     ¯2.2 
 Quantity  ¯2.2 
 Region    ¯2.2  

The above displays the name and name class for all variables, 

fields or properties accessible within sales[1]. A name class of 

2.1 identifies an “ordinary” APL variable name, while ¯2.2 

indicates a field exposed by the underlying object hierarchy. 

An assignment to a public name exposed by the underlying object 

will be mapped to the named member. 

Note that it is possible to introduce variables (or functions) which 

have the same names as private members of the class. There is no 

ambiguity, as these names are not visible from the outside. 

2.5 Heterogenous Objects 
There is no requirement that all the objects in an array be of the 

same class. Even when all elements of an array have the same 

class, the mechanism described above allows names to be injected 

into selected elements. As a result, the elements of an array may 

not all expose the same names, and this can obviously lead to 

errors: 

   sales[1].xyz←99 
   sales[1 2].xyz 
VALUE ERROR 
   … 

In principle, these errors are no different from any other error that 

could arise during the mapping of a name or expression to the 

objects, and can easily be dealt with using selection based on the 

class of the name (nameclass not equal to zero): 

   hasxyz←sales.(0≠⎕NC 'xyz')/sales 
   hasxyz.xyz 
99 

… or using error guards, depending on the application. The 

following function returns the right argument (null) for any 

elements where the expression xyz fails: 

      sales.{0::⍵ ⋄ xyz} ⎕null 
99  [Null]  [Null]  [Null]  [Null]  [Null] 

Diamond (⋄) is the statement separator. The first expression in the 

above function declares an error guard (denoted by ::), which 

states that the right argument (⍵) should be returned on error code 

0 (any error). 

                                                                 
5 Dyalog namespaces date back to the previous millennium, and 

are perhaps best described as “classless instances” into which 

any APL variable or function can be dynamically injected. 

2.6 Expressions Mapped to External Objects 
The namespace surrounding each object in an array also provides 

an “evaluation space” in which the APL interpreter can execute 

APL expressions which refer to members exposed by external 

objects (for example, COM or .NET objects). This allows very 

easy application of APL syntax to external objects and arrays of 

these: 

   sheets←XL.ActiveWorkbook.(⌷Sheets) 

(form an array from the Sheets collection of the active workbook). 
   sheets.Name⍳⊂'Sheet2' 
2 
   sheets.('2'=¯1↑Name) 
0 1 0 

The first expression above refers to sheets.Name (resulting in 

a three-element array of character arrays), and searches for the 

name „Sheet2‟ (which is found in the 2nd position). The second 

expression executes the APL expression ('2'=¯1↑Name) in the 

context of each of the three sheet objects, resulting in a three-

element boolean list indicating whether the last element of each 

name is „2‟. 

Note that injection of APL variables is also allowed for external 

objects, as in the following expression. The creation of such a 

variable is not communicated to Excel, the new variable is held in 

the evaluation space which only exists within the Dyalog 

interpreter. 

XL.ActiveCell.(area←RowHeight⍶ColumnWidth) 

3.  EMPTY ARRAYS OF OBJECTS 
In the original design of the APL language, great care was taken 

to resolve edge conditions where an intermediate value is an 

empty array. For example, the sum of quantities greater than 1000 

(there are none) is zero: 

   +/(Quantity>1000)/Quantity 
0 

The general rule applied above is that the reduction (f/) of an 

empty array returns the identity element of f. Thus 0 is returned 

for +, 1 for ×, 0 for ∨ (or), 1 for ∧ (and), ¯1.797E3086 for ⌈ 

(maximum), and so on. This definition of reduction on an empty 

array is a consequence of the desire to maintain the following 

identity for associative f. 

    (f/X) f (f/Y)  ≡  f/ X,Y 

APL users would take a very dim view of object orientation if it 

had the side effect that, after 40 years of simplicity, application 

code needed to handle empties as a special case. In other words, 

we need: 

   north←(sales.Region∊⊂'North')/sales 
   +/north.Quantity 
0 

In classical APL (1966), resolving these problems was relatively 

straightforward, as the language only recognized two types, 

characters and numbers (the fact that “numbers” could be one-bit 

“booleans”, one-, two-, four- or eight-byte integers, floats or 

complex numbers, was an “optimization issue” for the interpreter 

to worry about). So-called second-generation APL systems (which 

                                                                 
6 The smallest IEEE double-precision floating point number. 



appeared around 1983) support nested arrays, in which any item 

of an array could be another array, for example: 

   data←('East'(1 2 3))('West'(4 5 6)) 

data is a 2-element array. Each of its elements contains a 2-

element array; the first of which is a 4-element character array 

(„East‟ or „West‟), the second a 3-element integer array (1 2 3) or 

(4 5 6). When zero items are selected from a nested array, 2nd 

generation APL systems remember the type and structure of the 

first element of the array and will subsequently use this to 

generate prototypical items if functions like take (↑) or expand (\) 

are applied to the empty array. The following expression takes 

zero elements from data to form an empty array, and then 

proceeds to take one element from the empty array: 

