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Abstract.  This paper presents the methods used to attempt access to 
private data stored in Universal Serial Bus (USB) hardware tokens 
without having legitimate credentials. We look at the current state-of-the-
art products of the commercial world. Our research is based on an 
approach of using only common, off-the-shelf tools, yet we still succeed in 
defeating the security features and gaining access to private data. The 
focus is on three major attack categories: Mechanical, Electrical, and 
Software. We also examine other areas that may be susceptible to attack. 
Countermeasures and design changes that will enhance the security of 
such devices are proposed.  

Academic papers describing the design of secure hardware devices have 
existed for over two decades [1, 2, 3]. Applying these approaches into real-
world products, however, requires an understanding of the threat model 
and security envelope of the product being designed. Improper 
implementation can lead to avenues of attack as described in this paper. 
 
Keywords: security, attack methods, countermeasures, analysis, 
hardware token, USB, secure hardware design 

 
1 Introduction 
 
This paper documents investigations into the mechanical, electrical, and 
software design of multiple vendors' USB hardware tokens (Figure 1). The 
main focus of the analysis is to access a legitimate user's private data on the 
key without having the proper credentials. We strive to educate both users and 
vendors about the need to implement forward-thinking security measures into 
their products and how to analyze a product to compare its perceived security 
to its actual security. It in no way describes all possible attack methods. 

USB hardware tokens are a new breed of portable devices that are being 
used in security and public key application spaces and are beginning to attract 
attention by the computer security industry. They perform as authentication 
devices and store private keys, passwords, or electronic certificates in a 
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hardware token the size of a house key. USB keys make use of two-factor 
authentication in order to grant access to the private data stored within the 
key. Using the legitimate user's Personal Identification Number (PIN) or 
password, access to the key's data will be granted. 

Section 2 examines attacks related to the mechanical design of the 
products. This involves manipulation of the physical device housing in order to 
gain access to the circuit board and other device internals. Section 3 details the 
invasive electrical attacks which require access to the device's electronic 
circuitry. Section 4 details the non-invasive software attacks in which one could 
examine the communication channels between the USB device and host 
computer. In each section, design changes and preventative measures that will 
enhance the security and reduce the risk of unauthorized attacks are discussed. 

The following devices have been analyzed: 
 

§ Aladdin Knowledge Systems' eToken1 R1. [4] 
§ Rainbow Technologies' iKey2 1000. [5] 
§ Rainbow Technologies' iKey 2000. [6] 
 

 

 
Figure 1: Aladdin Knowledge Systems' eToken R1, top, and 

Rainbow Technologies' iKey 1000 and 2000, bottom. 

 
2 Mechanical Attack 
 
The main goal of mechanical attacks is to gain access to the product internals. 
Tamper-proofing features are often designed into products to prevent or detect 
invasive attacks [1, 2, 3].  

                                                                 
1 eToken™ is a trademark of Aladdin Knowledge Systems Ltd. Due to naming convention 
confusion, the eToken 3.3.3.x device is actually denoted as the eToken R1 (not to be 
confused with the newer Token R2 or eToken Pro devices). This paper has been updated 
accordingly (November 16, 2001). 
2 iKey™ is a trademark of Rainbow Technologies, Inc. Rainbow Technologies has stated 
that iKey 1000 devices created after November 1999 have been modified to mitigate some 
of the attacks described in this paper. We have not verified this claim. 
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To further the electrical attacks (Section 3), physical, invasive access to the 
USB key circuit board is required. In all devices that were examined, no 
obvious attempts at tamper-proofing were evident and it was possible to open 
the physical housing and gain access to the printed circuit board without any 
signs of forced entry. 

 
2.1 Case Study of eToken 
 
The eToken device uses glue to keep the two pieces of the plastic housing 
together making disassembly moderately difficult. However, the glue can be 
weakened by heating the housing and careful prying will open the device. 

The complete disassembly and reassembly process can be performed in 
under 30 minutes (Figure 2). A highly practiced attacker could complete the 
process in under 10 minutes. The only tools required for the attack are a hobby 
knife, heat gun, glue, and pliers. 

 

 

Figure 2a: Heating the key's tail to 
soften the glue. 

 

Figure 2b: Using a knife to pry open 
the tail of the housing. This gives an 
entry point to pry open the side of 
the housing. 

 

Figure 2c: After more heating, 
scoring and prying of the side. 

 

Figure 2d: Successful penetration of 
the housing and easy removal of the 
key's circuit board. 
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Figure 2e: After the electrical 
attack is complete, applying glue to 
both sides of plastic housing. 

 

Figure 2f: Top view of reassembled 
key. No evidence of tampering is 
visible. 

