
Preface 

This revised edition of my 1986 Ph.D. dissertation was 

originally authored on a CDC 6600
1
 using TROFF with TBL 

and EQN. The text for this edition was provided courtesy of 

The Internet Archive and initially published online in March, 

2011. This revised PDF edition was published online August 

22, 2013. 

 

 
1 The same CDC 6600 that a group from the Transcendental Students 

took hostage in 1970 in an anti-war protest. Some of the students, possibly 

members of the Weathermen, attempted to destroy the computer with 

incendiary devices. However, several staff and faculty, including Peter D. 

Lax, managed to disable the devices and save the machine. 

 

 

 

 

 

1. Introduction 

The topic of compiler optimization covers a wide range of 

program analysis methods and program transformations 

which are applied primarily to improve the speed or space 

efficiency of a target program. These techniques are typically 

applied to a representation of the target program which is, to 

some degree, removed from the program representation 

executed by the hardware. The representations on which 

optimization techniques are applied include source-to-source 

transformations ([Parts 83], [Schn 73]) down to 

optimizations on assembly code ([Fras 84], [Lower 69], 

[McKee 65]). 

However, in many program development environments, 

some significant optimization techniques cannot be 

performed on any program representation prior to the 
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representation executed by the hardware, without general re-

design of that environment. 

It is my thesis that the application of optimization 

techniques at this level is warranted and can be shown to 

yield a significant decrease in code space and a more modest 

improvement in execution speed. As a result, this dissertation 

describes two aspects of this area in parallel. I explore 

analysis and optimization techniques from a theoretical 

viewpoint. Some of these are new and some are extensions of 

techniques which have been applied in other phases of the 

compilation process. In addition, I report on the 

implementation of a production quality Machine Code 

Optimizer. This optimizer represents the first time that these 

techniques have been brought together in this fashion and at 

this level. The performance of this optimizer substantiates 

the expected speed and space improvements on two target 

architectures. 

In this chapter, I demonstrate the need for optimizations 

at this level and suggest that such optimizations can he 

carried out despite the lack of auxiliary information which 

would normally be available to an optimizer. I also survey 

existing work in closely related areas and outline the 

remainder of this dissertation. 

1.1. Background 

As a working example throughout this dissertation, I will 

consider the compilation and optimization of programs under 

UNIX and UNIX-like program development environments. 

These environments will be considered specifically for 

machines based on architectures such as the Digital 

Equipment Corporation VAX-11 ([DEC 77]), Motorola 

MC68000 ([Motor 84a]), and the Texas Instruments TI32000 

([Texas 85]). I will, unless specifically noted, rely only on 

features of UNIX which are generally available in program 

development environments. The scope of architectures 

considered in this research is discussed later in this section. 

In source form, a program consists of a number of 

modules, each containing one or more subprograms 

(subroutines, functions, etc.). A compiler for the given high 

level language reads the source code of a single module, 

possibly translating into one or more internal forms over 

which optimization techniques are performed, and produces 

a single object file. This file contains machine code 

consisting of instructions to be executed by the hardware, 

data objects which are operated on by the instructions, and 

other information. 

The architectures to be considered here have a memory 

area consisting of locations with an associated linear 

ordering. The locations are numbered sequentially by 

addresses that follow the ordering. Each instruction on these 

architectures has an opcode which names the operation to be 

performed and a number of operands which yield values or 

give the address of data objects or memory locations to be 

operated on. Each operand requires an area, called an 

extension word, in the instruction to hold information on the 

value or machine address which the operand represents. 

The bit representations of the instructions and data objects 

in an object file are identical to those which will appear in 

memory when the program is executed, except that 

references to code and data objects in other modules as well 

as references to absolute addresses in the current object file 

are not set. Such references are called relocatable references. 

Any operand of an instruction containing a relocatable 

reference is called a relocatable operand and the address it 

references is called the effective address. 

Information regarding where relocatable references are 

and what they refer to is contained in the relocation 

information in each object file. The location of a relocatable 

reference, as specified by the relocation information, is 

called its relocation point. 

When all modules of a program are compiled, the object 

files are supplied to a system linker. The linker produces a 

task file which can be directly loaded into memory and 

executed by the hardware. Such a task file contains areas of 

code, data objects, and optionally, relocation information. 

Each area, or segment, is formed by catenating the 

corresponding areas from each object file, in the order they 

were supplied to the linker, and resolving relocatable 

references by installing the actual machine address in each 

reference. 

For a particular high level language, it is typical to 

organize a set of object files that implement the primitives of 

the language (e.g. SIN(x) in BASIC, Indexed Read in 

COBOL, and printf() in C) into a library. Such libraries 

can be given to the linker, which selects only those object 

files that contain code or data referenced by other modules 

already linked into the task file. 

This general approach reduces the compilation work 

necessary to effect small changes in a program: only the 

affected modules need be recompiled. Since linking object 

files is far faster than re-compiling the whole program from 

source, this system greatly speeds development of highly 

modularized programs. 

However, this general approach results in a number of 

inefficiencies in the code in the task files. Furthermore, the 

optimization techniques that might remove these 

inefficiencies must be performed after the link phase on the 

given architecture. 
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The first inefficiency arises when linking an object file 

which contains code for several subprograms. If any of the 

subprograms or data objects in such an object file is 

referenced, the entire object file is linked into the task file. 

This situation frequently arises in UNIX environments where 

large libraries implementing primitives of various types are 

linked into an application. Furthermore, it cannot be avoided 

prior to the link phase, except by restructuring the offending 

object files. 

Another inefficiency deals with the use of the instruction 

set itself. The given architectures all have a set of addressing 

modes which can be used to represent the semantics of 

instruction operands. Included in this set are a number of 

location-relative modes which yield an effective address by 

giving an offset from the location of the operand or the start 

of the instruction. Often, the location-relative modes require 

less space and yield an effective address that is decoded (by 

the hardware) faster than absolute modes which simply name 

the effective address. However, the short offset employed 

limits the effective address to within a specified distance 

from the operand. This limitation is called the span of the 

mode. 

