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Various proofs of the Cauchy-Schwarz
inequality

Hui-Hua Wu and Shanhe Wu2°

ABSTRACT. In this paper twelve different proofs are given for the classical
Cauchy-Schwarz inequality.

1. INTRODUCTION

The Cauchy-Schwarz inequality is an elementary inequality and at the same
time a powerful inequality, which can be stated as follows:

Theorem. Let (aj,as,...,a,) and (b1, be,...,b,) be two sequences of real
numbers, then

n n n 2
i=1 i=1 i=1
with equality if and only if the sequences (a1, aq,...,a,) and (b1, ba, ..., by)

are proportional, i.e., there is a constant A such that ap = Aby for each
ke{l,2,...,n}.

As is known to us, this classical inequality plays an important role in different
branches of modern mathematics including Hilbert spaces theory, probability
and statistics, classical real and complex analysis, numerical analysis,

qualitative theory of differential equations and their applications (see [1-12]).

In this paper we show some different proofs of the Cauchy-Schwarz
inequality.
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2. SOME DIFFERENT PROOFS OF THE CAUCHY-SCHWARZ

INEQUALITY
Proof 1. Expanding out the brackets and collecting together identical terms
we have
n n n n n n n n
D) WOIETRIEES 9D SUED U EE) D SIS
i=1 j=1 i=1  j=1 i=1  j=1 i=1 j=1

, (é a§> (é b?) ) (:1 ain)Q.

Because the left-hand side of the equation is a sum of the squares of real
numbers it is greater than or equal to zero, thus

(£4)(59)= (E)

Proof 2. Consider the following quadratic polynomial

n

f(z)= (i a?) a? =2 (Zn: aibi> T+ z”: b = Z (a;x — bi)2.
i=1 i=1 i=1

i=1

Since f(x) > 0 for any = € R, it follows that the discriminant of f(x) is

negative, i.e.,
n 2 n n
) (54) ()
i=1 i=1 i=1

The inequality (1) is proved.

n n

Proof 3. When Y a? =0 or Y b? =0, (1) is an identity.
i=1 i=1

We can now assume that

a; b;

\//17”1 Yi =

n n
An=>a; #0, By=> b #0, a;=
=1 =1

5
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then

n n
SEED SN
i=1 i=1
The inequality (1) is equivalent to

T1Y1 + Ty + - TpYn < 1,
that is

2(m1y1+x2y2+--~$nyn)Sa:%+x§+---+x%+y%+y§+---+yi,

or equivalently

(x1 —3/1)2‘1'(9”2 _3/2)2+"'+(5Un_3/n)2 >0,

which is evidently true. The desired conclusion follows.

Proof 4. Let A=\/af+ a3+ --+a2, B=bj+b3+ - +0b2
By the arithmetic-geometric means inequality, we have

n 2

aibi " 1 a; b2
<N "2 (%) g
z,ZIAB-—ZI2<A2+32) !

1=

so that
n
> aibi < AB = \/a%+a%+---+a%\/b%+b%+---+b%.
=1
Thus
n 2 n n
(Sen) = () (3]
=1 =1 =1
Proof 5. Let

Ap=al+a3+---+a2, B, =aib+agba+---+apby,, Cp =02 +b34- - +b2.
It follows from the arithmetic-geometric means inequality that

A,C, " a2C, D p2 & <azCn b? ) "L ab;
tl=) ot 7 = e ] 22 =2,
B3 i=1 B i=1 Cn ; B Cn ; By

therefore
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A,C, > B2,
that is

(af +a3+- - +as) (T + b5+ +b2) > (a1by + agba + -+ + anby)*.

Proof 6. Below, we prove the Cauchy-Schwarz inequality by mathematical
induction.

Beginning the induction at 1, the n = 1 case is trivial.

Note that

(a1by + agby)? = a?b? + 2a1braghy + a2bd < a?b? + a2b? + adb? + a2b? =
= (af + a3) (b7 + b3),

which implies that the inequality (1) holds for n = 2.
Assume that the inequality (1) holds for an arbitrary integer k, i.e.,

(B) < () (55%)

Using the induction hypothesis, one has

k+1 k+1

k k
Za?- Zb?: Za?—i—azﬂ- Zb?+bi+12
=1 =1 =1 =1

k k k k+1
>3 "a2 (D00 + lakpaben | =Y laibi] + lakpabe | = laibi].
=1 =1 =1 =1

It means that the inequality (1) holds for n = k + 1, we thus conclude that
the inequality (1) holds for all natural numbers n. This completes the proof
of inequality (1).