 
2.2 Case Study of iKey 1000, 2000 
 
The iKey devices use "socket and post"-type mechanical features press-fit into 
each other to keep the two pieces of the plastic housing together (Figure 3). The 
metal housing of the USB connector assists by serving as a clamp. Removing 
the metal USB connector housing and prying carefully with a hobby knife was 
sufficient to open the device.  
 

 

Figure 3: iKey plastic device housing with arrows denoting    
"socket and post" features. 

 
The opening of both iKey devices is simple and can be performed in under 

30 seconds with household tools (Figure 4). Since no cutting or scoring is 
required to loosen the housing, the chance of visible damage to the housing is 
minimal. 
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Figure 4a: Lifting the four tabs of the 
metal USB housing. 

 

Figure 4b: Removal of the metal USB 
housing. 

 

Figure 4c: Prying of the plastic 
housing. 

 

Figure 4d: Successful opening of the 
housing. 

 

Figure 4e: Removing the key's circuit 
board from the 4 "fingers" of the USB 
connector. 

 
Figure 4f: Removal of tape wrapped 
around the circuit board. This may be a 
tamper-detection attempt, but the lack 
of tape is not visible when the device is 
properly closed. 
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2.3 Mechanical Device Variances Between eToken and iKey 
 
"Cost versus risk" management plays a large role in security product design. 
Depending on what subsystems the vendor is trying to protect, various security 
features will be designed into the product. The investigation of the two USB 
key vendors yields the following matrix: 

 
Device Difficulty To Penetrate 

Housing 
Protection of  Internal 

Circuitry 
eToken R1 Moderate  None 
iKey 1000 Easy Moderate (Epoxy) 
iKey 2000 Easy Moderate (Chip-on-Board) 

 
The two vendors took different routes in addressing mechanical security. 

The eToken has a mechanical design which makes opening the device 
moderately difficult, while the iKey has no physical protection. However, once 
the eToken was opened, its circuitry was completely unprotected making 
probing and analysis trivial, while the iKey uses epoxy encapsulation and 
obfuscates part numbers to deter attackers.  

 
2.4 Mechanical Design Recommendations 
 
The design of secure hardware devices is a topic in itself. However, a few key 
points can be made related directly to the mechanical design of portable devices 
that are especially prone to tampering and attack such as USB hardware 
tokens: 
 
§ Strong, High-Temperature Glues with a very high softening/melting 

point increase the security of the physical housing and serve as a tamper-
evidence feature. Many glues used by today's product manufacturers soften 
under direct heat, which aids in housing disassembly.  

 

§ Mechanical Features such as snap-fits and one-piece designs increase 
the security of the physical housing. They not only strengthen the design 
by serving as reinforcements or structural supports, but could also make 
the housings difficult to re-open after manufacturing has been completed. 
A wide variety of mechanical features can be put into the design, 
depending on the product type and the goal of the protection.  

 

§ Obfuscation of Part Numbers makes reverse engineering of the 
circuitry more difficult, but does not eliminate the possibility. 

 
High-temperature glues and mechanical features are recommended for 

plastic housings that "snap fit" together. With the eToken, heating the key 
evenly softened the glue enough to gently cut open. The use of high-
temperature glue would have increased the security here. There were two 
mechanical features holding the two plastic pieces together. Even if those are 
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broken during disassembly, they are only visible from the inside of the housing 
and no anomalies are seen when the device is glued back together. 

 
3 Electrical Attack 
 
The electrical attacks mounted against the USB keys require physical access to 
the device's circuit boards. The primary goal was to attempt to access the 
private data, which is supposed to be protected by the legitimate user's PIN 
number or password, without detection by the legitimate user. External 
memory components, which are non-volatile storage areas that can be read and 
written with low-cost or homebrew device programmers, were targeted for 
attack.  

The electrical design of both USB keys is standard and simple, consisting 
of a microprocessor with USB support, external memory, and "glue" circuitry. 
Currently, there are few microprocessors available that have internal USB 
support, which leads to many similarities in the electrical designs of USB 
devices.  

A design flaw common to the USB keys examined is the improper storage 
of password values, which can allow the extraction of all data, including private 
information, from the key [7, 8]. Changing the password value which is stored 
in an external Serial Electrically Erasable Programmable Read-Only Memory 
(EEPROM) will allow access to the device and will allow an attacker to extract 
all private information from the key. Changing the password back to its 
original value after attack will prevent any detection by the legitimate user. 

Serial EEPROMs are extremely common in the engineering industry and 
require minimal circuitry to read and write. They are also notoriously insecure 
and often do not provide any type of security features. Due to the nature of 
Serial EEPROMs, it is possible to attach a device programmer to the device, 
while it is still soldered onto the circuit board, and read and write to it at will. 
Given these known weaknesses, it behooves vendors to take steps in properly 
restricting access to Serial EEPROMs when employed in security-related 
devices. 

