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Abstract—Despite the best intentions of disk and RAID manu-
facturers, on-disk data can still become corrupted. In this paper,
we examine the effects of corruption on database management
systems. Through injecting faults into the MySQL DBMS, we find
that in certain cases, corruption can greatly harm the system,
leading to untimely crashes, data loss, or even incorrect results.
Overall, of 145 injected faults, 110 lead to serious problems. More
detailed observations point us to three deficiencies: MySQL does
not have the capability to detect some corruptions due to lack
of redundant information, does not isolate corrupted data from
valid data, and has inconsistent reactions to similar corruption
scenarios.

To detect and repair corruption, a DBMS is typically equipped
with an offline checker. Unfortunately, the MySQL offline checker
is not comprehensive in the checks it performs, misdiagnosing
many corruption scenarios and missing others. Sometimes the
checker itself crashes; more ominously, its incorrect checking
can lead to incorrect repairs. Overall, we find that the checker
does not behave correctly in 18 of 145 injected corruptions, and
thus can leave the DBMS vulnerable to the problems described
above.

I. INTRODUCTION

Disks corrupt data. Although it is well known that entire

disks fail [29], [33], recent studies have shown that disks also

can corrupt data that they store [4]; in a study of 1.5 million

drives over three years, Bairavasundaram et al. found that

nearly 1% of SATA drives exhibited corruption. More reliable

SCSI drives encounter fewer problems, but even within this

expensive and carefully-engineered drive class, corruption still

takes place.

Fortunately, RAID vendors have employed increasingly

sophisticated corruption detection and recovery techniques in

order to combat disk corruption [6], [8]. For example, by

placing a checksum of data with every block, one can detect

whether a block has become corrupted; once detected, the

corruption can be repaired by accessing another copy of the

block or parity information.

Unfortunately, these schemes are not always enough. Recent

work has shown that even with sophisticated protection strate-

gies, the “right” combination of a single fault and certain repair

activities (e.g., a parity scrub) can still lead to data loss [19].

Thus, while these schemes reduce the chances of corruption,

the possibility still exists; any higher-level client of storage

that is serious about managing data reliably must consider the

possibility that a disk will return data in a corrupted form.

In this paper, to better understand the possible problems

caused by disk corruption, we first observe its impact on a

database management system, the MySQL DBMS, through a

series of fault injections. By carefully injecting corruptions

into a running MySQL server, we can evaluate how MySQL

deals with disk corruption. More specifically, we want to

answer three questions: Can MySQL detect disk corruption

properly? Can MySQL keep running and return valid data

despite the presence of corruption? What can we infer about

the framework for corruption handling in MySQL?

We find that corruption can be quite damaging, leading to

system crashes, data loss, and even incorrect results. Overall,

of 145 injected faults, 110 lead to serious problems. More

detailed observations point us to three deficiencies in MySQL.

First, MySQL ignores some corruptions; some are detectable

but ignored and some are undetectable due to lack of redun-

dant information in its data structures. Second, MySQL does

not isolate corruption from valid data; a corrupt record can

make other valid records inaccessible. Finally, MySQL has

widely inconsistent corruption handling, which leads us to the

conclusion that MySQL does not employ a proper framework

for corruption handling.

Since all corruptions are hard to detect online, a DBMS

requires some form of offline corruption detection and repair

tools. In the world of file systems, offline tools such as the

ubiquitous file system checker (fsck) are used in this capacity

today [21]. Originally conceived to help file systems recover

from untimely crashes, fsck has remained a useful tool to

help the file system recover from unexpected corruption in

file system metadata. By carefully combing through the on-

disk image, fsck can find and fix many small problems.

One might think that a DBMS does not need such a

tool, as concurrency control and recovery has been carefully

developed to handle many similar problems [24]. However,

while concurrency control and recovery avoid many corruption

scenarios and are critical in recovering from others, in general

they are not able to catch or repair corrupted metadata resulting

from disk malfunctions. The evidence from the marketplace

unfortunately confirms this reality; many tools exist to detect

and repair these kinds of errors in commercial DBMSs, includ-

ing SQL Server [22], Oracle [26], [27], [28], and DB2 [16],

[17]. To an unfortunate extent, neither the problems these tools

address nor the approaches they employ in their solutions

have appeared in the research literature. A partial explanation

for this might be that such tools require detailed knowledge

of proprietary aspects of the DBMSs and how they store

and manage their metadata. However, the recent explosion in



popularity of open source DBMSs such as PostgreSQL [37]

and MySQL [39] has changed the landscape, and it is now

possible for the research community at large to explore issues

related to metadata corruption, and to do so in the meaningful

context of substantial systems with large user communities.

Therefore, in this paper, we also study how effective offline

checkers are at detecting corruption in an on-disk image

of a database. Specifically, we examine the robustness of

myisamchk, an offline checker for MySQL. We find that the

offline checker is not comprehensive in the checks it performs,

misdiagnosing many corruption scenarios and missing others.

Sometimes the checker itself crashes. More ominously, its in-

correct checking can lead to incorrect repairs. Overall, we find

that myisamchk does not behave correctly in 18 of 145 injected

corruptions, and thus can leave the DBMS vulnerable to the

problems described above, including unexpected crashes, data

loss, and incorrect results.

Thus, in this paper, we make two explicit contributions:

• We perform the first study of the effect of corruption on a

running database (MySQL), and find that corruption can

cause great harm (Section IV).

• We perform the first study of the ability of an existing

offline checking tool (myisamchk) to detect corruption in

on-disk structures, and find that it misses many significant

cases (Section V).

Before describing each of our two main contributions, we

first present the background and related work (Section II) and

then our fault injection methodology (Section III). After the

main body of the paper, we conclude with future directions

(Section VI).

II. BACKGROUND & RELATEDWORK

In this section, we provide a brief background on disk

failures, with a focus on corruption. We then discuss why

RAID is not a complete solution in dealing with corruption.

After that, we briefly discuss the state of the art of both online

and offline corruption detection techniques within file systems

as well as the current approach within DBMS.

