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The independence of various definitions of finiteness *
by
A. Lévy (Jerusalem)

In this paper we deal with concepts which are characteristic of a set
theory without the axiom of choice. Since the independence of that axiom
in a set theory which satisfies the axiom of foundation and permits no
Urelemenie has not yet been proved, we deal with a set theory which
ndmits the existence of Urelemente. Recently Mendelson [4] has proved
that the axiom of choice is also independent in a system which admits
no Urelemente but, instead of satistying the axiom of foundation, satisfies
only weaker forms of that axiom. Mendelson has observed that Mosfowski’s
results, which will be mentioned later, are valid also in his system. The
same can also be said about the results of this paper. Those theorems
in this paper which are true also for systems of axioms which include
the axiom of foundation and admit no Urelemente will be denoted by
an asterisk.

Almost all the results of the present paper regarding the independence
of definitions of finiteness were announced by Mostowski and Lindenbaum
in [3] and [3]. Some of them are proved in Mostowski [6]. All this was
done for systems in which the ordering principle (the statement that
every set ean be ordered) is not provable. In the present paper the in-
dependence of the definitions of finiteness is also examined when the
ordering axiom is assumed. One result in this direction was obtained
by Doss [1].

The proofs in this paper are based on the models constructed by
Mostowski in [7]. 98 will denote the general model of Mostowski con-
structed in [7], § 3 and W+ will denote the special model defined in [7],
§ 4 which satisfies the ordering axiom. The same letters will also denote,
respectively, the universal classes of the models, without causing any
confusion. The knowledge of the general features of these models will
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be assumed throughout the paper. Our notations are generally adapted
to those of Mostowski in [7]. By ,,set theory” we shall mean the set
theory of von Neumann in which the model 23 is constructed. The
consistency of the set theory will be assumed tacitly in all the meta-
mathematical theorems in this paper. We shall not use any special
terminology for the relativised concepts of the model. In the cases where
the concepts of the model and the set theory coinecide no confusion can
arise; in other cases the phrase ‘“in the model” or “of the model” will
be added to denote the relativised concepts wherever an ambiguity may
arise. For example, by “4~B in the model” we mean that between
the sets 4 and B of 28 holds the relation of the equivalence of sets re-
Iativised to the model. @ will denote the axiomatic system of Mostowski
([7], §1 — axioms 1-18), which is based on the axiomatic system of
Bernays. The main difference between the systems of Bernays and
Mostowski is that the latter permits Urelemente. S is satisfied by 8.
&+ will denote the system which consists of the axioms of & plus the
ordering axiom. S+ is satisfied by I3+. Mostowski has proved in [7]
that the axiom of choice does not hold in QB+ therefore the axiom of
choice i3 not provable in & or S+,

By 4 we shall mean the cardinal of the set 4. We shall generally
use this notation to denote cardinals of sets in the models with which
we shall deal. We do not need any formal definition of the concept of
the cardinal since any statement aboub cardinals can be understood as
an abbreviation of a statement about sets.

DEFINITIONS OF FINITENESS.

I¢). A is finite if every non-void family (2) of subsets of A has a max-
imal element (an element which is not a proper subset of any
element of A).

We get an equivalent definition if we replace “maximal” by
“minimal” (cf. Tarski [8]).

Ia. 4 is finite if it is not the union of two disjoint sets nelther of
which is finite according to definition I.

II(*). A is finite if every non-void monotonic family (a family which
is completely ordered by inclusion) of subsets of 4 has a maximal
element.

We get an equivalent definition if we replace “maximal” by

“minimal” (the proof is the same as in the case of definition I).

IIT(*). 4 is finite if the power-set of 4 is irreflexive ).

(*) This is one of the definitions of Tarski in (8.
(*) By ‘“4amily” we mean a set of sets.
(*) A set is reflexive if it is equivalent to one of its proper subsets.

The imdependence of various definitions of finiteness 3.

IV (1). A is finite if it is irreflexive.

V(). A is finite it 4 =0 or 24 > 4,

VI(%). A is finite if £=0,1 or L2> 4.