Proof 7. Let

A = {albla"'albn)a2b17”' 7a2bna"' 7anb17"'anbn}
B = {albla' "Glbn,Gle,' te 7a2bn7' o 7anb17"'anbn}
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C == {a1b17' "albn,CLle,‘ T 7a2bn7' o 7anb17"‘anbn}
D= {albb"'anblaale?'“ ,(Ian,"‘ 7a1bn7"'anbn}

It is easy to observe that the set A and B are similarly sorted, while the set
C and D are mixed sorted.
Applying the rearrangement inequality, we have

(albl)(albl) + -+ (albn)(albn) + (azbl)(agbl) + -+ (agbn)(azbn) + -
+(anbi)(anbi) + -+ + (anbn)(anby) > (a1bi)(aibr) + - + (a1by)(anb1)+

+(azb1)(arbz) + - - + (a2bp)(anbz) + - - + (anb1)(arb,) + - - - + (anbn)(anby),

which can be simplified to the inequality
(af +a3+- - +a2) (T + b5+ -+ +b2) > (a1by + asby + -+ + anby)?
as desired.

Proof 8. By the arithmetic-geometric means inequality, one has for A > 0,

1/, 5 b
la;b;| < 5 <)\aZ + /\)

Choosing A =

n n
S v? / >~ a? in the above inequality gives
i=1 i=1

n

> b7 > af

|laibi| < A 2%2 + | = 253
> a; > b;
=1 =1

Hence
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or equivalently

n 1 n n n n n n
Z\aibz‘|§§ IBLDINEEN DD DA ENDIENDI
i=1 i=1 =1 i=1 =1 i=1 i=1

The desired conclusion follows.
Proof 9. Construct the vectors a = (a1, a2, ,an), = (b1,ba, -+ ,by).

Then for arbitrary real numbers ¢, one has the following identities for scalar
product:

(a+t3) - (a+t3) =a-a+2(a-B)t+(8-0)t? <= |a|* +2(a - B)t+|3)°t* =

=la+t8]*>0.
Thus

(- B)° = a8 < 0.

Using the expressions

n n
a-fB=a1b; + asby + -+ - 4+ apby, |a|2:Za?7 ’ﬂ‘QZZb?’
i=1 =1

@; aibi>2 : (é a?) (é b?) <.

Proof 10. Construct the vectors o = (a1, a2, ,a,), = (b1,b2, - ,by).
From the formula for scalar product:

we obtain

a-f=lal|B|cos (),

we deduce that

a-f<|af|s].

Using the expressions
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n
a-f=aiby + agby + -+ + apbp, Za’w 2:2[)?’
we get the desired inequality (1).

Proof 11. Since the function f (z) = 22 is convex on (—o0, +00), it follows
from the Jensen’s inequality that

(p1a1 + Powa + - -+ + Ppan)® < P1o] + poxs + - + o, (2)
where z; € R, p; >0 (i=1,2,....n),p1+p2+--+pp=1.

Case I. Ifb; #0 for i =1,2,...,n, we apply x; = a;/b; and
pi = b2/(b3 + b3+ - +b2) to the inequality (2) to obtain that

<a1b1—|—a2bg+-~+anbn)2< a2+ad+-+a?
bi+bs+--+02 T4 402
that is

(a1by + agbo + -+ + apby)? < (af + a3 + - +a2) (b7 + b3+ - +b2).
Case II. If there exists b;, = b;, =--- = b;, = 0, one has

2

(ﬁém@>2= S ab] <

i=1 i1, i, 1<i<n

N

oz e x o w)e(ne)(xn)

i1k, 1<i<n i1k, 1<E<n i=1

This completes the proof of inequality (1).

Proof 12. Define a sequence {S,} by

Sp = (a1by + asby + -+ apby)® — (a3 + a3+ +a2) (b + b3+ +b2).

Then
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Spt1— Sn = (arby + agby + -+ + @ns1bns1)? — (af + a3+ +ad ) -

(DR b2 — (arby + asby + -+ anbn)? + (aF a3+ - +al) -

(B B3+ b))

which can be simplified to

Sn—l—l - Sn -

= - (alanrl - blan+1)2 + (a2bn+1 - b2an+1)2 +o+ (ananrl - bnan+1)2 )

SO
Sn+1 §S’n (neN)

We thus have
Sp <81 <--- <851 =0,

which implies the inequality (1).
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