For example, many machines have several addressing 

modes for operands of branch instructions. Each addressing 

mode has its own span restrictions. Often, the most general 

form allows an arbitrary branch target, but is the most 

expensive in terms of space and execution speed. Shorter and 

more efficient forms of branch operands compute their target 

address relative to the memory address of the branch 

instruction itself, together with an offset from the start of the 

instruction. However, the offset must be small, allowing only 

relatively local branch targets. 

Often, these location-relative modes cannot be used in 

UNIX task files due to the method of linking. After an object 

file is produced, the sizes of instructions do not change; the 

linker merely fills in resolved addresses in relocatable 

operands. Again, this allows a fast linker to perform minimal 

work when code to a single module is changed. 

However, relocatable effective addresses which cannot be 

confined within the span of a location-dependent mode must 

be implemented using the most general and usually most 

expensive addressing mode. Under the UNIX scheme, this 

includes references to code in other modules as well as all 

references to static data, since the data appears in memory 

after all code and can be arbitrarily far away from an 

operand. 

Finally, the installation of location-relative modes is itself 

limited by the order in which object files are linked. 

Typically, libraries containing code for primitives are linked 

in at the end of the text segment. Thus, they tend to be far 

away from the code which uses them. In many high level 

languages, primitives tend to be the most frequently 

referenced routines, and locating them at the end of the text 

segment may significantly reduce an optimizer's ability to 

install location-relative modes in operands. Such high-use 

subprograms need to be placed near their references. 

Conversely, code generated from the user's source 

appears at the beginning, far removed from the data segment 

containing referenced global variables. This code should 

appear near the end of the text segment, as close to the data 

segment as possible. 

The inefficiencies described thus far are common across a 

variety of architectures. These generally include machines 

with a linear address space which provide several 

interchangeable addressing modes to access this space. Other 

than the MC68000, VAX-11, and TI32000 mentioned 

earlier, the Digital PDP-11 ([DEC 75]), Interdata 8/32, IBM 

1130, CDC 6600 Peripheral Processor, and the Prime 400 

(see [Bell 71] for a general discussion) are in this class. The 

above remarks do not apply to architectures with a purely 

segmented architecture such as the Intel 8086 ([Russ 80]). 

The generic techniques for handling the inefficiencies 

described above are applicable across this full class of 

architectures. However, the implementation of these 

techniques for a given architecture is highly dependent on the 

specifics of the instruction set, addressing structure, and 

memory model of the target machine. A straightforward 

implementation of these techniques will be riddled with 

specific references to the architecture. Therefore, it is of 

special interest to develop, in conjunction with generic 

techniques for handling these inefficiencies, a technology for 

instantiating those techniques in an architecture-independent 

fashion. 

1.2. Related Work 

The general topic of compiler optimization has received 

much attention, with the bulk of the work concentrating on 

transformations applicable to some intermediate 

representation between source code and executable code. I 

have borrowed a number of high level concepts and 

techniques from a number of sources, applying them with 

greater effectiveness at the machine code level. While the 

specific work in each area is reviewed in detail in the 

relevant sections which follow, I outline the major references 

in each area: A number of the inefficiencies described above 

can be partially removed by means of techniques applied at a 

higher program level. These include the implementation of 

code elimination of various forms, as described in [Aho 77], 

the handling of span-dependent instructions at the assembly 

code level in [Szym 78], and the compression of repeated 

code sequences at the assembly code level in [Fras 84]. 
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Many techniques appear in the literature which deal with 

low-level constructs, but are not applicable to machine code 

optimization due to their effectiveness on an intra-module 

basis. Thus they are more efficiently applied before the 

machine code level so that work is not repeated on a given 

module. These techniques include ordering basic blocks to 

minimize the number of branches [Raman 84], chaining 

span-dependent jumps [Lever 80], and peephole optimization 

[McKee 65]. 

Comparatively little work has been done on optimizations 

at the machine code level. The works known to the author 

are those by [Dewar 79a] on compressing an interpretive 

byte stream and [Rober 79] on distribution of data 

throughout the code segment as described in Chapter 4. 

1.3. Organization of the Dissertation 

In response to the inefficiencies described in Section §1.1 

and building on the work surveyed in the last Section, a 

Machine Code Optimizer (MCO) was constructed to make 

machine code smaller and faster. The remainder of this 

dissertation deals mainly with the design, implementation, 

and performance of the MCO. I concentrate on describing 

those techniques which, for various reasons, cannot be 

applied before the link phase of compilation. 

The next Chapter gives an overview of the organization 

of the MCO and outlines the design of particular areas. 

Chapter 3, Chapter 4, and Chapter 5 expand on the 

specific techniques for removing the inefficiencies in Section 

§1.1. References to related work in each area are given as 

well as the specific algorithms and their analysis. 

Chapter 6 describes a number of techniques relating to 

recognizing and compressing common sequences of code. 

These are not used in the current MCO for various 

implementation or efficiency reasons, but the experience 

gained is of interest to compiler constructors. 

Chapter 7 presents statistics on the space and speed 

improvements gained by the MCO on VAX-11 and 

MC68000 code for various high level languages. Statistics on 

the space and time cost of the MCO itself are also presented 

as well as the effort of re-targeting the MCO from the 68000 

to the VAX architecture. 

Finally, Chapter 8 reviews the work, summarizes the 

results obtained, and proposes lines of future research. 

2. Design of the MCO 

The MCO reads an input task file containing executable 

machine code, data, and relocation information data for a 

given architecture, applies various techniques for improving 

machine code, and outputs another task file which is 

semantically equivalent. 

Briefly, the MCO operates in the following sequential 

phases: The input task file is read and augmented by a set of 

dynamic data structures which hold information about the 

instructions and data of the program. These are built up 

during instruction parsing in which the byte stream 

containing program code is partitioned into machine 

instructions and data areas. This list of instructions and data 

areas is then partitioned into subprograms during text 

blocking. 