VIL. A4 is finite if A4 is not an aleph greater than s, or equal to it.

All these definitions are equivalent if one assumes the axiom of
choice. In fact, definition VII is the most inclusive definition that be-
comes equivalent to definition I if the choice axiom i3 assumed. What
we usually mean by “finite” is finite according to I; therefore sets finite
according to I will be simply called finite. The general properties of finite
sets, which are proved in [8], are assumed to be known.

*TamOREM 1. If @ set is finite according to any of the above definitions
it is finite also according to any definition which follows it.

Proof. It is of course sufficient to prove that if a set 4 is finite
according to any of the definitions then it is finite also according to the
definition immediately following it. We shall prove that every set finite
according to Ia is also finite according to IL. The proof that every set
finite according to IT is also finite according to IIL was obtained by
Kuratowski and may be found in [8]. The proofs of the other implica-
tions are easy.

Let A be finite according to Ia. Let us assume that A is infinite
according to IT and arrive at a contradiction., By assumption there exists
a monotonic family P of subsets of A4 which has no maximal element.
Assume further that every set of P is finite. P, being meonotonic, is
completely. ordered by inclusion, whence the last assumption implies
that every section of P is finite (@ is a section of P if there is an ele-
ment ¢ of P such that Q= {y;y e P,y <a}). In this case it follows
easily that the order type of P is = finite ordinal or ». The first possibility
is excluded by the agsumption that P has no maximal element, therefore
P= {4y, 4;, Ay, ...}, 4;C 4;4, for each ¢ e w. Now let

B= Z (Agiro—Asit1) 5 C=A—B.
1=0
Of course

()] (Am+1 —Aai) .

M\As

Neither B nor O are finite since the fs‘mmih'es
n
Y (Asers—Asa)ineo)  and {Z (Asiri—Asdy e 0}
t=0 =0

(*) This is a definition of Tarski mentioned in [5].
1*
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do not satisfy. the conditions of definition I for B and C respectively.
This cannot hold since we have assumed that A is finite according to Ia.
Therefore the assumption that all the sets of P are finite is not true.
Now let B be an infinite element of P. Define ¢ = A—B. C is infinite
because if ¢ were finite A. could have only a finite number of subsets
which include B and therefore P should have a maximal element. Now
we have arrived at a contradiction because we have proved that 4 is
the union of the disjoint infinite sets B and C, contrary to the assump-
tion that 4 is finite according to Ia.

In this paper we shall prove the independence of definitions IT-VII
in the system &+ and the independence of definitions I, Ta, II in &,
The definitions I, Ia, IT will be shown to be equivalent in G+ (i. e. when
the ordering axiom is assumed). '

*THEOREM 2. If the set A is finite according to IX and can be ordered,
then it is finite (5).

Proof. Let 4 be ordered in any order. We ghall prove that A is
well-ordered. Let B be a non-void subset of A. We have to prove that B
has a first element. Let P be the family of the subsets of B which are
sections of B. P is a monotonic family of subsets of A4; and since 4 is
finite according to II, P has a minimal set €. ¢ is a section of B; there-
fore B has an element ¢ such that C = {2; z ¢ B, = < ¢}. We shall prove
that ¢ is the first element of B. If ¢ is not the first element of B, then
there is an element ¢ of B such that d <e¢. Let D= {z; v ¢ B, » < d);
then D C O (because d e €, d¢ D) and D < P, being a section of B, But
D CC leads to a contradiction since ¢ is minimal in P. Thus we have
proved that A4 ig well-ordered by any order of 4; and since there exists
at least one such order, 4 is finite. (Of. [8], Th. 45.)

From Theorems 1 and 2 follows:

*TEEOREM 3. The definitions of finiteness I, Ia and II are equivalent
if the ordering axiom is assumed.

The basis of all the examples which are constructed in this paper
is the set XK (cf. [7], 16) of all the Urelemente of the model . K is
denumerable in the set theory. We recall that G is a group of biunique
mappings of K on itself. |p, x|, for g ¢ G and z <M (?) is defined as follows:
l¢s 2 = p(a) for w < K, [p, Ao|= A, (") and |p, o] = {|p, y|; y < x} other-

(%) Tarski mentions in [8] that defs. IT and III are equivalent to def. I in the
Euclidean space. Theorem 2 is a generalization of Tarski’s statement.