A. Disk Corruption: Why It Happens?

We broadly define disk corruption as something that occurs

when one reads a block of data from the disk and receives

unexpected contents (e.g., the contents are not what were

previously written to that location). Thus, the read “succeeds”

(i.e., the disk does not return a failure code) but the data within

the block is not as expected. For this reason, corruption is

sometimes referred to as a silent error.

Disk corruption can occur for a multitude of reasons. One

cause comes from the magnetic media: the classic problem

of “bit rot” which occurs when the magnetism of a single

bit or a few bits are flipped. This type of problem can often

(but not always) be detected and corrected with low-level ECC

embedded in the drive.

Interesting errors also arise in the disk controllers due to

their complexity; modern Seagate drives contain hundreds of

thousands of lines of low-level firmware code that manage

the operation of the disk [30]. This complexity can lead to a

number of bugs which manifest as corruption.

One example of such a bug is a lost write (or phantom

write), where a disk reports that a write has completed but in

fact it was never written to the disk [40]. The next time a client

reads such a block, it will receive the old contents, and thus

perceive the problem as a corruption. A misconfigured drive

can also result in lost writes; for example, if a drive cache is

set to write-back mode (instead of write-through), a write will

be acknowledged when it is put into the disk cache but before

it has been written to disk. If power is lost before the actual

write to the media surface, the write is seemingly lost.

A similar problem is known as a misdirected write [44]. In

this case, the controller writes the data to disk but to the wrong

location. A misdirected write can thus lead to two perceived

corruptions; one where the block should have been written,

and one where the block was accidentally written. In either

case, subsequent reads receive the “wrong” contents.

There are other causes of perceived disk corruption. For

example, as data sits in the main memory of a host system,

a bad DRAM could corrupt the data [20]; although it is

written correctly to disk, the data is corrupt when written and

will later be perceived as such. Similarly, buggy operating

systems software [10], [12] could accidentally overwrite the

in-memory data before writing it to the disk, again leading to

a subsequently perceived corruption.

B. Disk Corruption: How Often It Occurs?

Until recently, there was very little data on how often

corruption arose in modern storage systems. Although there

was much anecdotal information [6], [40], [44], and a host

of protection techniques that systems employ to handle such

corruption [19], there was little hard data.

Recently, a study by Bairavasundaram et al. demonstrates

that corruption does indeed occur across a broad range of

modern drives [4]. In that study of 1.5 million disk drives

deployed in the field, the authors found more than 400,000

blocks have checksum mismatches over three years. They

also found that nearline disks develop checksum mismatches

an order of magnitude more often than enterprise class disk

drives. Furthermore, checksum mismatches within the same

disk show high spatial and temporal locality, and checksum

mismatches across different disks in the same storage system

are not independent. The data shows that corruption takes

place, and systems must be prepared to handle it.

C. Doesn’t RAID Help?

The end-to-end argument states that failure recovery must

be done at the highest level; protection mechanisms at lower

levels may improve performance but fundamentally do not

solve the desired problem [32]. In the world of storage



systems, it would be ideal if RAID storage [29] guaranteed that

data was not corrupt. Although we believe that while RAID

can indeed improve DBMS reliability, it is not a complete

solution for the following reasons.

First, RAID is designed to tolerate the loss of a certain

number of disks or blocks (e.g., RAID-5 tolerates one, and

RAID-6 tolerates two), but not to to identify corruption. For

example, in RAID-5, if a block in a parity set is corrupt, the

parity computation will be incorrect, but which block is corrupt

cannot be identified with RAID alone.

Second, ironically, commercial RAID systems also corrupt

data; a recent paper by Krioukov et al. demonstrates how most

commercial RAID-5 designs, which should be able to tolerate

the loss of any one disk or block, have flaws where a single

block loss leads to data loss or silent corruption [19].

Finally, not all systems incorporate more than one disk. For

example, consider a typical commodity system running with

a single disk drive; in such systems, there is essentially no

protection against most forms of corruption described above.

D. Doesn’t Checksumming Help?

Checksumming techniques have been used in numerous

systems over the years to detect data corruption [6], [11], [36],

[38], [40]. For example, Tandem systems have long employed

checksums [6]. When a block is read from disk, so too is

its stored checksum. A checksum is then computed over the

data block and compared to the stored checksum; if the two

do not match, the block is declared corrupt and recovered

from a mirror copy. Similar to RAID, although checksums

can improve corruption detection, it is still not a complete

solution for three reasons.

First, memory is not perfect. For example, a bit-flip in

memory before a checksum is computed could lead to a

corrupt block being written to disk; the disk system will safely

store the corrupted block. A recent, large-scale field study by

Schroeder et al. emphatically show that bit-flips do occur [34].

Second, software is not perfect; large code bases are typi-

cally full of bugs [10], [45]. Some of those bugs may indeed

corrupt data before it is written to disk, and again may thus

survive despite checksum and RAID protections.

Lastly, Krioukov et al. also show that checksumming does

not protect against complex failures such as torn writes, lost

writes, and misdirected writes [19].

E. The File System Approach

Many high-end file systems often claim that they have

support for corruption handling. However, their robustness is

little known due to the proprietary nature of these systems.

With open-source file systems, there is room for evaluation.

For example, Prabhakaran et al. presented the details of

corruption detections in several commodity file systems [30],

including Linux ext3 file system [42], ReiserFS [31], IBM

JFS [7], and Windows NTFS.

In many cases, they found that these file systems are able to

detect metadata corruption in the absence of checksums. Their

approach is to store implicit redundant information to cross-

check metadata consistency. For example, file systems such

as ReiserFS [9] and XFS [41] store page-level information in

each internal page of a B-Tree. Thus, a corrupt pointer that

does not connect two pages in adjacent levels can be detected

checking the page-level information. These file systems show

that some redundant information can be useful for online

cross-checking without imposing significant overhead.

Although many corruptions are detected, Prabhakaran et

al. also found that in some cases these file systems fail to

check the integrity of their own metadata. They show that the

undetected corruptions result in system crashes, the spreading

of corruption, and unmountable file systems [30].