The experiments described in this paper were carried out using the 
Needham's Electronics' EMP-30 [9] which has a retail price of $995, although a 
homebrew device programmer could be built with a handful of components for 
under $10. Other device programmers are available from a number of 
companies, ranging in cost from $25 to $1000. The prices are noted here in an 
effort to gauge the level of perceived threat. 
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3.1 Case Study of eToken 
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Figure 5: Electrical schematic of the eToken R1 PCB version 4.3a 
 
Because the Cypress CY7C63001 microprocessor [10] isn't protected by any 
encapsulation (Figure 6), commercial and homebrew techniques could be used 
to remove the top of the integrated circuit (IC) housing and gain direct access to 
the die, thus allowing a determined attacker to extract the firmware of the 
device [11, 12]. This type of attack requires a sizeable initial investment of 
effort and equipment, thus reducing the likelihood that a less determined 
attacker will take advantage of the situation. It was not performed for this 
paper. Having access to the firmware of the USB key often proves to be 
extremely useful. Analysis of the code can determine the exact operation of the 
device, programming errors, and any hidden features or backdoors - any of 
which could be used to launch further attacks.  

The first attack attempted was to read the firmware programmed into the 
microprocessor. This was thwarted by the security bit being set in the device. 
Using the security bit, a common feature in microprocessors, the device will 
prevent a user from either reading or writing the device firmware.  

The 64-bit unique serial number associated with each eToken device is 
hard-coded into the Cypress microprocessor firmware. This is a good design 
feature, as it makes exact device cloning difficult, since the firmware is write-
only and protected inside the microprocessor. 



 9

 

 

Figure 6: eToken R1 PCB version 4.3a, top: front, bottom: back. 
 

All data on the eToken USB key is stored in external memory. The 8KB 
version of the eToken uses an Atmel [13] 25640 Serial EEPROM. If requested 
by the customer, Aladdin Knowledge Systems can provide them with eToken 
devices with memory sizes up to 64KB. To read the contents of the Serial 
EEPROM, we simply attached the leads to a device programmer. This was done 
using a homebrew cable with an 8-pin Dual In-line Package (DIP) footprint on 
one side, to connect to the device programmer, and a 16-pin Small-Outline 
Integrated Circuit (SOIC) clip on the other side, to connect to the EEPROM in-
circuit on the printed circuit board (PCB). 

The memory map (Figure 7) of the Serial EEPROM was determined by 
modifying and reconfiguring the eToken data and viewing the content changes 
in the EEPROM. 

 

Common Identifier

User PIN

Administrator PIN

Default PIN

FAT / File System
Header Info

Private Data
(Encrypted)

Secret Data
(Encrypted)

Public Data
(Cleartext)

$0000

$1FFF

$0 - $F

$10 - $17

$18 - $1F

$20 - $27

Ranges configured
by administrator

with eToken tools

 
Figure 7: eToken Atmel 25640 Serial EEPROM Memory Map 
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During analysis of the external Serial EEPROM, it was found that the 
legitimate user's PIN can be reset back to the default PIN by simply copying a 
particular 8-byte string from one area of the unprotected external memory to 
another. This is explained in detail shortly. If necessary, the legitimate user's 
original PIN can be copied back into the external memory after the attack and 
no evidence of tampering will be apparent.  

There are two PIN numbers associated with each eToken device, allowing 
either User or Administrator access. User access has complete control of the 
eToken file system, while Administrator is allowed to initialize the key, but not 
access private data. The User and Administrator PINs, private data, and secret 
data are encrypted before being stored in the EEPROM. The public data is 
stored in plaintext and can be easily read by viewing the buffer of the Serial 
EEPROM.  

The 8-byte strings which determine the User and Administrator PINs are 
stored at location 0x10 and 0x18, respectively (Figure 8). By copying the 8-byte 
string stored at 0x20 into either of those areas, we return either the User or 
Administrator PIN to its default state (Figure 9). The 8-byte Default PIN string 
(an encrypted string representing the ASCII version of the default PIN) is 
unique for each eToken. 

 

00000010 7235 BAA8 5778 DE97 B7DD 9F01 121B 27A7 r5..Wx........' .  
00000020 BE74 503B 3751 FA74 FFFF FFFF FFFF FFFF .tP;7Q.t........ 

User PIN Admin PIN

Default PIN string
 

Figure 8: Initial memory dump, with the User PIN and Administrator PIN 
set to unknown values. 