The next phase, called operand linking, is responsible for 

identifying all relocatable operands and determining what 

they refer to. 

The first optimization performed is code elimination in 

which unreferenced areas of code and subprograms are 

removed from the dynamic data structures. 

Then, code distribution is performed. Sections of code 

and data are re-ordered to reduce the average distance 

between instruction operands and the effective addresses 

they reference. This transformation by itself does not 

improve the code, but makes the next technique more 

effective. 

Operand reduction converts each instruction operand to 

use the least expensive addressing mode which can represent 

the operand on the given architecture. This operates in two 

sub-phases: MINIMIZE contracts all operands to use the least 

expensive applicable addressing mode and LENGTHEN 

expands minimized operands as necessary to satisfy 

constraints on the addressing modes. 

Finally, the code relocation phase installs changes in the 

bit patterns of instructions as a result of the improvement 

techniques applied and writes the output task file. 

One of the design goals of the MCO is to ease the onus of 

re-targeting the MCO to various architectures. Toward this 

goal, most of the relevant information about the target 

architecture is kept in a set of static data structures. They 

describe the details of the instruction set and addressing 

modes of the target architecture which are needed by the 

MCO, especially during Operand Reduction. The static data 

structures allow the MCO to be largely table driven in areas 

where re-targeting is an issue. 

In this chapter, I give a more detailed description of the 

dynamic data structures and the phases of the MCO I have 

just outlined. Particular attention is given to how the phases 

interface and what their effects are on the dynamic data 

structures. Certain algorithms as well as the static data 

structures are described and analyzed in later chapters. 
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2.1. Input 

Input to the MCO consists of a single task file. This file 

contains the following areas of information: 

The Header: A fixed-size structure containing the sizes 

of the other areas, the program load address where the 

program is loaded into memory, and the entry point giving 

the location of the first instruction to be executed. 

The Text Segment: A byte stream containing the 

machine code instructions of the program, possibly 

interspersed with areas of program data. At execution time, 

the byte stream is loaded into memory (possibly in a virtual 

fashion) by a system loader, beginning at the program load 

address specified in the header. The address at which an 

instruction is loaded into memory is called that instruction's 

load address. 

The Data Segment: A byte stream similar to the text 

segment, but containing only program data. It is loaded by 

the system loader either directly after the text segment or at 

some address specified in the header. The rules as to where 

the data segment may be loaded in relation to the text 

segment (e.g. at the next 64-byte boundary) vary depending 

on the environment. The location where the data is loaded 

into memory is the data load address. 

The Symbol Table: A list of structures which map 

symbolic names onto symbol types and machine addresses. 

Relocation Information: A list of locations in the text 

and data segments which reference machine addresses. These 

may be instruction operands which specify the address of an 

object in the data segment or a pointer in the data segment 

initialized to point to another piece of data or an instruction. 

Each such area specified is the size of a pointer on the target 

architecture. 

Except for the last area, the information required by the 

MCO in a task file is standard in that such information is 

logically required for a system loader to be able to load a 

program into memory. 

The Relocation Information is optionally provided by the 

UNIX linker, which links together object files. On some 

systems, the linker cannot provide this information in the 

task file. However, the relocation information is simply 

distilled by the UNIX linker from similar information in each 

of the object files it links together. This information must be 

present in some form in object files in order for a linker to 

assign proper values to pointers. In this case, the MCO can 

extract and distill it in the same way that the UNIX linker 

does. 

2.2. Instruction Parsing and Internal Representations 

After opening the input task file and reading the header, 

the MCO begins parsing the text and data segments to build 

an internal representation of the program. First, the contents 

of the text and data segments are read into buffers in 

memory. Then the MCO creates a list of text and data nodes 

in memory to hold relevant information about the program. 

Each text node describes a single machine instruction and 

each data node is associated with a single area of contiguous 

data. The last node on the list is always a data node which 

represents the data segment. 

Appendix A provides a detailed description of the fields 

in a text node and what they represent. Figure 2.1 

summarizes the fields of a text node using an example of an 

instruction on the 68000 architecture as they would appear 

after instruction parsing. In this example, the target address, 

S, is represented using the absolute long mode. 

 
Instruction: 0A00     jsr S 
             0A06 
             ... 
             0C20  S: 
  
Text Node: 
 OPC:   o_jsr   -- instruction opcode 
 SIZE:  sz_none -- size of object being 
                -- operated on 
 IADDR: 0A00    -- address of start of 
                -- instruction 
 FADDR: (NULL)  -- used for operand reduction 
 INSTR: 4EB900000C20  -- instruction bytes 
 NEXT:          -- text node of instruction 
                -- at addr 0A06 
 IBYTES: 6 -- Initial # of instruction bytes 
 NBYTES: 6 -- Current # of instruction bytes 
 REF:    0 -- # of references to this instr 
 JSR:    0 -- # of calls to this instr 
 OP[0]:      -- operand descriptor for 
             -- first operand 
   ADDR:   0 -- relocatable address referenced 
   TARGET:      -- target text node of operand 
   MODE:   am_abs -- current addressing mode 
   OFFSET: 2    -- byte offset of operand bytes 
   REG:    NULL -- identity of register(s) used 
 

Figure 2.1 Example Text Node 

 

Each data node holds information pertaining to a single 

contiguous block of data. The data may be in the text or data 

segments. Data notes have IADDR, FADDR, NEXT, NBYTES, 

and REF fields which are identical to text nodes. They also 
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have a DATA field which serves the same purpose as the 

INSTR field in the text notes. 

The dynamic data structures are built up by an instruction 

parsing routine. This routine is given a pointer to a location 

in the input text segment and determines the information 

needed to initialize a single text or data node for the 

instruction or data area beginning at that location. The 

instruction parsing routine depends heavily on the 

architecture and takes a significant portion of the processing 

time of the MCO. 