(°) 9 is the following class (cf. [7], 20): Let P(4) be the set of all the non-
void subsets of 4 in the set theory. K, = K--{ 4} (cf. footnote (7)), Ke= 3 Kn+p( 3 K,).
9 is the union class of all the K¢. By definition of B, WC M. - <

(") 4, is the void set of the model. It is not the void set of the set theory.

icm
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wise. Since |p~1, |, #|| = @ and |9 v, @) = lpp, o] for each p,p G and
each x M (ef. [7], 33 and 36), & is a group of biunique tramnsfor-
mations of M on itself, and the multiplication in ® is the ordinary
multiplication of transformations of 9 on itself. G(4), for ACK, is
the subgroup of @ consisting of the mappings which do not move the
elements of 4. R(A) is the subelass of M consisting of all the elements
of Y which are invariant under -all the mappings of @ (A4).

For the model B+ K is ordered in the same order as the rational
numbers in the set theory. We shall use for K in I+ the terminology
of the rational line. The elements of K will be called points, and subsets
of I of the types (4,b) ={z;veK, a <2< b}, (—oo,a)={x; xeK, z<a},
(@, c0) = {&; we I, ®>a}, (—oo, co) =K will be called open intervals.
‘We must remember that whenever intervals are mentioned we mean
only intervals with ‘“rational” or ‘“infinite” endpoints (excluding intervals
like the rational interval (0,)'2)). For ¥+, we take for & the group of
all the order-preserving maps of K on itself, and denote it by G+ G+(4)
and R+(4) will denote with respect to G+ what G(4) and R(4) denote
with respect to ®.

LemmA 1. A set A is a sef of the model I and is finite in the model
if and only 4f either A is & finite non-void set of elements of I in the set
theory, or A = 4,.

Proof. If A = A4, then it is the void set of the model and therefore
it is finite in the model.

Let A be a finite non-void set of elements of M. We shall nse the
following facts about the model I8 which can easily be proved from the
definition of MW:

1. If ae 2B then {a} ¢ W and {a} is the set of the model containing
the single element a in the model.

2.1 B,Ced, B,CC W then B+C eI and B+ is the union
set of B and C in the model.

We shall prove that 4 is a finite set of the model by induction with
respect to the number » of the elements of A. If n =1 then 4 = {a}, a ¢ W,
whence 4 = {a} ¢ W. 4 is finite in the model because it has only one
element in the model. For » > 1, let a be an element of A; we have
A = (A—{a})+{a). A—{a} is a finite set of the model by the hypothesis
of the induction. We have proved that {a} is also a finite set of the model;
therefore their union A is a set of the model, and A4 is finite in the model,
being the union in the model of two sets finite in the model.

Let A be a set finite in the model, 4 %= A,. Let U be the class of
all the non-void finite subsets of ¥ in the set theory. According to the
first part of this proof iU C M. The clags of the transtorms of the ele-


Artur


6 A. Lévy

ments of I by a transformation e @ is U itself since the ¢ and the ¢—?
transforms of elements of ¥ are elements of W (cf. [7], 47), and the ¢
and ¢~ transforms of finite sets (in the set theory) are finite sets (the
latter statement follows immediately from the definition of |p, »). Hence
L is 8 M, - ausgezeichneter Bereich (cf. [7], 43), i.e, U is a class of
the model. Let P be the set of the model consisting of all the subsebs
of A which are elements of . The existence of P is guaranteed by the
axioms of &, which are satistied by the model. 4 is a set of W, 4 3= 4,
whence 4 C I (cf. [7], 52 and 46), and there exists an element & of 4
such that a « 98; therefore {a} ¢ W, {a} ¢ P and P = A,. Since 4 is finite
in the model, definition I and P # A, imply the existence of a maximal
set B of P. We shall prove that B = 4. If BC A4, then there exists an
element o of A such that a ¢ B. B ¢ P implies B+ {a} ¢ P, which cannot
hold since B is maximal in P. Hence B = 4, and therefore 4 ¢ P and
Ael, i e, 4 is finite in the set theory.