   DISPLAY 1↑0↑data 
┌→───────────────────┐ 
│ ┌→───────────────┐.│ 
│ │.┌→───┐.┌→────┐.│.│ 
│ │.│....│.│0.0.0│.│.│ 
│ │.└────┘.└~────┘.│.│ 
│ └∊───────────────┘.│ 
└∊───────────────────┘ 

DISPLAY is a library function which shows us structural 

information, so we can see that the result is a nested array with 

one element, it contains a nested array with two elements, and that 

the leaf arrays are a character array containing four blanks (a bit 

hard, but you can count them) and a numeric array containing 

three zeros. In other words, the type and structure of the first 

element of data has been preserved. This is not always ideal; 

many applications would actually be better off with the leaf arrays 

(at least those of type character) having zero elements – but it 

avoids special-casing empties in a lot of cases7. 

Given the successful track record of these strategies (40 years for 

the simple case and nearly 25 for the nested one), “all” we needed 

to do was to remember the class of the first element of the array 

from which nothing was selected, and come up with a definition 

of the prototypical element of a class. We briefly considered 

trying to generate “something appropriate” from the class 

definition, but given that classes can contain references to other 

classes – and the fact that the nested array prototypes are already 

only a partial success in many applications, we decided it would 

be better to let the class implementor define a suitable 

prototypical element. 

Dyalog defines the prototypical element of a class as a (new) 

instance of the class, created by calling a constructor which takes 

no arguments. Thus, to be able to work with empty arrays of 

instances of the Sale class, we need to add a constructor to the 

class which takes no arguments: 

    ⍷ make0 
      :Access Public 
      :Implements Constructor 
      Region Quantity Price←'' 0 0 
    ⍷ 

We are now able to work with empty selections from sales and 

have them behave as an APL user would expect: 

                                                                 
7 Some will argue that this is because APL is lacking a string 

datatype, but that discussion is worthy of a paper of its own. 

   +/(0/sales).(Price×Quantity) 
0 

In computing the above result, Dyalog created a prototypical 

instance, computed Price×Quantity, and subsequently 

applied “the usual rules” to create an empty array from this. 

The ability to manufacture fill elements also allows the user to 

create arrays of prototypes and fill in the details later: 

north←2↑0↑sales 
  north.Region←⊂'North' 
  north.(Quantity Price)←(10 22)(17 21.5) 
  sales←sales,north 

For classes which have one or more constructors which take 

arguments, the interpreter cannot take responsibility for 

manufacturing the prototypical instance, and the special prototype 

constructor must be defined. However, for simple classes, this is 

not necessary. For example, if we have the following class: 

:Class Point 
    :Field Public x←0 
    :Field Public y←0 
:EndClass 

We can handle empty Point arrays without further ado: 

   abc←⎕NEW¨3⍴Point 
   abc.(x y)←(0 0)(20 0)(0 10) 
   high←(abc.y>50)/abc 
   +/high.y 
0 

4. SELECTING DATA 
An important theme of much of our design work has been to 

ensure that primitive functions can be applied directly to data 

which has been embedded in objects. There are two drivers for 

this: First and foremost preservation of the expressive power of 

the language, secondly the performance of our interpreter, which 

is closely linked to the complexity of the syntax which needs to be 

parsed (once the parsing is done, the system is looping round the 

arrays involved in the expression, in highly optimized, compiled 

C). 

Some languages make a distinction between fields, which are 

members which contain values which can be directly manipulated, 

and properties, which are accessed through function calls, with 

optional selection criteria being passed as parameters to the getter 

or setter method. Properties have posed a couple of interesting 

challenges. 

Many popular languages support indexing of properties using 

square brackets  – including assignments in the form 

(instance.prop[i] = value). These languages translate such 

statements into calls to the getter or setter, passing the index as a 

parameter. 

In Dyalog, indexing is only one of a wide variety of selection 

mechanisms. This also applies to assignments; the language 

supports a general mechanism known as selective specification, in 

which most simple – and a gradually growing number of 

compound - selection expressions are allowed to the left of the 

assignment arrow. For example: 

   (3↑name)←'Mr.' 
   ((name='.')/name)←',' 
   (1 1⍉mat)←1 



The meaning of these three statements is: 1) Set the first three 

characters of name to „Mr.‟, 2) Replace full stops in name with 

commas, 3) set the elements on the diagonal of mat to 1. 