For the 68000, the logic of parsing instructions is 

embedded in a large routine (28 pages of C source) which 

was tightly coded for speed. When re-targeting to the VAX 

architecture, a data-driven scheme was used. This routine 

was small (2 pages of C source), developed and debugged 

quickly, but still runs about as fast as the 68000 version. This 

was possible due to the greater orthogonality of the VAX 

instruction set.
2
 

2.3. Text Blocking 

Instruction parsing organizes the text and data nodes into 

a single linked list, in the order they were read in. This single 

list is broken down into a two-level data structure during text 

blocking. 

The text and data nodes are partitioned into blocks, each 

of which is assigned a block node. 

 
2 One complication of instruction parsing is that no data can appear in 

the text segment. It is usually straightforward to get the compiler to place 

constant tables, switch tables, indexed jump tables, etc. into the data 

segment. However, the VAX implementation was complicated by the 

presence of register masks at the start of each subprogram. These are 

arbitrary bit patterns that specify, when control is passed to the 

subprogram, which registers are to be preserved. If the instruction parser 

were called with a pointer to a register mask, the resulting text node would 

be meaningless since the register mask is pure data. Hence, instruction 

parsing on the VAX cannot be done in a single sequential pass, as it is on 

the 68000. The VAX implementation runs in two passes. The first pass 

processes the code sequentially, building a list of known register mask 

locations from call instructions which are parsed. Any calls to forward 

targets alert this first pass that register masks exist. However, it is not until 

the second pass that text nodes are built, when register masks have been 

marked. This is a source of potential error in the current MCO for the 

VAX. If the first pass encounters an unmarked register mask, it could mis-

parse instructions badly enough to miss another call instruction to a routine 

which is called only once This routine would then have an unmarked 

register mask, which would cause problems in the second pass. In practice, 

the first phase re-synchronizes very quickly (5–10 bytes) and this has not 

caused problems. For unreferenced subprograms, the instruction parser 

does attempt to parse register masks during the second pass. However, the 

text nodes from this parsing will be eliminated during subprogram 

elimination. A better solution to this problem is to have the compiler or 

assembler emit a short illegal instruction prior to each register mask. Since 

execution never flows into a register mask, the marker will do no harm at 

execution time and can serve as a flag to the instruction parser. 

Text blocking is performed in a single pass over the code. 

A pair of text nodes containing an unconditional branch or 

subprogram return followed by an instruction with its JSR 

field set constitutes a partition point. At these points, a new 

block is formed. 

Thus, a block is typically one or several subprograms in 

the text segment where each block is independent and linked 

only via the block nodes. After text blocking, the two-level 

data structure is processed by all subsequent algorithms, 

rather than the initial single list of text nodes. Figure 2.2 

demonstrates this transformation. The specific fields of a 

block node are described in detail in Appendix A. 

Text blocking is done for two reasons. First, the code 

distribution algorithm reorders sections of code. After text 

blocking, it simply deals with block nodes rather than lists of 

text and data nodes. Second, several of the algorithms 

performed on the dynamic data structures have a worst-case 

performance which is quadratic in the number of text nodes 

since they have to perform linear searches for a node with a 

given IADDR. 

In these cases, we search through the list of block nodes 

to find the correct block and then examine the text and data 

nodes in that block. In this way, the quadratic algorithms run 

in reasonable time for all but pathological or contrived input. 

2.4. Operand Linking 

After the instructions have been parsed and the dynamic 

data structures built, the relocatable operands are identified 

 

 

Figure 2.2. Text Blocking 
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and linked to their targets. This operand linking is done in 

two passes over the dynamic data structures. 

The first pass identifies all relocatable operands. This is 

done by a pair of co-routines which pass over the text and 

data nodes and over the relocation information in the input 

task file. The first co-routine processes instructions up to the 

next relocation point specified by the second co-routine. The 

second co-routine processes the relocation information to 

determine the next text or data node which has a relocatable 

operand. 

The first co-routine marks any operand which uses some 

location-relative addressing mode as relocatable and the 

effective address is stored in the ADDR field of the operand. 

At a relocation point, we determine whether the address 

specified as being relocatable is in a text node or a data node. 

If it is in a text node, the operand of the instruction specified 

by the relocation information is identified and again marked 

as relocatable by setting its ADDR field. Since no relocation 

information is kept in data nodes, relocation directives 

specifying relocatable references in data nodes are ignored. 

Note that, except for location-relative addressing modes, 

it is crucial to use the relocation information to identify 

relocatable operands. If we rely on the apparent nature of the 

operand based on its addressing mode, operands could not be 

unambiguously identified as relocatable. Consider an 

instruction which loads the address of its operand. 

Although this operand appears to be relocatable, the 

idioms 

 
     lea    val,An   (on the 68000) and 
     moval  val,Rn   (on the VAX) 
 

are often used to load constant (non-relocatable) values. 

Conversely, a comparison with an immediate operand may 

be a constant, but could also be comparing a value with the 

(relocatable) address of a routine. 

After the first operand linking pass, all operands which 

are relocatable have their ADDR field set. The second pass 

sets the TARGET field for all such operands. This field is set 

to point to the text or data node containing the code or data 

that will be loaded at the ADDR address. Note that the ADDR 

field need not refer to the start of the code or data in the 

referenced node; the referenced node must simply contain 

the target. 

It is this second pass which runs in quadratic time in the 

number of block nodes. However, due to the blocked data 

structure employed, the second pass runs with reasonable 

speed (see Section §7.2). 

In addition to setting the TARGET field, the REF field of 

any text node referenced by a relocatable operand anywhere 

in a text or data node is incremented during pass 2. Also, the 

JSR field is incremented if the relocatable operand is the 

operand of some subprogram call instruction. 