 
00000010 BE74 503B 3751 FA74 B7DD 9F01 121B 27A7 .tP;7Q.t......' .  
00000020 BE74 503B 3751 FA74 FFFF FFFF FFFF FFFF .tP;7Q.t........ 

 

Figure 9: Memory dump, after modification, with User PIN now set to default. 
 
Once the modified buffer is programmed back into the Serial EEPROM, the 

attacker can login to the eToken using the default PIN and make use of the 
legitimate user's credentials.  

The ASCII version of the default PIN is 0xFFFFFFFFFFFFFFFF, which is 8 
bytes of 0xFF, a non-printable character [14]. To enter the default PIN at a 
dialog box on a Windows platform, hold the "Alt" key while typing "0255". 
Release the "Alt" key between characters. Repeat this 8 times. 
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A proof-of-concept tool [7] was developed to demonstrate the following 
functions: 

 
§ Search USB ports for eToken. 
§ Retrieve and display configuration data for the inserted key. 
§ Login as User using the default PIN  of 0xFFFFFFFFFFFFFFFF 
§ Retrieve all public and private data and export the directory hierarchy 

to DOS. 
 
The tool expects that the eToken User PIN has been reset to the default 

state, as described earlier in this section. A portion of the console output is 
shown below: 
 
tokenId = 00 00 00 00 00 00 a6 23 
slotid = 5 
isConfigured = 1 
verMajor = 3 
verMinor = 27 
color = 0 
fsSize = 8088 
publicSize = 3796 
privateSize = 2576 
secretSize = 512 
freePublicSize = 2784 
freePrivateSize = 2446 
freeSecretSize = 496 
secretGranularity = 16 
fat = 10 
maxfat = 100 
maxAdmin = 255 
maxUser = 255 
 
Attempting eToken User login with Default PIN...Success! 
 
dir = 3f00 
file = a000 
file = 1234 
file = 6666 
dir = feed 
dir = beef 
file = beef 
dir = dead 
file = beef 
dir = face 
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3.2 Case Study of iKey 1000 
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Figure 70: Electrical schematic of the Rainbow iKey 1000 PCB 106160-003 

 
The iKey (Figure 11) has epoxy conformal coatings over all of the IC's on the 
PCB. This increases the difficulty of an electrical attack and is a common 
deterrent which should be employed in most situations. A determined attacker 
might still remove this coating by using chemicals or by prying and scraping 
with a knife, both of which are visually evident. As will soon be shown, it is 
essential to understand the perimeter of security and how such deterrents take 
or fail to take into account what they are protecting.  

All data is stored on a Microchip [15] 24LC64 Serial EEPROM, which is 
covered by the epoxy coating. This particular version of the iKey has 8KB of 
external memory. However, the printed circuit board allows for an expansion to 
128KB. Because of this, there is an unpopulated area for the memory, shown on 
the back of the circuit board. This design flaw is used to access the "protected" 
Serial EEPROM. This will now be explained in more detail. 
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Figure 11: iKey 1000 PCB 106160-003, top: front, bottom: back. 

 
The Microchip 24LC64 Serial EEPROM devices use the Inter-Integrated 

Circuit (I2C) bus protocol for a minimal number of connections to transfer data 
between itself and the host:  
 
§ Power, VCC. Common to all devices attached to the bus. 
 

§ Ground, GND. Common to all devices attached to the bus. 
 

§ Serial Data, SDA. Bi-directional pin used to transfer addresses and data 
into and data out of the device. Common to all devices attached to the bus. 

 

§ Serial Clock, SCL. Used to synchronize the data transfer to and from the 
device. Common to all devices attached to the bus. 

 

§ Write Protect, WP. Used to protect the contents of the external memory. 
If pulled high, one is prevented from writing to the memory. Read 
operations are not affected. 

 

§ Address Select Lines, A2, A1, A0. Used for multiple device operation to 
allow up to 8 devices (23) on the I2C bus. The host processor sends the 
address of the external memory device it wants to communicate with along 
with the command to the I2C bus. Whichever Serial EEPROM is configured 
for the same address is selected for use. 

 
By attaching probes or soldering small leads to the unpopulated memory 

footprint, the power, ground, clock, and data lines of the I2C bus can be 
accessed. Even though the external Serial EEPROM being targeted is 
physically coated and its actual pins are not accessible, the contents can now be 
read by attaching the leads to a device programmer. While attaching probes to 
the memory is more difficult when the tamper-proofing features are correctly 
implemented, in this case there is a clean avenue of communications available 
over the I2C bus which is free of any preventative measures. To remedy this 
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problem, all unpopulated component areas on the PCB should be covered in 
epoxy or removed to prevent probing. 