Lemma 2. Let I be a non-void subset of K. L ¢ Wt if and only if L
is the non-void union of & finite number of open intervals and a finite number
of points of K. '

Proof. Let L C K, L e W+ L ¢ W+ implies the existence of a finite
subset A of K such that LeR+(A) (cf. [7], 43). The points of 4
divide K into a finite number of open intervals. Let (p,¢) (})) be such
an interval and let a,b be points in it. There exists a ¢ ¢ ®*+ which
is the identity on the whole of K except the interval (p,q) and
maps ¢ on h. geBt(A) becaunse ¢ does not move the points of A.
Therefore |p, L| =L and if a <L, then b= ¢(a) implies b ¢|p, L| = L.
Thus we have proved that if L includes one point of an open interval
generated by A it includes the whole interval. Since K is divided by 4
into a finite number of open intervals and the finite set of the points
of A, L must consist of a finite number of open intervals and a finite
number of puints.

Let L C I{, while L consists of a finite number of open intervals
and a finite number of points. Let 4 be the set of the boundary points
of L in K. A is finite, and we can easily see that L ¢ R*+(4) (°). Therefore,
since L is non-void, it is enough to shew that I C 98+ in order to have
L e Wt; but L C W+ follows from L C K and K C W.

Lovwma 3. Let LCK, LeWt. If L is an open (mon-void) interval
of K then L cannot be well-ordered in the model.

() p is & .wint or —oo, ¢ a point or oo.
(*) We 1w -1l our convention that every interval has endpoints in K at its finite
ends (if any).
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Proof. The proof that K cannot be well-ordered in the model,
carried out in [7], 111, becomes a proof of this lemma if K is replaced
by L throughout the proof. :

Levma 4. Let LCK, LeWt, L Ay If L is not finite then i
cannot be well-ordered in the model.

Proof. According to Lemma 2 L is the union of a finite number
of open intervals and a finite number of points. Since L is not finite it
must contain at least one open interval M. M is a subset of L in the
model according to Lemma 2. If L can be well-ordered in the model
then M, too, can be well-ordered in the model, in contradiction to Lemma 3.

Luvmma 5. Let P be an infinite family of subsets of K in the model T+,

" There exists a family Q@ and a funclion y such that Q e W+, x « W+, @ C P,

and y maps @ onto an open interval of K.

Proof. Pe W+ implies the existence of a finite subset 4 of K such
that P eR+(4). Since P # A, it follows that P C I+, There is only
a finite number of subsets of K the boundaries of which are subsets of 4;
and since P is not finite there exists an element of P having at least one
boundary point which i not in 4. Let L be such an element of. P; let a
be one of its boundary points which is not in 4; and let (p, q) be the
open interval generated by A which containg a. Let Q= {|p, L|; 9 ¢ G+H{4)}.
Since ®+(4) is a group of transformations of M, for each ¢ e GH(4),
l@, M| €@ if and only if M Q. Therefore ¢ « R(4). L« P and PeRHA)
imply that |p,L|e<P for each pe®+(4), whence QCP. @ CPCI+
and @ ¢ R+(4) imply that @ ¢ W,

Let M Q. There exists a ¢ e +(4) such that M = |p, L|. ¢ maps a
on g(a). We shall show that p(a) is independent of the special mapping
chosen from the mappings of ®+(4) which map L on M. L and M have
the structure mentioned in Lemma 2, whence their boundaries are
finite sets. All the order-preserving binnique funetions which map L
on M map the boundary of L onto the boundary of M in the same
manner, since the boundaries are finite. Therefore @ is mapped on the
game point by all the transformations of G+ which map L onto M.
Now, since ¢(a) depends only on M and not on g, let us write p(a)= x(M).
y={<M, x(M)>; M @} (*). By the pairing axiom, which the model
satisfies, <M, y(M)> ¢ W+ for each M @, and therefore y C W+ In
order to prove ye Wt it is now sufficient to prove y € RH(4), i. e,
[w, x| = x for each ye®*(4); but since G*(4) is a group this will
follow from |y, x| C x. Let & be an element of y. By the definition of yx,
g= (M, y(M)> for some M@, ie., 2= o, L|, 2(jp, L)> for some
@ GH(A). '

Wthe symbol for an ordered pair.
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s @l = [v, <lo> I, 2(le, Z1>| = v, o, L], #(@)) |
= (v lo, L] vo(a)y = <wp, L], 2(|pp, L.

lw@, L €@ by the definition of @, whence |y, z| = due, L], 2(|wp, L)Y e .
Thus we have proved |y, x| C y, whence y e R+(4).