Thus, at the end of operand linking, the ADDR and 

TARGET fields are set for all and only those operands which 

are relocatable. Also, the REF field contains an exact count of 

the number of relocatable references to a text or data node. 

The JSR field contains a lower bound on the number of call 

instructions which refer to a given text node. Due to indirect 

calls through pointers to procedures, some text nodes which 

may be the target of a call instruction at execution time 

cannot be identified. However, such nodes will always have 

a non-zero REF field. 

Figure 2.3 depicts the text nodes from Figure 2.1 after the 

operand linking phase. 

 
Instruction: 0A00     jsr S 
             0A06 
             ... 
             0C20  S: 
  
Text Node: 
 OPC:   o_jsr 
 SIZE:  sz_none 
 IADDR: 0A00 
 FADDR: (NULL) 
 INSTR: 4EB900000C20 
 NEXT:      -- text node of instruction at 
            -- addr 0A06 
 IBYTES: 6               
 NBYTES: 6 
 REF:    0 
 JSR:    0     TN: Text Node at operand target: 
 OP[0]:                  
   ADDR:   0C20   OPC: ?? 
   TARGET: TN     IADDR: 0C20 
   MODE:   am_abs ... 
   OFFSET: 2      REF: 1  -- # references 
   REG:    NULL   JSR: 1  -- # of calls 
                                     

Figure 2.3 Example Text Node After Operand Linking 

  

2.5. Code Elimination 

The first code improvement performed by the MCO is the 

elimination of code which can never be executed. As 

previously described, we wish to eliminate sections of code 

as well as entire subprograms which are never referenced. 

The code elimination algorithm is an augmented version 

of unreferenced code elimination ([Aho 77]). It relies on the 
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REF and JSR fields set during the previous phase to 

determine what code can safely be eliminated. This is done 

in a single forward pass over the code. The algorithm 

removes unreferenced code as well as certain referenced 

sections which are not reachable from the program entry. 

The algorithm and the restrictions on what input programs 

it operates on are given in Chapter 3. 

2.6. Code Distribution 

As mentioned in the introduction, one of the 

inefficiencies in the way UNIX task images are linked arises 

from the order in which subprograms in the text segments are 

arranged. Both the order of subprograms in a module and the 

order in which modules are supplied to the linker give no 

consideration to placing span-dependent operands near their 

targets. 

The code distribution phase re-orders subprograms in the 

text segment to place span-dependent operands near their 

targets. The target might be in another subprogram or in the 

data segment at the end of the program. 

In Chapter 4, I discuss the general problems of re-

ordering sections of the data segment as well as the text 

segment from a theoretical viewpoint and show these 

problems to be difficult to solve. Due to these results, I 

employ efficient heuristics to distribute the blocks. These 

heuristics are described in Chapter 4, along with other related 

optimization techniques not employed in the current MCO. 

2.7. Operand Reduction 

After code elimination and distribution, the operand 

reduction algorithm is employed. This algorithm makes 

aggressive use of the addressing modes available on the 

target architecture to transform existing instruction operands 

to make them smaller and faster. 

The general operand reduction algorithm is loosely based 

on the one proposed by [Szym 78] for assembling code for 

architectures with span-dependent instructions. The 

correctness and termination arguments in that paper apply in 

a similar fashion to operand reduction. 

As with the assembler algorithm of [Szym 78], we 

perform operand reduction in two phases. The first phase, 

MINIMIZE, makes a single pass over the code. For 

instructions and operands which can potentially be reduced 

(all relocatable operands and certain others with specified 

addressing modes), we form the set of all legal 

opcode/addressing mode pairs which can yield a 

semantically equivalent instruction. We then choose the 

shortest combination and install it. 

After MINIMIZE, the LENGTHEN phase iterates over the 

code identifying operands which employ addressing modes 

that are unsuitable due to some span-dependent constraint on 

the mode. Again, we form the set of possible 

opcode/addressing mode substitutions. We now choose the 

least expensive one which satisfies all semantic as well as 

span-dependent constraints. 

Again, no change is made to instruction bit patterns, but 

sufficient space is maintained in the text node to store the full 

instruction. 

The operand reduction algorithm is implemented in a 

largely machine-independent fashion using static data 

structures to describe the necessary attributes of the 

instruction set and addressing modes of the target 

architecture. The details of these static data structures and the 

associated algorithms outlined above are given in Chapter 5. 

2.8. Code Relocation 

The final phase of the MCO, code relocation, installs the 

changes made during earlier code improvements in the bit 

patterns of each instruction and data area and produces an 

output task file. 

First, a single pass is made over the code to install new bit 

patterns in instruction opcodes and operands which were 

subject to operand reduction. The lengths of instructions are 

correctly maintained by MINIMIZE and LENGTHEN, so no re-

allocation of buffers to hold instruction bytes is needed 

during code relocation. 

Next, the relocation information in the input task file is 

re-scanned to find any relocation directives referring to 

relocatable addresses in the data nodes. We then modify the 

pointer value in the referenced data node to contain the 

FADDR of the node whose IADDR was equal to the input 

pointer value. If the input pointer referenced an instruction, 

we make sure that it points to the start of the instruction. An 

input pointer to the middle of a data area can safely be 

translated since data nodes are never contracted or expanded. 

We simply add the same offset to the FADDR address that the 

original pointer was offset from the IADDR of the target data 

node. 

Finally, a file header for the output task file is written, 

followed by the contents of each text and data node. To 

satisfy the requirements of UNIX debuggers, a copy of the 

input symbol table modified to reflect the changes in the 

machine address for each symbol is also output. 

3. Code Elimination 

The code elimination phase of the MCO removes 

subprograms which can never be invoked. It uses an 

augmented version of a simple single-pass code elimination 

algorithm that employs a good heuristic to test which 

sections of the flow graph have circularities but are not 
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connected to the program entry point. In this way, entire 

subprograms, especially ones with loops, can be eliminated 

in a single pass. 