To remedy this problem, file system developers created

offline tools to scan and repair file system metadata that was

inconsistent. The classic repair tool is fsck [21]. Despite the

presence of RAID and checksumming, fsck remains useful

even today; high-end file systems also have their own offline

checkers. Some new file systems have tried to make do without

an offline checker, e.g., SGI’s XFS famously was said to have

“no need to fsck, ever” [13], but soon introduced such a tool

to handle corruptions that were observed in the field.

Unfortunately, building a robust checker is not straightfor-

ward. An analysis of the Linux ext2 checker by Gunawi et al.

shows that some important repairs are missing, leaving some

corruptions unattended, and some repairs are incorrect, making

the file system more corrupt and sometimes unusable [15].

F. The DBMS Approach

In the DBMS world, there have been many reports of

database corruptions [1], [2]. In many cases, the sources of the

corruptions are hard to pinpoint, and hence are not reported.

Nevertheless, the fact that error messages such as “Database

page corruption on disk” appear in the error logs suggest that

database systems read corrupt contents from the disk. But

again, the research literature has not extensively addressed how

running databases deal with such corruption.

The presence of offline tools to scan and repair database

metadata is also less clear. Some tools exist [16], [17], [22],

[26], [27], [28]. The existence of the tools certainly indicates

that databases are corrupted in practice, despite the presence of

RAID and checksums. However, due to the proprietary nature

of these database systems and their on-disk formats, there is

little published on the details of how these offline check and

repair tools work.

Evaluations of open-source file systems have unearthed

many weaknesses in the ways modern file systems deal with

corruption [15], [30]. However, to the best of our knowledge,

there has been no similar published study in the DBMS

literature. However, as open-source database systems such as

PostgreSQL [37] and MySQL [39] have become both popular

and important, we believe a new opportunity has arisen to

both evaluate the state of the art of database checking and

potentially to improve it. The open nature of these systems

make evaluation possible, and in this paper (Sections IV



and V), we demonstrate how fault injection can be used to

assess the resilience of MySQL (in particular) to various types

of corruption.

III. METHODOLOGY

An integral part of ensuring the long-term availability of

data is ensuring the reliability and availability of pointers and

format information. Pointers are fundamental to the construc-

tion of nearly all data structures, while format information is

critical for the correctness of reading the data and metadata.

This observation is especially true for database management

systems, which rely on pointers to access data correctly and

efficiently, and on format information to determine how to

parse both metadata and data. Unfortunately, as mentioned

in the previous section, information stored on a disk can

be corrupt. A robust DBMS should detect and repair such

corruption of its metadata.

One difficulty with a pointer-corruption study is the poten-

tially huge exploration space for corruption experiments. To

deal with this problem, we utilize a fault injection technique

called type-aware pointer corruption (TAC) [5]. TAC reduces

the search space by systematically changing the value of only

one pointer of each type in the DBMS, then exercising the

DBMS and observing its behavior. We further narrow the large

search space by corrupting the pointers to refer to each type of

data structure, instead of to random values. For example, rather

than corrupting a B-Tree pointer to point to a random page, we

introduce types to the pages (e.g., grand-child, sibling, parent

page), and then change the pointer to point to different types

of pages.

TAC simulates field-level corruption. As mentioned in Sec-

tion II-A, different problems can lead to different types of

corruption. For example, a misdirected write can corrupt

everything on a page, not just a particular field. This type

of page-level corruption can be simulated as well by slightly

extending our fault-injection framework. So far, we have only

considered field-level corruption as it allows for detailed anal-

ysis of the system’s responses to different field-corruptions.

To exercise the DBMS as thoroughly as possible, another

challenge is to coerce the DBMS down its different code paths

to observe how each path handles corruption. This requires

that we run workloads exercising all relevant code paths in

combination with the induced faults. In this paper, we only

focus on read workloads. Specifically, we run three kinds of

queries: single selection queries (e.g., WHERE field = X),

range selection queries (e.g., WHERE field BETWEEN X

AND Y), and full table scans. By running different queries,

we can analyze how the injected corruptions affect different

workloads.

Section IV presents the results of our online pointer and

format corruptions for MySQL. Specifically, we inject corrup-

tions when the server is running and observe if it detects and

handles the corruptions. Unfortunately, some corruptions are

not detected online. Thus, we then inject the same corruptions
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Fig. 1.

B-Tree pointer corruption. The graph above shows key-pages of

an index B-Tree. Each box represents a key-page which contains a

set of key-pointer pairs. A pointer is a page number. We corrupt three

target pointers of a non-leaf page (page A): left-most (LP), middle

(MP), and right-most (RP) pointers. For example, the LP pointer can

be corrupted to point to the parent page (page B).

and analyze whether the MySQL offline checker is able to

detect them (Section V). As we will see, even the offline

checker fails to detect some of the corruptions, thus leaving

the DBMS vulnerable to on-disk corruption.

All experiments except where specified are performed on the

MyISAM Storage Engine of MySQL version 5.0.67 running

on the Linux 2.6.12 operating system. We have not tested

MySQL with other storage engines. In total we have injected

145 corruption scenarios. Due to the sheer volume of ex-

perimental data, it is difficult to present all results for the

reader’s inspection. We try to present the complete results of

our analysis in tables (for those interested in all the data),

and then provide qualitative summaries of the results that are

presented within the tables.

IV. ONLINE CORRUPTION

Despite the presence of corruption, we expect a running

DBMS to be highly reliable and available. More specifically,

we expect a reliable DBMS to have a strong mechanism for

detecting disk corruption such that corrupt metadata is not

wrongly used by the DBMS. Moreover, to be highly available,

a DBMS has to keep running and return as much valid data as

possible to the users. To see how MySQL stands with respect

to these issues, we pose three questions that relate to reliability,

availability, and framework for corruption handling:

1) Can MySQL detect disk corruption properly?