We shall prove that the set of the images of the elements of @ by
the function y is the open interval (p, g). For every point b in the interval
there exists a mapping ¢ € G*+(4) such that p(a) = b, whence b = y(|p, L}),
lp, L] Q. On the other hand, each image by yx of an element of ¢ is of
the type ¢(a), where p ¢ G+(A); p(a) cannot be outside (p, ¢) since p, g 4,
and g, being an element of G+(A), cannot carry a across p or g.

The sets @ and y fulfil the requirements of the lemma.

Lemva 6. Let P be a set as required in Lemma 5. P cannot be well-
ordered in the model W+,

Proof. By Lemma 5 there exist sets of the model ¢ and y such
that @ C P and y maps @ onto an open interval (p, ¢) of K. If P can
be well-ordered in the model then the same applies. to @. The existence
of y implies that (p, ¢), too, can be well-ordered in the model, in contra-
diction to Lemma 3.

Levma 7. The set K and the power-set of K in the model are ir-
reflexive in the model LB+,

Proof. If any of the two sets is reflexive in the model it must have
@ subset which is denumerable in the model (¢f. [2], p. 57-58); but Lem-
mata 4 and 6 imply that neither set can have such a subset.

TeeorEM 4. The definitions of finiteness I and III are not equiv-
alent in S+,

Proof. We shall prove that the. set K is finite in the model W+
aceording to IIT but is not finite in the same model according to I.

By Lemma, 1, K is not finite in the model according to I. X is finite
in the model according to IIT since Lemma 7 states that the power-set
of K in the model is irreflexive in the model.

TemoreM 5. The definitions of finiteness 11 and IV are not equiv-
alent in S+,

Proof. Let P be the power-set of K in I+ We shall prove that
the set P is not finite in the model W+ according to III but is finite in
the same model according to IV.

K is infinite; therefore the power-set of P in the model is reflexive
(because a set is finite if and only if the power-set of its power-set is
irreﬂexive) (ef. [8], p. 74), whence P is not finite in the model according
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to III. P is finite in the model according to IV since Lemma 7 states
that P is irreflexive in the model.

LremMmA 8. Let L, MeW+, L, M CK. L and M are equivalent in
the model if amd only if both L—M and M—L are finite in the model and
I—M=M-L.

Proof. It obviously follows from the azioms of &, which are true
in W+, that if L and M are two sets for which Z—M and M —L are equiv-
alent in 2+, then I and M are equivalent in W+, If, conversely, I and M
are equivalent in the model, let ¢ be the biunique mapping of the model
which maps L onto M. L—M, M—L ¢ W+ by the axioms which are
satisfied by the model. We shall prove that L—M and M—L are finite.
Assume that one of them is infinite, say L—f. Since L—M C K and
L—M is infinite, by Lemma 2 it must contain at least one open interval
N of K. We have N CL—M, whence NCL, N~ M= Ay. p ¢« W+ and
therefore K has a finite subset A such that p e R+(A). A divides the open
interval N into one or more open intervals. Let (p, ¢) be such an interval
and let a,b be two different points in it. Let y ¢ G+ be the biunigue
mapping which is the identity on K outside (p, q) and maps (p, q) on
itself in such a way that y(e)='b. By the construction of v we have
pe®r(A). aeN CL, whence o is an element of the domain of g,
(@, p(a)) € p. From p e R+(A) and ¢ ¢ GH(4) follows [y, (@, pla)y| eq, i e,
(@), pp(a)) ep. p(a) =b. pla) e M, N~ M = A, and (p, q) C ¥ imply
that ¢(a)¢ (p,q), and therefore yp(a)= p(a), since y is the identical
map outside (p, ). Thus we have proved <b, p(a)> = (p(a), pp{a)) e @.
But @, being biunique, cannot map both ¢ and b on ¢(a); therefore, by
the contradiction obtained, we have proved that L—M and M—L are
finite. We have still to prove that they are equivalent. We have in the
model L=L~AM+IL-M), M=L~M+(M-L). It L-M and ML
are not equivalent, we can assume, without loss of generality, that
I—M < M—L. Let B be a proper subset of M—L which is equivalent
to L—M. We have M~L=L~ M+ (L-M)~L~ M+B, whence
M~LA~M+B. But B is & prop‘er subset of M—L; therefore L ~ M +B
is a proper subset of M. Thig proves that M is equivalent in the model
t0 a proper subset of itself. This result cannot hold since M ig irreflexive
in the model, being a subset of K, which is_irreflexive in the model
(Lemma 7). Hence the assumption L—M # M—L leads to & contra-
diction and D—M = M—L is proved.