This chapter begins by describing the limitations to which 

the input program must be subject in order for this technique 

to be applicable. I then give a classification of existing code 

elimination techniques and present my algorithm in light of 

these. 

3.1. Restrictions on the Input Program 

In general, the problem of code elimination on machine 

code is complicated by two considerations: First, since we 

are not improving code from a given high-level source 

language, we cannot rely on any rules of program structure 

(e.g. a task image compiled from PASCAL source would 

never have a jump into the middle of a subprogram). Rather, 

we must accept any valid machine code generated from any 

high-level language. 

This problem is handled by the MCO by using the 

relocation information to set the REF field of all instructions 

whose IADDR is referenced by some operand. Hence, each 

instruction is treated separately and no assumptions 

regarding program structure need be made. 

The second problem arises since arbitrary machine code 

can appear. For example, it is possible to compute a jump 

address from non-relocatable operands without having the 

computed address named in the relocation information. 

The problem of identifying these situations is 

undecidable, since the expression that computes a referenced 

address may be arbitrarily complex and take arbitrary inputs. 

Consider the following pseudo-machine code: 

 
           load  addr(X), regl 
           add   17, regl 
           jump  *regl 
 

In this scheme, the node containing X will have its REF 

field set since the load instruction has a relocatable reference 

to it. However, the node at X – 17 will not be marked as 

referenced, and could be erroneously subject to code 

elimination. 

Hence, I restrict the target of all (direct and indirect) 

control transfers to conform to the following definition: A 

branch address is simple if it is identical to the initial address 

of some operand or data area specified as relocatable by the 

relocation information. 

This requires that the compiler generate only simple 

branch addresses in order for the REF field of nodes to be 

accurate. 

Note that the definition of a simple branch target does not 

rule out constructs such as: 

Jumping to an address which was extracted from an 

array. Such code is typically generated for the BASIC ON-

GOTO, Fortran Computed-GOTO, and C switch statements. 

Since each entry in the array referring to an address is 

specified as a relocatable data area, all possible targets of 

such high-level statements will be marked as referenced. 

Pointers to code and procedure parameters. Such code 

appears in C procedure pointers and Fortran ASSIGN 

statements. The pointer values are generally loaded from a 

data area, as above, or by some code such as 

 
             load  addr(X), reg 
 

in which case the first operand of the load will be marked 

as relocatable. 

Interrupts and service routines. Although these routines 

are called asynchronously in response to some event, their 

address appears somewhere in the task file. 

Typically, some interrupt vector or table needs to be 

initialized when the program begins. This is done either by 

installing the address of the routine in a table using 

executable code (the address would then appear as a 

relocatable operand of an instruction), passing the address of 

the routine to a system function (again, the parameter passing 

mechanism would contain the relocatable operand), or by 

initializing the table directly in the data segment (a 

relocatable data item would be in the data segment). 

Hence, I do not feel that the requirement for simple 

branch operands is a practical restriction on compilers for 

most high-level languages. In fact, the MCO has been used 

with production compilers for full ANSI COBOL ([Phil 

85co]), FORTRAN 77 ([Phil 85ft]), C ([Phil 85c]), and two 

versions of BASIC ([Phil 84cb], [Phil 84mb]). None of the 

code generators or any of the library code for the language 

primitives had to be modified to accommodate this 

restriction. 

3.2. Current Code Elimination Techniques 

I define several methods for performing code elimination, 

with increasing degrees of effectiveness: 

Unlabeled code elimination removes code which follows 

an unconditional branch and is not labeled. This can be done 

using a single forward pass over the code. 

Unreferenced code elimination eliminates code 

following an unconditional branch which is either unlabeled 

or is prefaced with a label which is not referred to. After 

reference counts are tabulated on labels, unreferenced code is 
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eliminated by a series of converging forward passes over the 

code. 

Unreachable code elimination eliminates code to which 

there is no flow path from the entry point of the program. It 

is capable of eliminating, for example, mutually recursive 

subprograms whereas unlabeled and unreferenced code 

elimination are not. Typically, this technique is implemented 

by building a flow graph for the program and removing 

disconnected subgraphs which do not contain the entry point. 

3.3. Subprogram Elimination 

For purposes of the MCO, unlabeled code elimination is 

not effective since every instruction is potentially labeled. 

Unreachable code elimination, although the most 

aggressive technique, is also not applicable. In the presence 

of an indirect jump through a quantity in a register, the MCO 

would need to trace all possible values in the register to 

determine the possible successors to a flow graph node. 

Failing this, all nodes would need to be labeled as 

successors, rendering the entire flow graph connected. Such 

jumps often arise when generating code for high level 

constructs such as C switch statements and COBOL 

perform statements, so this technique would yield poor 

results. 

Due to the presence of reliable reference counts, 

unreferenced code elimination is most suitable for the MCO. 

However, it fails to fully eliminate a subprogram that has a 

loop in it. Consider the following code: 

 
                return 
          SUB1: instr 
                instr 
          LOOP: instr 
                instr 
                jump   LOOP 
                instr 
                return 
          SUB2: instr 
 

where SUB1 is an unreferenced instruction, LOOP is 

referenced due to the loop, and SUB2 is the beginning of the 

next subprogram which is referenced. 

Basic unreferenced code elimination removes code from 

SUB1 up to, but not including, LOOP (denoted SUB1~LOOP). 

However, LOOP up to SUB2 (LOOP~SUB2) is not eliminated 

since LOOP is referenced. 

In order to eliminate such routines, I implement an 

augmented version of unreferenced code elimination called 

subprogram elimination. This eliminates likely sections of 

code on a trial basis and checks the resulting program for 

consistency. When a candidate for unreferenced code 

elimination is detected, we perform the following algorithm: 

1. Let SUB1 be an unreferenced instruction following an 

unconditional branch, return, etc. Let LOOP be the first 

referenced instruction following SUB1 and let SUB2 be 

the first instruction with its JSR field set at or after 

LOOP. Perform basic unreferenced code elimination 

and remove SUB1~LOOP. 