A B C D E F G H I J K L M

MP × × 6= 6= 6= 6= 6= 6= 6= 6= 6= √ √
LP × × 6= 6= 6= 6= 6= 6= 6= 6= 6= √ √
RP × × 6= 6= 6= 6= 6= 6= 6= 6= 6= √ √

(a) Single selection query

A B C D E F G H I J K L M

MP × × 6= √ √ √ √ 6= 6= 6= 6= √ √
LP × × 6= 6= 6= 6= 6= 6= 6= 6= 6= √ √
RP × × 6= 6= 6= 6= 6= 6= 6= 6= 6= √ √

(b) Range selection query

TABLE I

Online detection of B-Tree pointer corruption. The tables above report the results of our B-Tree pointer corruption. The results depend

on the query that is executed. The first and the second tables show the results of a single and a range selection query respectively. The

left-most column shows the pointers that we corrupt (i.e., MP, LP, and RP, as illustrated in Figure 1). The row-header represents the new

pages (i.e., page A to M) that the corrupted pointer is now pointing to. “
√
” marks that the corruption is detected; for example, when MP

points to an out-of-bound page (M). “×” represents a server crash; for example, when a cycle is introduced when MP points to itself (page
A). “6=” implies that the server returns the wrong results to the user; for example, when MP points to its grand-child (page C), records made
inaccessible by this corruption are not returned to the user.

2) Can MySQL keep running and return valid data despite

the presence of corruption?

3) Based on our results, what can we infer about the

framework for corruption handling in MySQL?

To answer these questions, we first present the results of

our fault-injection experiments on a running MySQL server

(Section IV-A). Then, we answer the questions by presenting

our qualitative observations on the results (Section IV-B).

Finally, we conclude this section and present some preliminary

results for PostgreSQL (Section IV-C).

A. Results

In this section, we present the results of our online pointer

and format corruptions. For pointer corruption, we corrupt the

B-Tree, record, and overflow pointers. For format corruption,

we corrupt the format information stored in the index and data

files. For each corruption case, we describe the MySQL data

structures that we corrupt, our findings and observations. In

all cases, we find that the presence of corruption would lead

to server crashes, data loss, or even incorrect results.

1) B-Tree Pointer Corruption: The first class of pointer

corruption that we inject is B-Tree pointer corruption. For

each database table, MySQL manages three files: an index

file (.MYI), a format file (.FRM), and a data file (.MYD). For

each index defined on a table, MySQL stores a B-Tree in the

index file in the form of key-pages (we also refer to a key-

page as a page). A page is usually 1 KB. The index file has

a header page (index file header) that has pointers to the root

pages of all B-Trees in the index file. A key-page contains a

header (page header), describing the key-page, and a set of

key-value pairs where the value carries two pointers: a key-

pointer (i.e., page number) which points to a child page and a

record-pointer which points to the corresponding record stored

in the data file. In this experiment, we corrupt the key-pointer

by making it point to another page and observe how MySQL

handles this class of corruption while it is running.

Figure 1 illustrates a 5-level B-Tree. We corrupt three

distinct pointers: the left-most (LP), middle (MP), and right-

most (RP) pointers of a non-leaf page (page A). To exercise

corruption scenarios, we corrupt these pointers. To reduce the

corruption space, we identify eleven categories of pages (pages

A to K as shown in Figure 1). For example, we corrupt the

left-most pointer (LP) to point to: the parent (page B), left

cousin (page E), left nephew (page F), and so on. To be able

to detect the corruptions, two keys that wrap the middle pointer

(key1 and key2) can be utilized.

Table I summarizes our results. In addition to corrupting

the three pointers to point to page A to K, we also force them

to point to pages belonging to the index file header (page

L) and to out-of-bound pages (page M). To analyze how the

corruptions affect different workloads, we also run two types

of queries: single and range-selection queries. In total, we have

injected 39 B-Tree pointer corruption scenarios. Unfortunately,

MySQL does not detect and handle many of these corruptions

online; MySQL returns wrong results to users, or the server

crashes. Below, we further explain the results.

Detected error (
√
): Out of the 39 scenarios, MySQL

detects only 6 or 10 of them depending if we execute a single

or a range-selection query. Most of the corruptions detected are

those where pointers point to an out-of-bound page (M) or to a

page belonging to an index file header (L). The former is easily

detected because reading an out-of-bound page will result in

a low-level read error. The latter is detected because MySQL

always checks the key-page header, specifically the length of

used key-value pairs in the page (which should always be



00 01 02 03 04 05 06 0D Data Out-of-bound

05
√•× √•× √•× √•× √•× √•× √•× √•× √♠ √♣

06
√•× √•× √•× √•× √•× √•× √•× √•× √♠ √♣

0D
√•× √•× √•× √•× √•× √•× √•× √•× √♠ √♣

0B
√•× √•× √•× √•× √•× √•× √•× √•× √♠ √♣

0C
√•× √•× √•× √•× √•× √•× √•× √•× √♠ √♣

TABLE II

Online detection of overflow pointer corruption. The table above reports the results of our overflow pointer corruption. “×” marks
that the server hangs and“

√
” represents that the corruption is detected. When an overflow corruption is detected, depending on the type of

the corruption, MySQL reacts differently: sometimes it does not return any valid data and marks the corresponding table as crashed (♠),
sometimes returns partial valid data and kills the executed query (♣), and sometimes returns all valid data and skips the corrupt record
without notifying the corruption to the user (•).

greater than 4 bytes and less than 1 KB). Pages that belong

to the index file header have different structures that always

store “0xFE 0xFE” at the same byte offset. Thus, MySQL can

detect that they are not valid key-pages.

Wrong results ( 6=): In many cases, MySQL blindly trusts
the corrupt pointers. As a result, incorrect results are returned

to users. Specifically, users could get empty records or the

wrong number of records (since portions of the tree are silently

lost). For example, this can happen when the middle pointer

points to its grand-child page (e.g., MP points to page C).

All the keys in the grand-child page are valid with respect to

key1 and key2. Thus, the corruption is not easily detectable

and some portions of the B-Tree (other pages reachable from

the MP page) are not reachable anymore.

Server crashes (×): Finally, MySQL does not anticipate a
cycle; when the three target pointers are corrupted to point to

the page where they are stored (page A) or to the parent of

that page (page B), MySQL server does not detect the created

loop. The server keeps calling the search routine on the same

pages infinitely. This routine only stops when the result is

found or not found. Since the MySQL server does not track

the previous pages that have been traversed, this loop causes

an infinite traversal that eventually causes a stack overflow.