Lmva 9. Let U be an infinite well-ordered set in the model Do+ which-
has no common elements with K (). For any set L in the model we have
U+E +2L.

(%) The latter requirement is not essential.
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Proof. Assume 2L = U+ K. Let L, = {1}xZL, Ly= {2}xL. By
assumaption there is a biunique function ¢ ¢ W+ which maps I, 4L, onto
U+E.

Let By =K no(ly), Ky=Knels), Ui=Uno(l), Uy=Ungp(Ly).
We have K = K, +K,, U=U,+U,, ¢(Ly) =L, =1L,= ¢(L,), and since
o(Ly) =T, +Ky, ¢(L,)=U,+E, we have U, +K, =U,+K,. Hence there
exists a biunique funetion y e Wt mapping U, +K, on U,+K,. U, CU,
therefore U, can be well-ordered in the model. The same applies also
to the set ¢(U,), which is equivalent to U, in the model, and to its subset
K, ~yp(Uy). Ky ~y(U,) is finite since it is a subset of K and K has no
infinite subsets which can be well-ordered (Lemma 4). In the same way
we can prove that U,~y(XK;) is finite.

Let Ny= Hy~yp(U,), Ny= U,~yp(K,); then N, and ¥, are finite.

9 (Ky) +Ny = Ky ~p(Ky) + U ~p (Ky) + K, ~p(Uy)
=+ Usnyp(Hy) = K+,

whence E+i= -:p_(_Kl)—a—lV_l:K;—,l-E. _Assume, without loss of gen-
erality, that N, > N, and let n = N,—N,. From K, +N, = K,+N, we
get K, = K,—n. Now let K3 be a subset of K, of the cardinal I —n.
We have K, — K3, K,, K C K. Hence, by Lemma 8, K, —K# and K} —K,
are finite. But K, and K, are mutually exclusive by definition, and
K3CK,, therefore K, = K, —Kj}, K= K}—K,. Hence K, and K} are
finite. ¥ = K, +K, = K, +K3 +n, which proves a contradiction, becaunse
the infinite set K cannot be the union of three finite sets.

THEOREM 6. The definitions of finiteness IV and V are not equiv-
alent in S*.

Proof. Let U be an infinite well-ordered set in ¥+ which has no
common elements with K (e.g. o= {0,1,..} where 0,1,.. are the
natural numbers of the model). We shall prove that the set U-+K is
not finite in the model W+ according to IV but is finite in the same model
aceording to V.

U+X is not finite in the model according to IV since U has a subset
which is denumerable in the model. U +K is finite in the model accord-
ing to V because by Lemma 9 2L#U+K for any set L in the model,
and hence 2(U+K)#U +K, i.e. 2(U+K)> U+K in the model.

CoroLrARY. The following statement is consistent with the axioms of G+:

For any given aleph there exists a set which is finite according to 'V
and has a cardinal greater than that aleph.

THEOREM 7. The definitions of finiteness V and VI are not equivalent
in S*. ’
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Proof. We shall prove that the set wx K is not finite in the model
-+ according to V but is finite in the same model aceording to VI.