4.1 Triggers 
It appeared to us that properties have two important uses (as 

compared to fields): First, to allow a name to refer to data which 

is not simply an in-memory array, but needs to be retrieved, 

filtered or generated before being made available. Secondly, to 

allow an instance to react to the modification of a property, for 

example by updating the caption of a window or echoing the 

change to some form of permanent storage. 

The performance implications of going through get/set functions 

led us to believe that our users would probably favor fields over 

properties more often than users of other languages. 

In order to allow direct access to field values, but retain the ability 

to react to modifications, Dyalog allows a function to be declared 

as a trigger for one or more fields. The interpreter guarantees that 

the trigger will be called “a short time” after the field has been 

modified, at this point the documentation is deliberately vague 

and discourages users from writing code that might depend on the 

exact timing. 

4.2 Numbered vs. Keyed Indexers 
As previously mentioned, some object oriented languages allow 

properties to be indexed. From a performance point of view, 

indexing can be divided into two categories which we call 

numbered and keyed: Each index provided can either be a number 

(an integer) which directly identifies a “physical” position within 

a data array, or it can be a key (any array) which will be looked up 

in a list of keys and used to locate or manufacture the requested 

data.  

If we have an instance of a File class which has a Records 

property which is indexed using a record number and returns the 

array stored at that index in the file, then users of many languages 

(including Dyalog) would expect the expression 

iFile.Records[2] to make a single call to the getter to read 

the file. 

However, an APL user who wanted to read every third record 

would also feel that it was natural to write: 

    (iFile.Count⍴0 0 1)/iFile.Records 

The above creates a selection mask of length iFile.Count 

using the pattern 0.0.1, and uses that to compress the 

Records property. He might also want to supply an array of 

indices, and expect the following statement to make three calls to 

the getter, without having to write an explicit loop: 

    iFile.Records[3 6 9] 

Dyalog allows both of the above if a property is declared as being 

numbered, and the property also provides a shaper function in 

addition to the necessary getter and setter functions. In this case, 

selection primitives interrogate the shape, and proceed to compute 

the resulting indices without further reference to the object. The 

interpreter loops over the getter when the final index set has been 

found. In the current implementation, one call is made for each 

index, but it is envisaged that future releases will allow the class 

implementor to declare the rank of the getter and setter functions, 

and optionally handle multiple indices in a single call. 

For keyed properties, the array within square brackets is simply 

passed to the getter, and further selection operations can only be 

applied after the getter has returned the requested data. 

4.3 Default Numbered Properties 
Some object oriented languages support the notion of a default 

property, sometimes called an indexer, which allows indexing to 

be applied directly to the object. For example, if Records is the 

default property of the File class, then we can simply write 

iFile[2] as shorthand for iFile.Records[2]. 

This notation causes a problem in APL, because the reference to 

iFile – in the same way as the number 2 - is an array with zero 

dimensions (known as a scalar in APL terminology). Scalars 

cannot be indexed in this way – and any attempt to index should 

therefore give a RANK ERROR. 

Because the use of default properties is both elegant and widely 

supported by other languages, we decided to replace the RANK 

ERROR by indexing of the default property. The ISO standard 

explicitly allows extensions which replace existing errors8. 

However, it is not viable to “cheat” in this manner for other 

selection primitives. Expressions like the following already have 

well-defined interpretations: 

   3↑iFile 
   1 0 0/iFile 

The first one returns a 3-element array containing a pointer to 

iFile followed by two prototypical instances of the File class (as 

discussed in section 3). The second one performs scalar extension 

of the single reference to iFile, making three copies of it in order 

to match the length of the left argument, and then selects one of 

them (according to the selection mask). 

Dyalog supports a functional notation for indexing, denoted by ⌷  

(a symbol originally formed on typewriter terminals by 

overstriking the index brackets by typing “[“, backspace, “]”). For 

example, the following statements are equivalent: 

   array[3] 
   3⌷array 

The advantage of having an index function rather than using the 

traditional “special syntax” is that functions can be used with 

operators like each. For example, we can extract the third element 

of each sub-array using: 

   3⌷¨'One' 'Two' 'Three' 
eor 

As previously mentioned, when used without a left argument, ⌷ is 

the function all of, which selects all elements of its (right) 

argument. On arrays, all of is the identity function, but if the 

argument is a reference to an object with a default property (as is 

generally the case for enumerable objects), all of returns the array 

containing all of the enumerated elements. This allows the user to 

apply selection functions to the default property by inserting the 

single symbol ⌷ immediately to the left of the object reference: 

   3↑⌷File 
   1 0 0/⌷File 

                                                                 
8 Although Dyalog has added many features to APL over the last 

25 years, conformance with the ISO 8485 standard for APL 

remains important to our user base. 