The 64-bit unique serial number associated with each iKey device appears 
to be stored in the external EEPROM, whereas the eToken stores its unique 
serial number in read-only memory internal to the microprocessor. Storage in 
external EEPROM makes it possible to change the serial number, essentially 
removing its uniqueness. If the serial number is used in a company's 
implementation, this could lead to increased channels of attack.  

The iKey allows administrator access using the Master Key (MKEY) 
password. Administrator access to the iKey, normally used for initialization 
and configuration, will allow all private information stored on the key to be 
accessed.  

The MKEY is an administrative password that must be known by the 
trusted person or program that will initialize and configure the iKey. The 
MKEY password is an ASCII string up to 256 characters in length. The default 
factory setting is "rainbow" [16]. The ASCII string is MD5-hashed [17], encoded 
with a proprietary algorithm, and stored in external memory.  

Analysis of the external EEPROM led to the discovery that only the upper 
8-bytes of the MD5 hash, hereby referred to as the 'hashed MKEY', are encoded 
and stored in external memory with the scheme described in this paper. The 
resultant 8-byte encoded value is hereby referred to as the 'obfuscated MKEY'. 
Figure 12 shows the steps taken to generate the obfuscated MKEY from the 
ASCII-string MKEY password. 

 

MKEY
Password

Hashed MKEY
Obfuscated

MKEY

MD5 Encode

Default: "rainbow" 0xCD13B6A6AF66FB77 0xD2DDB960B0D0F499
 

Figure 12: MKEY generation, default settings shown below each box. 

 
All PC applications that use the iKey will generate the hashed MKEY 

locally before sending it to the iKey device to login. In order to login to the iKey 
device, the iKey Application Programming Interface (API) requires the 8-byte 
hashed MKEY, not the MKEY password that created it. Administrator access 
to the iKey can be gained in two ways: 

 
§ Determine the hashed MKEY from the obfuscated MKEY value which is 

stored in the external EEPROM. 
 

§ Encode a new obfuscated MKEY using a new MKEY password string 
and store it in the external EEPROM. 

 
The iKey encoding scheme was determined by setting the hashed MKEY to 

a known value and observing the resultant obfuscated MKEY, which is located 
at address 0x8. After several iterations, it was evident that the scheme is a 
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series of XORs and additions. Let A be the 8-byte hashed value and B be the 8-
byte obfuscated value. Let Ai be the ith byte of A. 

 
Byte # 1 2  3 4  5 6  7 8 

A, Hashed MKEY value, md5("rainbow") = CD13 B6A6 AF66 FB77 
B, Obfuscated MKEY value in EEPROM   = D2DD B960 B0D0 F499 

 
B1 = A1 XOR 0x1F 
B2 = A2 XOR (A1 + 0x01) 
B3 = A3 XOR 0x0F 
B4 = A4 XOR (A3 + 0x10) 
B5 = A5 XOR 0x1F 
B6 = A6 XOR (A5 + 0x07) 
B7 = A7 XOR 0x0F 
B8 = A8 XOR (A7 + 0xF3) 

 
Example: 0xD2 = 0xCD XOR 0x1F 

0xDD = 0x13 XOR (0xCD + 0x01) 
0xB9 = 0xB6 XOR 0x0F 
0x60 = 0xA6 XOR (0xB6 + 0x10) 
0xB0 = 0xAF XOR 0x1F 
0xD0 = 0x66 XOR (0xAF + 0x07) 
0xF4 = 0xFB XOR 0x0F 
0x99 = 0x77 XOR (0xFB + 0xF3) 
 

Setting the hashed MKEY to 0x0000000000000000 gave the necessary 
information to determine the encoding scheme. Bytes 1, 3, 5, and 7 are simply 
XORs with constant values and bytes 2, 4, 6, and 8 are XORs with constant 
values added to bytes of the hashed MKEY, as described above. 

 
         Byte # 1 2  3 4  5 6  7 8 

A, MKEY           = 0000 0000 0000 0000 
B, EEPROM MKEY    = 1F01 0F10 1F07 0FF3 
 

Once the obfuscated MKEY has been changed to a known value or the 
hashed MKEY has been determined, the attacker can login as administrator to 
the iKey device and access all of the legitimate user's data. The whole attack as 
described above can be completed in less than 2 minutes. 