2. Decrement the reference count of any instruction 

which is the target of an operand of an instruction in 

LOOP~SUB2. 

3. Scan LOOP~SUB2 and determine if any instructions 

are still referenced. 

4. If no instructions in LOOP~SUB2 are referenced, then 

any instructions in LOOP~SUB2 which were 

referenced before step 2 were the target of operands 

within LOOP~SUB2. The instructions in LOOP~SUB2 

can he eliminated and further code elimination 

continue at SUB2. 

5. Otherwise, some operand outside the range 

LOOP~SUB2 has the referenced instruction found in 

Step 3 as a target. The instructions in LOOP~SUB2 

cannot be eliminated and we must repair the damage 

done to the reference counts in Step 2. 

Further code elimination proceeds from the jump to 

LOOP. 

Whenever an instruction is removed during the 

subprogram elimination algorithm, we decrement the 

reference count of any targets of operands of the instruction. 

(This is handled differently in steps 2, 4, and 5 above, but the 

net effect is the same). If the resulting reference count goes 

to zero and the target is not currently being eliminated 

(precedes LOOP in the above algorithm), another opportunity 

for code elimination has occurred. However, since 

subprogram elimination works by forward passes only, this 

opportunity will not be caught on this forward pass. Hence, 

we repeat subprogram elimination until no such situations 

arise. 

4. Code Distribution 

The code distribution phase of the MCO re-orders 

sections of a program to improve the effectiveness of 

operand reduction. 

I divide the task of re-ordering a program into two 

problems: 
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Problem 4.1 (Data Distribution) 

Partition the data segment into independent data objects, 
each of which can be moved without regard for the load 
location of other independent data objects. Then reallocate 
these objects in slots in the code segment which are not on 
an execution path (e.g. following a return or unconditional 
branch) in order to place them closer to operands which 
reference them. ¤ 

Problem 4.2 (Code Distribution) 

Re-order the code blocks created during text blocking to 
reduce the distance between inter-block branches and their 
targets. ¤ 

This division corresponds to improving the effectiveness 

of operand reduction as it deals with two distinct types of 

operands; those which reference targets in the data segment 

and those which reference other code blocks. 

In this chapter, I examine both these problems as 

implemented in [Rober 79] and the MCO, respectively. 

4.1. Data Distribution 

Given the class of code improvements to which the MCO 

is addressed (those which can only be done at or after the 

link phase), an algorithm for data distribution would be 

appropriate in the MCO. However, a number of problems 

prevent it from being implemented in this application. 

The first problem is the lack of a reliable way of 

partitioning the data segment into independent data objects, 

which preserves the semantics of the input program. The 

input data segment is seen as a single block of data. No 

information is provided regarding what areas of the data 

segment must remain in a fixed position relative to other 

areas. For example, it is unclear where one array ends and 

another begins. 

To obtain a complete partitioning, information as to the 

layout of the data segment would have to be provided by the 

compiler for each module in the task file. This is feasible, but 

is outside the current design of the MCO. 

The second problem with data distribution concerns the 

ramifications of placing modifiable program data in the same 

area in memory as program code or constant data. 

All code currently generated by the compilers with which 

the MCO operates is reentrant, thus allowing the text 

segment to be shared in a multi-task environment. Data 

distribution renders the code non-reentrant since data would 

be interleaved in the text segment. Thus it could not be used 

where text is shared or on a system where the text segment is 

protected by hardware support. 

Another problem with data distribution concerns the 

expectation, on the part of the programmer, that the data 

segment will be laid out in the order that static data is 

declared in the source code. Although the layout of static 

data is usually unspecified in language standards, compilers 

have had no reason to allocate data in other than the input 

order. 

As a result, the folklore for certain languages dictates that 

certain programming constructs which rely on the order of 

static data are acceptable. 

For example, a well-known technique in FORTRAN for 

building a zero-based array of integers is to declare as 

follows: 

            INTEGER  DUMMY 
            INTEGER  A(99) 
 

where DUMMY becomes an alias for A(0). Although 

illegal, this usage is not detectable in general, not flagged as 

an error even in specific cases where it is detectable (e.g. 

constant subscript), and actually works on all FORTRAN 

compilers known to the author (FTN [Contr 75], FORTRAN 

System/370 [IBM 74], Philon FAST/FORTRAN [Phil 85ft]). 

Finally, there are the issues of actually performing data 

distribution in reasonable time and space. The problem of 

data distribution was first examined in [Rober 79] from a 

theoretical viewpoint. He showed that the problem of finding 

an optimal solution to Problem 4.1 is NP-Complete [Garey 

79]. Furthermore, the problem of finding a solution which is 

within a (non-trivial) constant factor of the optimal solution 

is also NP-Complete. 

Thus, the best we could hope for is a well-tuned heuristic 

which places variables well. In the UNIX environment, 

where data resides at the end of the text segment, even a 

simple heuristic could improve the code substantially. For 

example, one might go through the independent data objects 

in order, placing each in the slot which maximizes the 

number of references to it which can be made short at the 

time. In the absence of the problems already mentioned (e.g. 

on a single-user dedicated machine with no memory 

protection), such a heuristic might be worthwhile. 

4.2. Complexity of Code Distribution 

The problem of code distribution as stated at the 

beginning of this Chapter is characterized in graph theoretic 

terms as follows: 

A directed graph G = (V, E) consists of a finite set V of 
vertices and a finite collection of edges, E: V × V, where each 
edge connects a pair of distinct vertices in V. The collection 
of edges of a graph may have duplicates (parallel edges) but 
the set of vertices may not. Edges are denoted μ→ν where 
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μ,ν ∈ V. If μ→ν ∈ E then vertex μ is adjacent to ν. The set of 
all vertices adjacent to vertex ν is denoted adj(ν). A weighted 
graph W = (V, E, Wv, We) is a directed graph with functions 
Wv: V → (N = {0, 1, …}) and We: E → N × N × N × N. 