The server crashes, and a lost connection error occurs.

2) Record Pointer Corruption: In our next set of experi-

ments, we inject record pointer corruption. Record pointers

are stored in key-pages in the index file. A record pointer

of a key-value pair points to the actual record that holds the

corresponding key. We have injected numerous corruptions.

Here, we briefly describe the interesting results.

First, we created a table with fixed-size records with an

auto-incremented key and corrupt a record pointer of a key-

value in the index file such that it points to another record

in the table. Thus, the key stored in a corrupt key-value pair

does not match with the key stored in the record that it points

to. For example, we take a key-value pair with a key of 500

and corrupt it by making the record pointer points to a record

with a key of 600.

We ran a single selection query on the key (SELECT *

WHERE key = 500), and the server behaves correctly; the

server returns an empty result. We suspect that MySQL verifies

that the record pointed by the corrupt key-value pair does not

have the same key.

We observed a different behavior when we ran a range

selection query (e.g., selecting records with keys between

450 to 550); MySQL only returns a subset of the records,

specifically records with keys between 450 to 499. MySQL

always trusts the key stored in the record; when the B-Tree

traversal hits key 500, it finds that the key in the record is 600,

which is larger than the end of the range query (550). Thus, the

server stops traversing the B-Tree and only returns a subset of

the records. This confirms that when a range selection query

is executed, MySQL never checks the fact that the key in the

record is different than the key in the key-value pair.

Another interesting result is when we corrupt the record

pointer of a dynamic (variable-length) record. With dynamic

records, the record pointer is a byte offset, which implies that

it can point to any byte in the data file. In this case, MySQL

always checks the record information (e.g., record length) in

the record header. In the case of a corrupt pointer, the record

length is not as desired. MySQL returns an error code to users

without giving any result. The error states that the table has

been marked as crashed and should be repaired.

3) Overflow Pointer Corruption: Next, we inject pointer

corruptions into the data file. With fixed-size records, the

data file does not store any pointers because a record can

be fetched given its record number. With the variable-length

record format, a record cannot always span contiguous bytes.

Thus, a record can be put in one or more frames. When a

record is deleted, all the frames that it occupies are marked

deleted. When a record is inserted, it can reuse unused frames.

If the new record does not fit in a frame, multiple frames are

allocated for the record. Thus, in each frame, MySQL stores a

pointer (the overflow pointer) to the next frame and a signature

header that describes the frame. Only frames with hexadecimal

signatures 05, 06, 0B, 0C, and 0D have an overflow pointer.

This overflow pointer cannot point to all types of frames;

a valid pointer can only point to a frame with a signature

between 07 and 0C; more details can be found elsewhere [25].

Table II shows the result of our overflow pointer corruption.

We inject corruptions that make an overflow pointer invalid.

For example, a starting frame of a small record (05) should



Sig: 01 Sig: 01Sig: 03 Sig: 07

Infinite loop

Corrupt pointer Valid pointer

Rec #0 Rec #1Rec #1 Rec #2

Fig. 2.

Server hangs. The figure illustrates a corruption scenario that causes

MySQL server hangs.

not point to a deleted framed (00). Furthermore, because an

overflow pointer is a byte offset (i.e., it can point to any byte

in the data file), we also force an overflow pointer points to

data and to an out-of-bound offset.

We found that MySQL detects all overflow pointer errors

(
√
). However, depending on the corruption, different results

are returned and different error messages are thrown. For

example, if an overflow pointer accidentally points to data,

MySQL is very conservative by not returning any valid data

(even though it has fetched some), but rather emits an error

message stating that the table has been marked as crashed

and should be repaired (♠). However, if an overflow pointer
points to an out-of-bound offset, the server kills the executed

query by returning only valid records that have been fetched

so far (♣). Finally, if an overflow pointer points to an invalid
frame, the server detects the error, skips this corrupt record,

and continues scanning the next record (•). The users then
would get all valid records, even those that are located after

the corrupted record. In this case, the server does not propagate

the error message to users.

Moreover, a certain scenario of overflow pointer corruption

makes the server enter an infinite loop (×). Specifically, this
happens on a full-scan query when an overflow pointer points

to an invalid frame that is located before the frame that holds

the overflow pointer. Figure 2 illustrates the bug. MySQL

scans the variable-length frames one-by-one, looking for any

starting frame. When there is an invalid overflow pointer

(e.g., the starting frame of record #1 points to the starting

frame of record #0), the corruption is detected from the given

signatures. But, rather than moving to the next valid frame

(i.e., record #2), MySQL scans the wrong next frame, (i.e.,

record #1, which is the frame next to the invalid frame). In

this case, the server gets stuck in an infinite loop.

Beyond the corruption scenarios shown in the matrix in

Table II, we also performed a more specific fault injection:

an overflow pointer is corrupted to point to a “valid” frame

that actually belongs to another record. But, in MySQL, a

frame does not hold information about its owner. Thus, it is not

straightforward for MySQL to detect this corruption online. As

a result, the corrupt record is presented to users like a valid

record, except part of the data belongs to another record.

4) Index Format Corruption: We now corrupt important

format information that is stored in the index file header,

shown in the left column of Table III. This format information

is crucial for parsing both metadata (e.g., keys, key-pointers,

etc.) and data (e.g., columns). Due to space constraints, we

do not provide the descriptions of the fields; their descriptions

can be found elsewhere [25]. For each field, we corrupt the

value to zero (0), a value less than the actual one (<), a value

larger than the actual one (>), and the maximum possible

value (Max). Format information is used differently depending

on the query workload. Thus, we ran three types of query:

full-scan, single selection, and range selection.

Table III depicts how various types of format corruption

are handled in an inconsistent manner; some corruptions are

detected (
√
), some are not. When a corruption is not detected,

MySQL sometimes returns incorrect results to the user ( 6=),
sometimes returns valid results (.), leaving the corruption un-

noticeable, and sometimes crashes (×) in some unanticipated
scenarios.