When evaluating expressions like 1 0 0/⌷, the interpreter is 

able to defer calling the getter for the default property until the 

complete index set has been computed.  

All of is also useful in conjunction with external objects like 

collections, where it can be used to gather the elements of the 

default property into an array, for example: 

   XL.ActiveWorkbook.(⌷Sheets).Name 
 Sheet1  Sheet2  Sheet3 

To summarize: Fields with triggers provide APL users with a 

half-way house between fields and properties, preserving the 

ability to perform selective specification on the field value, but 

allowing modification of the field to trigger an action. Numbered 

properties extend the use of APL selection functions to indexed 

properties in an efficient manner. Monadic ⌷ makes selections 

applicable to numbered default properties. Together, these 

features ensure that data which has been embedded in objects 

remains within easy (and efficient) reach of all of our selection 

primitives. 

5. CONCLUSION 
The intention of this paper has been to describe the successful 

incorporation of classes as first class citizens of an array language 

called Dyalog. The resulting language allows data to be 

encapsulated in objects without compromising the power and 

flexibility of the APL notation upon which Dyalog is based. In 

particular, we are pleased that the experimental nature of APL 

seems to have been maintained, despite our initial fears that object 

orientation might result in users no longer be able to see the data 

for all the objects. 

This paper does not discuss the benefits of using objects for the 

type of analytical applications that have traditionally been written 

in APL. For many analytical applications, the benefits are perhaps 

marginal. Indeed - one of the key design criteria of the latest 

version of Dyalog has been to ensure that the object oriented 

features can be completely ignored by users who want to remain 

in the functional & array oriented paradigms. 

Object orientation makes it significantly easier to integrate Dyalog 

with modern object-oriented platforms in ways which are natural 

for users who are accustomed to thinking in terms of arrays. It 

also makes it possible to provide Dyalog-based components to 

users of other languages in the form of objects. We hope that it 

will also make it easier for object oriented developers to 

experience the power of array thinking – especially for analytical 

applications. 

6. ACKNOWLEDGMENTS 
First of all, thanks to the team at Dyalog – in particular Peter 

Donnelly, Geoff Streeter, John Scholes and John Daintree – and 

all the others who worked on the product during the 25 years 

which have culminated in Object Oriented Dyalog! I am also very 

grateful to Stefano Lanzavecchia for his feedback and interesting 

discussions about similar capabilities in other languages, and 

Nicolas Delcros for many constructive suggestions. 

I would also like to thank the reviewers of my draft paper; it was 

worth writing this paper simply to read these reviews, in particular 

the references to related work: APL users and implementors alike 

tend to inhabit a parallel universe to that of “mainstream” 

software development, and are unaware of very much relevant 

research. We hope that this paper will serve as a token of our 

desire to change this situation! 

7. REFERENCES 
[1] Bierman, Meijer and Schulte: The essence of data access in 

C⍵ , Microsoft (2005) 

http://research.microsoft.com/Comega/  

[2] Blasgen, M.W. and Eswaran, K.P.: Storage and access in 

relational databases. IBM Systems Journal 16, No. 4 (1977) 
http://www.research.ibm.com/journal/sj/164/ibmsj1604E.pdf 

[3] Iverson, Kenneth E. A Programming Language. Wiley 1962 

[4] Kromberg, Morten: Introduction to Object Oriented 

Programming for APL Programmers, available free with 

complete product documentation from http://www.lulu.com. 

[5] Mougin, Philippe and Ducasse, Stéphane: OOPAL: 

Integrating Array Programming in Object-Oriented 

Programming, Proceedings of ACM SIGPLAN, 2003. 

[6] Murphy, Paul: APL, COBOL & Dijkstra. 

http://blogs.zdnet.com/Murphy/?p=568 

[7] Scholes, John: D-Functions in Dyalog APL. 

http://www.dyalog.com/download/dfns.pdf 

[8] Thorup, Kresten: Contextual Class Extensions, AOP 

Workshop at ECOOP‟97.  

 

http://research.microsoft.com/Comega/
http://www.research.ibm.com/journal/sj/164/ibmsj1604E.pdf
http://blogs.zdnet.com/Murphy/?p=568
http://www.dyalog.com/download/dfns.pdf