A proof-of-concept tool [8] was developed to demonstrate the following 
functions: 
 
§ Retrieve and display configuration data for the inserted iKey. 
§ Convert obfuscated MKEY back into hashed MKEY. 
§ Login as Administrator using hashed MKEY. 
§ Retrieve all public and private data and export the directory hierarchy 

to DOS. 
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The tool expects the 8-byte obfuscated MKEY on the command-line, which 
is obtained from reading the external Serial EEPROM with the use of a device 
programmer as described earlier in this section. A portion of the console output 
is shown below: 

 
C:\>ispy D2DDB960B0D0F499 
 
Magic = 5242544B 
DeviceHandle = 80 
ClientHandle = 205408 
Flags = 20000000 
library_version = 2 
driver_version = 256 
ver_major = 0 
ver_minor = 7 
prod_code = 54 
config = 0 
header_size = 8 
modulus_size = 0 
mem_size = 8168 (bytes) 
capabilities = 11 
SerialNumber = 0123466A00000249 
CheckSum = FAD1 
HwInfo = FFFF 
MaxPinRetries = 5 
CurPinCounter = 5 
CreateAccess = 0 
DeleteAccess = 0 
 
Obfuscated MKEY = D2 DD B9 60 B0 D0 F4 99   [...`....] 
Actual MKEY     = CD 13 B6 A6 AF 66 FB 77   [.....f.w] 
 
Attempting iKey Administrator login... 
 
VerifyMasterKey: SUCCESS 
 
dir  = 00000000 
file = 00000001 
dir  = 000000C1 
file = 000000C1 
file = 0000BEEF 
dir  = 0000FEED 

 
3.3 Electrical Design Variations Between iKey 1000 and 2000 
 
The iKey 2000 was briefly examined to determine the variances between it and 
the iKey 1000. The manufacturing processes of iKey 1000 and 2000 are similar. 
However, there are slight changes to the iKey 2000 PCB (Figure 13): 
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§ Microprocessor Package. The package of the microprocessor has been 
changed from a Quad Small Outline Package (QSOP) to Small-Outline 
Integrated Circuit (SOIC) footprint. The part number has been scratched 
off the top of the package, making it difficult to identify. However, a part of 
the Cypress logo is still visible on the package, so it can safely be assumed 
that the iKey 2000 still uses the Cypress CY7C63101A device, which was 
also used in the iKey 1000. This 24-pin device is available in both QSOP 
and SOIC footprints. 

 

§ USB Connector.  The metal fingers that serve as the USB connector are 
soldered onto the PCB on one side. This might be done for a number of 
reasons, possibly due to slippage of the PCB underneath the fingers or to 
simplify the manufacturing process. 

 

§ Conformal Coating.  The conformal coating has been removed from the 
microprocessor, which makes access to the pins much easier. Commercial 
and homebrew techniques could be used to remove the top of the IC 
housing and gain direct access to the die, thus allowing a determined 
attacker to extract the firmware of the device [11, 12]. 

 

§ External Memory. The package type of the external memory has been 
changed. The black, square box on the front side of the circuit board is the 
new package, which is the silicon die encapsulated with epoxy, also known 
as chip-on-board (COB). The gold pad to the right of the memory is an area 
for memory expansion. There are only 8 pads on the footprint, so it can 
safely be assumed that the memory remains a Serial EEPROM. Although 
the new footprint is harder to probe, the same design flaw exists as the 
iKey 1000, in which the pads for the unused memory expansion area are 
still accessible.  

 

 

 

Figure 13: iKey 2000 PCB 106420-004, top: front, bottom: back. 
 

The pinout of the external memory footprint (Figure 14) was determined by 
simple probing of the circuit board and using the iKey 1000 schematic as a 
reference. The pinout appears to be similar to that of the Microchip 24LC64 
device which was used in the iKey 1000.  
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Figure 14: iKey 2000 unpopulated memory pinout 

 
Three of the pins connected to GND in Figure 14 are most likely the 

Address Select Lines, A2, A1, A0, of the Serial EEPROM. Whichever Serial 
EEPROM is configured for that address (by hardwiring the pins to a logic high 
or low) is selected for use. It appears that the address of the unpopulated device 
is 000. If this is so, the actual encapsulated EEPROM could have an address 
ranging from 001 – 111 (binary). The external memory attack described in 
Section 3.2 has not been attempted on the iKey 2000, though it is believed it 
would be successful in reading the contents of the device.  

 
3.4 Electrical Design Recommendations 
 
Developers of security-based products, not limited to token devices of the 
nature described in this paper, should consider the following electrical features 
for design and manufacture: 
 
§ Conformal Coatings, such as epoxy, help protect critical components 

from probing and tampering. Coatings, when implemented correctly and 
unless they are easily removed or dissolved by chemicals, serve as a good 
deterrent to many attackers. As a benefit to the designer, common attacks 
using sulfuric acid to dissolve the epoxy coating will also dissolve the wire-
bonds of an exposed die, thus rendering the device unusable.  

 

§ Microprocessors with Internal Non-Volatile Memory Storage will 
deter the casual attacker by requiring advanced techniques, such as de-
lidding and microscopic inspection of the IC die, to determine the data 
stored in the memory [11, 12]. 