5) Record Format Corruption: In our final online exper-

iment, we corrupt dynamic-record length information stored

in the data file. MySQL is able to detect the discrepancy

between the length of a record and the total length of its

frames. MySQL tracks the cumulative length of the frames that

have been fetched with respect to a record. If the cumulative

length is larger than the record length, MySQL stops the

query and returns only valid records that have been fetched so

far. However, if the cumulative length is less than the record

length, the server emits a hard error message saying that the

table has been marked as crashed and should be repaired.

B. Observations

We now answer the questions we posed earlier in the

paper. In short, our results have shown that MySQL does

not detect all kinds of corruption that can arise, the MySQL

server is not highly available in the midst of corruptions,

and finally MySQL does not have a consistent framework for

corruption handling. Below, we describe these observations in

more detail.

1) Incomplete Detection: We find that MySQL ignores

many corruptions, which leads to incorrect results being re-

turned, crashes, and data loss. After further analysis, we find

two reasons for these problems: in some cases MySQL ignores

detectable corruptions and in some other cases MySQL does

not have the ability to detect certain corruptions.

Ignored detectable corruptions: There are cases where

corruption can be detected from implicit redundant infor-

mation stored in MySQL data structures. Thus, with some

additional work, some corruptions are actually detectable.

However, detectability does not always lead to detection as

we see in these three examples:

First, in B-Tree pointer corruption (Section IV-A.1), when

a pointer is corrupt such that it points to a page not reachable

from the parent page (e.g., MP points to page D through K

in Figure 1), MySQL could detect this by checking the keys

with respect to key1 and key2. However, since MySQL does



Full scan Single selection Range selection

Format info 0 < > Max 0 < > Max 0 < > Max

State header
header length

√ √
.

√ √ √
.

√ √ √
.

√
keys

√ √ √ √ √ √ √ √ √ √ √ √
number of records 6= . . . 6= . . . 6= . . .
data file length 6= 6= √ √ 6= 6= . . 6= 6= √

.

Base header
record length

√ √ × × √ √ × × √ √ × ×
pack rec. length

√ √ × × 6= 6= 6= × 6= 6= 6= ×
rec ref. length

√
.

√ √ × √ √ √ × √ √ √
key ref. length . . . . 6= √ 6= √ × √ × √
max key blk len . . . . × . . . × . . .
fields . .

√ √
. .

√ √
. .

√ √
Key def.
key segments

√ √ √ √ √ √ √ √ √ √ √ √
block length . . . . × .

√ √ × .
√ √

Key segment
length . . . . 6= √

. × √ √ √ ×
Record info
length . .

√ √
. .

√ √
. .

√ √

TABLE III

Online detection of format corruption. The table above reports MySQL corruption handling of different format corruptions. We corrupt

a format value to zero (0), a value less than its actual value (<), a value larger than its actual value (>), and the maximum possible value

(Max). This format information is stored in the index file header. “×” represents a server crash, “6=” implies that the server returns wrong
results to the users, “.” marks that the corruption is silently ignored, and “

√
” marks that the corruption is detected.

not perform such a check, incorrect results are returned (“ 6=”
in Table I).

Second, a record pointer corruption (Section IV-A.2) should

be easily detectable; the MySQL server could compare the

key stored in the index with the one stored in the record.

But, rather than utilizing this redundant information, MySQL

always trusts the keys stored in the records. As a result,

incorrect results are returned.

Third, in the index format corruption (Section IV-A.4), when

the data file length specified in the state header is corrupted to

zero, MySQL returns no result to the user without any error

message, blindly believing that the data file is empty although

the number of records stored in the state header can give the

correct information. A similar situation occurs when the data

file length is corrupted to half of the actual value; MySQL only

scans half of the data file. Another example is when the server

crashes because the record length stored in the base header is

corrupted to a maximum value. These corruptions actually can

be caught simply by verifying the same information stored in

the format file.

Undetectable corruptions:We find that several corruptions

are hard to detect because MySQL does not store enough

implicit redundant information in its data structures. We find

many instances of this issue:

First, in the B-Tree pointer corruption (Section IV-A.1), it

is hard to verify that a pointer properly connects two pages in

adjacent levels because a page does not store its page level.

For example, if a pointer is corrupt such that it points to one

of its grand-children (e.g., MP points to its C in Figure 1),

MySQL cannot detect this easily.

Second, it is hard to detect an invalid root pointer because

the index file header does not store the height of the B-Tree

and the root page does not store its page level. Thus, a root

pointer that points to a non-root page is considered valid,

leading to a silent data loss (i.e., some pages connected from

the original root page are not reachable anymore). If the index

file header stores the height of the B-Tree and each key-page

has page-level information, their values can be cross-checked.

Third, it is difficult to catch a page in a B-Tree that points to

another page belonging to another B-Tree because a page does

not store information about to which B-Tree it belongs to. A

table can have more than one index thus more than one B-Tree

can be saved in the same index file. A page in a B-Tree should

not be allowed to point to a page belonging to another B-Tree.

However, since the page does not specify owner information,

such a corruption scenario is not detected. As a result, users

get incorrect results or the server kills the executed query with

an error message.

Fourth, in the overflow pointer corruption (Section IV-A.3),

it is also hard to catch a frame in a record that points to

another frame belonging to another record because a frame

does not hold information about its owner. Thus, when a

corrupt overflow pointer points to a “valid” frame that actually

belongs to another record, MySQL cannot easily detect this

corruption online. As a result, the corrupt record is presented

to users like a valid record, except part of the data belongs to

another record.

Fifth, in the index format corruption (Section IV-A.4), it is

challenging to verify true leaf and non-leaf pages. The page

header has a one bit field that specifies whether the page



is a leaf page (bit = 0) or a non-leaf page (bit = 1). When

we corrupt the bit, thus making a non-leaf page a leaf page

and vice-versa, the server sometimes hits an infinite loop,

sometimes returns an empty result to users, and sometimes

detects incorrect keys due to incorrect parsing. Detecting this

corruption is challenging if not impossible. If only redundant

information such as page level were stored in the page header,

such detection would be straightforward.