o XK is not finite in the model according to V since we have in
the model 20 x K = 20K = oK = o XK. In order to prove that o x K
is finite according to VI we have to prove o X Ko X K > o X K. We have
of course wxX KoXK > oxK. Assume wXHKoxH = oxH. Then we

have o XK = o XxRo XK = o KoK = o*K? = oK?, whence K® < o XK.
Now let ¢ be the biunique function of the model mapping K* into wx K.
@ « W+ implies the existence of a finite subset 4 of K such that ¢ e RH4).
Tet a,bekK, ab, a,b¢ A We have (a,b> < K? ¢(<a, b)) = <, >,
jew, ce K. Bince as£b, ¢4 a or o b. Without loss of generality we
assume ¢ = . Let (p, g) be an interval which contains ¢ bub excludes ¢
and all the points of .A. There exists a biunique function p ¢ +(4) which
is the identity of K except the interval (p, ¢), and for which (a)+#a.
We have (<a,Db), (i, ed> ep, and since g e Nit(4), pe @A) it follows
that [y, (&, b, i, D] €@y 1 ey {<p(@); p(0), <Jw, i, p(e)2D> € 9. The na-
tural number i of the model is the set of all the natural numbers smaller
then 7. The zero of the model is A,. Since |p, A\ = 4,, it iy easy to
j;)rove by induction that |y, 4| = 4. By the construction of v, p(e) =c.
Therefore {{p(a), p(0), <Gy O €9, i. e, o(<p(a), p(B)) = i, ¢). Thus we
have proved that ¢ maps both pairs <a, b and <y(a), w(b)> on the same
pair {4, ¢>; the pairs {(a, b) and {yp(a), p(b)> are different because y;(.a) ;é a.
Hence we have arrived at a contradiction by assuming ¢ to be 2 biunique
function. Therefore must have o x Ko XK > o X K.

THEEOREM 8. The definitions of finiteness VI and VIL are not equiv-
alent in St.

Proof. We shall prove that the set K® (**) is not finite m the model
W+ according to VI but iy finite in the same mo~d=61 aeE?:rdJng: to V-IE.

K® is not finite according to VI since (K°)2= (K"p2= K™ ::E_T = K"
K® ig finite according to VII, for if K were an aleph, K < KX° would
imply that K is also an aleph, contradieting Lemma 3. .

Now we are going to prove the independence of definitions I, Ta
and II in G. For this we need another special model of the models of
the type I which will be named I8'. For W', we take fo‘r ® (2) the group
congisting of all the biunique transformations of K on itself, and de._nc?te
it by ®’. The G’-ring (cf. [7], 42) will be again the set of all the finite

. subsets of K. G'(4) and R'(4) will denote with respect to ®' what ®(4)

and R(4) denote with respect to ©.

() By K® we mean the set of all functions of the model which map @ into K.
() Of. the description of 9 following Theorem 3.
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LeMMA 10. Every subset L of K in the model W’ 48 finite in the model
or s the complement in K of a set which is finite in the model.

Proof. Since L ¢ W’ there exists a finite subset 4 of K such that
LeR'(4). It LC A does not hold in the model then there is an element b
of I such that b ¢ A. For each element ¢ of X —4 there exists a function
@ € G'(A) such that p(b)=c. belL and L ¢ R'(4) imply that ¢ = ¢(b) < L,
whence K—A4 C L. Thus we have proved that either LC A or LD K —A4.
From this and Lemma 1 follows our lemma.

TaroREM 9. The definitions of finiteness I and Ta are not equivalent
i S.

Proof. We shall prove that the set K is not finite in the model 2’
according to I but is finite in the model according to Ia.

By Lemma 1 K i3 not finite in the model according to I. By Lemma 10
K is finite in the model according to Ia.

) *THEOREM 10. The equivalence of definitions Ia and IL implies the
equivalence of definitions 1 and Ia. :

Proof. Assume that Ta and IT are equivalent, I and Ia are not
equivalent. Then there is a set . which is finite according to Ia but is
not finite according to I. 2xIL is not finite according to Ia because
2XL={0}xL-+{1}xL and both {0}xZL and {1}xIL are infinite. I is
finite according to II (by Theorem 1) and it can eagily be seen that the
same applies also to {0} L and {1}xL. We can prove that the union
of two sets which are finite according to I is also finite according to II ().
Therefore 2x L is finite according to II. But 2x L is not finite according
to Ia, contrary to the assumption that definitions Ia and IT are equivalent,.

THEOREM 11. The definitions of finiteness Xa and II are not equiD-
alent in G,

Proof. Assume that Ia and IT were equivalent in &. Then Theo-
rem 10 would contradict Theorem 9.
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