 

§ Non-Standard or Hard-To-Probe Package Types for integrated 
circuits, such as ball-grid-array (BGA) or chip-on-board (COB) help deter 
the casual attacker, since the pins of the IC are either hidden or difficult to 
access. 
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The major flaw in the iKey design is that the external Serial EEPROM, 

which was meant to be protected by the epoxy encapsulation, is still left open to 
attack using the unused memory upgrade footprint to access the protected pins. 
If a memory upgrade is not present, these pads should be removed or covered in 
epoxy to help prevent attack. On the iKey 2000, the pins can also be accessed 
from the unprotected pins of the SOIC-packaged Cypress microprocessor. 

A temporary fix to the electrical attacks, although it does not remedy the 
core problem, is to be very aware of the physical security and location of the key 
at all times. The owner of the key should not leave the key unattended or loan 
it to a potentially untrustworthy colleague. If the key is unattended for any 
amount of time, the data could be compromised with the methods described in 
this paper. 

 
4 Software Attack 
 
Software attacks are considered non-invasive attacks in which the device is not 
harmed or physically tampered with. Non-invasive and software attacks often, 
but not always, make use of the normal operating conditions of the device and 
are aimed to find flaws in the implementation of the software or firmware in a 
product. Once the attack is designed and successful, the results are 
reproducible from one device to another.  
 The attacks chosen for the USB key investigation fell into two distinct 
areas: 
 
§ Examine the communication channels between the USB device and 

host computer, using custom device drivers and commercial USB protocol 
analyzers, and look for undocumented commands and problems with 
handling intentionally erroneous and mis-structured commands. 

 

§ Analyze and determine the possibility to brute-force a password  
which will give access to the USB key device (i.e., the Administrator's 
MKEY value or the legitimate user's password or PIN). 
 

 The source code and header files included with the vendor-provided software 
development kits (SDK) contain a lot of interesting information about the 
design and structure of the device and API in question. For example, the PC 
software included in the eToken SDK prints Windows debugging messages. 
These messages contain bits and pieces of the Serial EEPROM contents of the 
key and may be leaking secret or private information.   
 Not all of the attacks described in this section have been completed. Rather, 
they are indicative of attacks which might yield interesting information about 
the design of the USB keys. 
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4.1 USB Protocol Analyzers 
 
A number of commercial tools exist to aid in the designing and debugging of 
USB devices. These tools, ranging in rental cost up to $3290 per month and 
retail price of up to $25K, allow detailed analysis, trace, and storage of protocol 
traffic. Some models allow the generation of traffic onto the USB bus which can 
contain both legal packets per the USB standard [18] and illegal packets, thus 
enabling stress/limit testing of USB-based designs, and observation of design 
behavior under faulty bus conditions.  

 
4.1.1   Undocumented Commands 
 
It is possible that these USB keys have undocumented command sets. During 
the development phase, it is common to need access to the Serial EEPROM 
data on a regular basis. The use of software commands to allow this would 
avoid the need of additional device programmer hardware and resources. 

Currently, with the electrical attacks described in Section 3, it is possible 
to obtain the entire contents of the device by physically opening it and reading 
its contents with a device programmer. It would be useful to find a command 
that would dump the entire contents of the Serial EEPROM, used for storage of 
all public and private data, back through the USB port and bypass any private-
memory restrictions. By searching through any undocumented USB commands, 
it may allow one to obtain all possible information and data from the USB key 
without physical tampering. The search was not performed on any of the 
devices, but the attack methodology is as follows: 

 
1. Analyze typical data transactions between the host PC and the USB 

key. This will allow us to see how the commands and data are structured in 
the USB packet. 

 

2. Send custom, legal USB packets making use of the traffic generation 
features of the USB protocol analyzer. The custom packets will be in the 
form that was obtained in Action 1, replacing the command data each time. 
By linearly advancing through the entire command keyspace (i.e., 0x0000 to 
0xFFFF if the command structure is 2 bytes), we will be able to detect any 
hidden commands.  

 

3. Monitor the data being transmitted from the USB key. Look for the 
response in which most or all of the contents of the Serial EEPROM are 
being transmitted back to the host PC, or any response that isn't defined in 
the standard API or command-set of the device.  

 
4.1.2   Illegal USB Packets 
 
By sending incorrect and known erroneous USB packets to the USB key, it may 
leak information such as the contents of protected memory areas. This 



 21

experiment is similar to Section 4.1.1, except the packets generated will be 
deliberately illegal USB packets not conforming to the USB standard. 
 