In summary, MySQL should peruse available information

in its data structures to cross-check its metadata consistency

to the greatest extent possible. Furthermore, our findings

also show that adding extra information might be useful for

corruption detection or even recovery. The file system story in

Section II shows that adding implicit redundancy can be done

efficiently.

2) Reduced Availability: A system crash reduces availabil-

ity. Thus, failure should be avoided in most systems. Un-

fortunately, in our experiments, we have shown that MySQL

crashes in many cases of corruption.

Reduced availability also happens when MySQL fails to

return valid data to users. When a minimal corruption occurs

we might wish MySQL give us as many valid records as

possible. For example, if there is only one corrupt record (e.g.,

due to a corrupt overflow pointer), we might wish valid records

were still accessible. However, that is not always the case in

MySQL. In the overflow pointer corruption (Section IV-A.3),

when an overflow pointer accidentally points to data, MySQL

does not return any valid records (“♠” in Table II). When an
overflow pointer points to an out-of-bound offset, the server

only returns valid records that have been fetched so far (“♣”
in Table II). Hence, due to this inconsistent handling, a small

corruption in MySQL can make a large number of records

inaccessible.

To improve availability, corruption should be detected and

isolated. Detection is crucial; our findings have shown that

corrupt metadata can lead to crashes. Worse, it might lead

to the propagation of the corruption. This result emphasizes

that catching corrupt metadata is a crucial factor in increasing

availability. Furthermore, after corrupt metadata is detected,

the corruption and also the operation on the metadata should

be isolated; more specifically, the operation should be able to

continue processing other valid metadata.

3) No Framework for Corruption Handling: Finally, we

believe that MySQL might not have a framework for corrup-

tion handling. This conclusion is suggested by its inconsistent

reactions in handling corruption. We define inconsistent han-

dling as the case where similar failure scenarios are handled

differently. From our results, we find five cases of inconsistent

handling in each class of corruption we injected:

First, in the B-Tree pointer corruption (Section IV-A.1),

when we corrupt the middle pointer to point to any page

reachable from the left-uncle, MySQL detects the corruptions

(“
√
” in Table I-b when MP points to D, E, F, or G). However,

when the middle pointer is corrupted to point to any page

reachable from the right-uncle, MySQL does not detect the

corruptions and delivers the wrong results to the users (“ 6=”
in Table I-b when MP points to H, I, J, or K). These two

cases are similar but handled differently. It turns out that, for

the first case, MySQL “coincidentally” detects the corruption;

the error message actually comes from the detection of an

out-of-bound key-pointer due to the abnormal behavior of the

search routine after it follows the corrupted middle pointer.

Second, in the record pointer corruption (Section IV-A.2),

MySQL reacts to a corrupt record pointer differently depend-

ing on the executed query. In the case of a single selection

query, users get correct (empty) result; in the case of a range

selection query, users get wrong (partial) results without any

errors thrown; in the case of a dynamic length record, a hard

error is thrown and no result is returned (even the valid ones).

This shows that MySQL corruption handling is sometimes soft

and sometimes hard.

Third, in the overflow pointer corruption (Section IV-A.3),

depending on the corrupt value, MySQL gives widely different

reactions ranging from marking the table as crashed (♠ in
Table II) to killing the executed query (♣), and sometimes
silently returning without any error-code (•).
Fourth, in the index format corruption (Section IV-A.4),

Table III clearly depicts how format corruptions are handled

in an inconsistent manner, depending on the workload and on

the corrupt value. For example, when the key reference length

in the base header is corrupted, sometimes the corruption is

detected (
√
), but sometimes it is not. When the corruption is

not detected, MySQL sometimes returns incorrect results to

the user ( 6=) and at times crashes (×).
Fifth, in the record format corruption (Section IV-A.5),

when a query hits a corrupt dynamic-record length, depending

on the corrupt value, MySQL sometimes stops the query and

returns only valid records that have been fetched so far, but

sometimes emits a hard error message saying that the table

has been marked as crashed.

In summary, we believe that MySQL does not have a

proper framework for corruption handling. When inconsistent

handling is observed, usually it implies that the corruption

handling code is diffused throughout the code base [14],

[30]. Such diffusion usually results in unpredictable and often

undesirable fault-handling strategies, which might turn into

frustration for human debugging [30].

C. Summary

We have found that MySQL does not detect and handle

corruptions well. We believe that the observations we have

made are not specific to MySQL; in addition to MySQL, we

have applied our fault injection method to PostgreSQL version

8.3, another open source DBMS. Our initial experiment shows

that PostgreSQL has similar problems as MySQL. For exam-

ple, in PostgreSQL, pages in the index file store left and right

sibling pointers. When the right sibling pointer of a page is

corrupted so that it points to one of its left sibling pages, the

SELECT query on the table based on index scan makes the



server to hang as it hits an infinite loop. Beyond the scenario

described above, we have also injected 24 more corruptions to

PostgreSQL and found that 12 of them highlight the problems

observed in this section.

V. OFFLINE CORRUPTION

Online detection of hundreds of possible corruption scenar-

ios is often not feasible. One primary reason is because full

cross-checks must be performed to detect all scenarios. Thus,

a DBMS offline checker should be the last tool that catches

all corruptions in the database. When a corruption has been

detected by an offline checker, a repair utility can be run, thus

restoring the tables to a consistent condition. However, if the

offline checker misses some corruption scenarios, one would

not run the repair utility and corrupt data can leak into the

running system, which may cause more corruptions.

In this section, we analyze the robustness of the MySQL

offline checker, myisamchk, in dealing with the same cor-

ruption scenarios we have injected in the online case. This

checker runs in two modes: check and repair. In this first mode,

myisamchk attempts to find all corruptions in the database,

while in the second, it tries to rebuild the tables and index

files. Thus, we pose two questions:

1) Can myisamchk find all corruptions in the database?

2) Can myisamchk correctly repair the database?

To answer these questions, we first present the results of

our fault-injection experiments on myisamchk (Section V-A)

and then summarize our observations (Section V-B).