1. Send illegally-structured USB packets making use of the traffic 

generation features of the USB protocol analyzer. Changing any of the 
fields in the USB packet could potentially lead to unintended leakage of 
information. 

 

2. Monitor the data being transmitted from the USB key. Look for 
interesting responses and information that aren't defined in the standard 
API or command-set of the device.  

 
4.2 MKEY Timing Attack with iKey 1000 

 
The API function responsible for MKEY authentication, RnbTkn_ 
VerifyMasterKey, takes an 8-byte char array and encodes and compares this 
against the obfuscated MKEY stored in the iKey. There are no counters or 
limits designed to prevent brute-force attacks on the MKEY value. However, 
there are 264 possible values, making typical brute-force methods infeasible. 
Because the Cypress CY7C63000-family of microprocessor is an 8-bit device, 
meaning all registers and operation codes are handled in 8-bit chunks, it is 
theorized that timing attacks could aid in determining the MKEY value in 
shorter time. 

When an 8-bit processor needs to compare two 64-bit numbers (defined 
herein as Ai and Bi, where i is each byte ranging from 1 to 8), it is achieved by 
first comparing A1 with B 1. If they match, A2 and B2 will be compared, and so 
on until the entire value has been compared (Figure 15). 
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Figure 15: Comparing two 64-bit values on an 8-bit microprocessor 

 

Using this process, it is possible to use time measurements to determine 
how close the guessed MKEY value is to the correct MKEY value. The more 
bytes that match, the longer the compare routine will take. If the routine 
returns quickly, it can be assumed that the bytes being compared do not match. 
This greatly reduces the amount of time necessary for a brute-force attack, 
since the 8-byte values are being compared on a byte-by-byte basis and the 
correct value of one byte will be successfully guessed before moving on to the 
next. 

As it happens, the latency times of the device drivers on the Windows 
operating system are too large to get accurate timing measurements from the 
USB key. It takes too long for the USB command to reach the key and for its 
response to get back to the Windows application. Because of this, we developed 
custom device drivers and kernel module for use with the Linux operating 
system. These custom components allow for a more directed control of the 
device thus reducing the time delay between the sending of the USB command 
and the reception of the command by the USB key. It may be possible to further 
reduce the latency by using the traffic generation on a USB protocol analyzer, 
which would allow commands to be sent directly to the key without relying on 
any drivers or operating system software. 

However, this attack is more complicated in that a RnbTkn_GetResults API 
function must be called to retrieve the results of the last operation 
(RnbTkn_VerifyMasterKey, in the case of this attack). Due to the device driver 
latency and the need to call a second function to retrieve the compare result, it 
is difficult to measure how long a compare operation really takes to complete. 
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Timing attacks are well known and have been used against other cryptographic 
systems [19]. 

 
4.3 Software Design Recommendations 
 
In relation to the attacks described in this section, the following programming 
practices should be considered: 
 
§ Remove all undocumented commands, debug symbols and 

development functions. All functionality not used or needed in the 
production unit should be completely removed from the firmware. 

 

§ Protect against malformed and illegal USB packets. The software is 
in control of interpreting the USB device requests and responding correctly 
to them. Make sure the device does not leak critical information or enter an 
unintentional state if a deliberately incorrect USB packet is sent to it. 
Verification of proper handling can be verified by using a USB protocol 
analyzer to generate intentionally bad packets. 

 

§ Design each routine to take a constant amount of time. Any critical 
function calls (such as RnbTkn_ VerifyMasterKey described in the previous 
section) should take a constant amount of time to complete regardless of 
the result of the operation. This will prevent timing attacks  from being 
successful in determining passwords or other critical information. 

 
5 Conclusions 
 
Users must be aware that at today's level of delivered products, private data 
can be accessed from USB keys without having legitimate credentials. If a user 
loses their USB key, all data should be considered to have been potentially 
compromised and proper action should be taken. 

This paper described and detailed a number of practical and theoretical 
attacks related to the mechanical, electrical, and software aspects of the USB 
keys. These attacks are not meant only for USB keys and could be expanded 
upon and attempted on other products. There are flaws in the existing USB 
hardware tokens on the market today, and users must  recognize the security 
risks and benefits of each tool before it is recommended and implemented into 
their infrastructure. Some of these flaws can be worked around, but only after 
the weaknesses have been identified. It is important for designers of hardware 
devices, especially security products, to fully understand the threat model of 
their particular product before implementing a solution. 
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Appendix A    Additional Resources 
 
1. USB Implementers Forum Web Page, http://www.usb.org. 
2. B & G International IC Decapsulation Products Web Page, http://www.bgintl.com/ 

dcap.html. 
3. CATC USB Bus & Protocol Analyzers Web Page, http://www.catc.com/ 

products.html#USBDevTools. 