A. Results

1) Check Mode: We have injected the same B-Tree and

overflow pointer corruptions described in Sections IV-A.1

and IV-A.3. All cases except one are detected by myisamchk;

myisamchk crashes when a left-most key points to the same

page where the key is stored. More detailed observation shows

that in many cases of detected corruptions, the error messages

thrown do not precisely describe the injected corruptions. This

suggests that the checks performed do not capture the actual

corruptions. Hence, perhaps it is not surprising to discover a

corner-case bug.

The most interesting findings of our offline experiments

arose when we inject format corruptions (as in Section IV-

A.4). As depicted in Table IV, the offline checker blindly trusts

some format information. As a result, the checker crashes (×)
when such information is not as expected. This system crash is

unacceptable because a checker should not trust any value it

retrieves from the disk; its basic purpose is to find corrupt

metadata. Other than this, Table IV also shows that many

corruption scenarios are left undetected.

Format info 0 < > Max

State header
header length

√ √
.

√
keys

√ √ √ √
number of records

√ √ √ √
data file length

√ √ √ √
Base header
reclength

√ √
. .

pack reclength . .
√ ×

rec reflength
√ √ √ √

key reflength
√ √ √ √

max key blk len × . . .
fields . .

√ √
Key def
keysegs

√ √ √ √
block length

√
.

√ ×
Key segment
length

√ √ √ ×
Record info
length . .

√ √

TABLE IV

Offline detection of format corruption. The table reports my-

isamchk corruption handling of different format corruptions. “×”,
“.”, and “

√
” represent server crash, ignored corruption, and detection

respectively.

2) Repair Mode: When we inject format corruptions, we

also find that the repair performed by myisamchk could

be problematic. For example, when the record length (“re-

clength”) specified in the base header of the index file is

corrupted, myisamchk throws an error message saying that

it found wrong records in the data file and suggests a repair.

When the repair is finished, however, all records in the table

are discarded and the record length still remains corrupted.

After studying the code, we determined the reason. In

MySQL the record length is essential to parsing records from

the data file. However, myisamchk assumes that this field is

always correct. Thus, once the field gets corrupted, it will

never locate the corruption. Then during the repair, myisamchk

will not be able to read any record from the data file by using

the wrong record length, thus leaving no record after the repair.

In fact, this erroneous repair could be avoided by a simple

fix, which makes use of the redundant information inside the

data file itself and from the format file.

B. Observations

In summary, our results show that the offline checker

myisamchk is far from robust; it does not catch all corruptions

and it does not always repair the database correctly. Our

observations point to the same issues faced by the running

MySQL (Section IV-B). Mainly, some detectable corruptions

are ignored and some corruptions are not detectable due to the

lack of redundant information. As a result, the checker itself

can crash and even worse an erroneous repair could happen.

The fact that myisamchk does not perform a complete set

of checks is not surprising given the minimal implementation



# Checks Performed

4 Checking data file:
Check validity of deleted block links, deleted frames,
overflow pointers, size of deleted blocks

9 Checking keys:
Check delete links (range-check and alignment),
compare key-value pairs (range-check and alignment),
check record-pointer, page length, auto-increment key.

2 Checking file sizes:
check length of index and data file

15 Total

TABLE V

Checks performed by myisamchk. The table summarizes the 15
checks performed by the MySQL offline checker.

of the checker (under 2000 lines of code). A more detailed

study shows that the checker only performs 15 checks, shown

in Table V. Many important checks are either omitted or

overlooked. Redundant information in the format file (e.g.,

column and key definitions, file size, record count, etc.) is

not used to verify the consistency of the index file. B-Tree

checks are also not comprehensive. For example, key-value

pairs comparison is done only on per-page level; key-value

ordering across siblings and parent/child is not checked. Thus,

there is room for improvement in building a more robust

MySQL checker.

VI. CONCLUSION

In the world of storage systems, it would be ideal if RAID

storage guaranteed that data was not corrupt. Unfortunately, no

such guarantee is possible (though techniques can make the

odds of perceived corruption lower). Thus, a DBMS must, at

the highest level, be responsible for the correctness of its data.

This notion is particularly true of the DBMS metadata, which

no client of the DBMS can even access; if the DBMS does

not safeguard its own metadata, no other components can.

In this paper, we have begun the exploration of the data

corruption problem on database management systems. We

have shown that the MySQL and PostgreSQL DBMSs do not

tolerate such faults particularly well, and that MySQL offline

checker catches some but not all corruptions, thus leaving the

system susceptible to corruption if it arises.

However, we believe our work is only the first step towards

the “hardening” of database management systems to the prob-

lems of corruption. Many problems remain, including:

Online checking: A running DBMS should likely perform

internal integrity checks while it runs to protect against other

forms of corruption, including those from bad memory [23]

as well as from disk.

There is a large body of work regarding techniques for de-

tecting and recovering from data corruption [35], including the

use of in-memory redundancy with checksums and replicas,

or the use of fault-tolerant data structures [3], where a single

pointer fault cannot lose a large amount of data, unlike what

we have seen in Section IV-A.1. Although all these techniques

are not new, it would be interesting to find out why they are

not deployed in practice. One reason might be a lack of study

in quantifying how much performance overhead is imposed

and how much reliability is gained when a certain redundancy

or protection is added. This would be an important issue to

look into further.

Aside from existing techniques, we believe a proper frame-

work is needed in deploying the techniques. One possible

solution is having a centralized framework that focuses on

corruption handling [14]. Without a centralized framework,

handling hundreds of corruption scenarios is proven to be

difficult, diffused, and inconsistent.

Robust offline checkers: The existence of repair tools again

indicates that we need them in practice. However, as we have

observed, the repair process of checkers (both for DBMSs and

file systems) is typically ad hoc. Thus, the quest in building

more robust checkers has begun recently. For example, Gu-

nawi et al. utilize a declarative approach to write hundreds

of checks and repairs in a clear and compact manner [15].

Others have used more formal frameworks as the foundation

for corruption repair. For example, Khurshid et al. suggest the

use of symbolic execution [18] and Wang et al. define the

problem of corruption-repair as a global optimization problem

by using structural Hamming and edit distance [43].

Thus, further work is clearly required. Only through a

combined offline and online approach will a high-performance,

robust, and truly corruption-robust DBMS be realized.
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