In characterizing code distribution, we map the code 

blocks of the text segment onto the vertices of a weighted 

graph and use the edges to represent the inter-block 

references. 

We allow parallel edges since a block may reference 

another block many times, but we allow no self-loops (edges 

must connect distinct vertices) since intra-block references 

are not considered. 

The weight function on vertices, Wv, gives the size, in 

bytes, of the code block as read in from the text segment. 

The weight function on edges is formulated from the position 

of the source and destination of the inter-block reference 

within their respective blocks. In Figure 4.1, the source of the 

reference is offset s bytes in code block α and the target is at 

position t in code block γ. Thus, We(α→γ) = (s, s′, t, t′). 

The goal of code distribution is to find a permutation of 

the vertices, ψ: V↔{1, 2, …, |V|}, which keeps the number 

of edges requiring a long addressing mode to a minimum. 

Given a permutation, ψ, for each edge μ→ν, we define: 

 

span(μ→ν) = endpoints(μ→ν) + interposed(μ→ν) 

 

endpoints(μ→ν) = if ψ(μ) < ψ(ν) then 

      We(μ→ν)(2) + We(μ→ν)(3) 

  else 

      We(μ→ν)(1) + We(μ→ν)(4) 

 

 

 

The span of an inter-block reference must account for the 

location of the source and destination of the reference in their 

respective blocks (the endpoints() function) as well as the 

size of all intervening blocks in the ordering of code blocks 

(the interposed() function). 

Given a weighted graph W = (V, E, Wv, We), a permutation 

ψ: V↔{1, 2, …, |V|}, and a threshold T, we define the 

threshold cost function: 

TCF(W, ψ, T) = |μ→ν ∈ E : span(μ→ν) ≥ T| 

The problem of code distribution is analogous to the 

problem MINLTA: 

Problem 4.3 (MINLTA - Minimum Linear Threshold 
Arrangement) 

Given a weighted graph W = (V, E, Wv, We), we wish to find a 
permutation ψ: V↔{1, 2, …, |V|} which orders the vertices 
such that the threshold cost function, TCF(W, ψ, T), for a 
given threshold T, is minimized. ¤ 

MINLTA relates to code distribution as follows: We wish 

to order the code blocks in the text segment to minimize the 

number of inter-block references whose span exceeds a 

certain threshold T. 

For example, in Figure 4.2, if blocks α and γ are ordered 

with block β between them, then the span of α→γ is the sum 

of s′, r, and t. In MINLTA, the s′ and t are incorporated in 

endpoints(α→γ) while r is represented in interposed(α→γ). 

I now show that the decision version of MINLTA is NP-

Complete [Garey 79] by 

1. showing that the problem can be solved non-

deterministically in polynomial time and 

2. by polynomially reducing instances of a related 

problem, MINLA, to instances of MINLTA such that 

MINLTA yields the same answer as MINLA would 

have. 

 

 

Figure 4.1. Inter-block Reference 



Goss Machine Code Optimization 13 13 

Problem 4.4 (Decision Version of MINLTA) 

Given a weighted graph W = (V, E, Wv, We), a threshold T, 
and an integer k, is there a permutation ψ: V↔1, 2, …, |V| 
which orders the vertices such that TCF(W, ψ, T) ≤ k. ¤ 

Problem 4.5 (MINLA - Minimum Linear Arrangement) 

Given a directed graph G = (V, E) and a positive integer k, is 
there a permutation ψ: V↔1, 2, …, |V| which orders the 
vertices such that the additive cost function, ACF(G, ψ) ≤ k, 
where: 

              

 

This cost function is identical to the span(μ→ν) function 

given for MINLTA with Wv(ν) = 1 and We(μ→ν) = (0, 0, 0, 0) 

for all vertices and edges, respectively. ¤ 

A simpler version of Problem 4.5, in which the graph was 

undirected, was shown to be NP-Complete in [Even 75] and 

[Even 79] by a two-stage reduction from the maximum cut 

set problem on graphs. 

Theorem 4.1 

The decision version of MINLTA is NP-Complete. 

Proof: First, we assert that MINLTA can be solved non-

deterministically in polynomial time. This is done by non-

deterministically choosing the appropriate permutation, Π, 

from the O(|V|!) permutations of the vertices and evaluating 

TCF(W, Π, T). 

Next, we reduce instances of MINLA to instances of 

MINLTA: Given an instance of MINLA consisting of G = (V′, 

E′) and an integer k, we define an instance of Problem 4.4 as 

follows: The vertices V of W are the same as those of V′ of G. 

For each edge e ∈ E', E contains a bundle of |V|–1 edges e1, 

e2, …, e|V|–1. The weight of an edge We(ei) = (i, i, i, i). The 

weight of all vertices Wv(v) = 2 (see Figure 4.3). 

 

 

 

Figure 4.2. Computing the Span of a Reference 

 

 

Figure 4.3. Mapping MINLA onto MINLTA 
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I propose that any ordering function, p, on V will yield the 

same value for TCF(W,  Π, 2|V|-2) under MINLTA as ACF(G, 

Π) under MINLA. 

Case 1 

Consider two vertices, α and β, which are placed sequentially 
by Π. Under MINLA, an edge α→β between them contributes 
one to ACF(G, Π). Under MINLTA, exactly one of the edges 
between α and β from among those generated from α→β 
yields a span ≥ 2|V|-2 (the edge with weight (|V|–1, |V|–1, 
|V|–1, |V|–1)) so one is added to TCF(W, Π, 2|V|–2). 

Case 2 

Under MINLA, if there are n vertices interposed between the 
endpoints of α→β, then the edge α→β adds n–1 to ACF(G, 
Π). Likewise, under MINLTA, exactly n–1 edges from the 
bundle of edges generated from α→β would be included in 
TCF(W, Π, 2|V|–2). Those are the edges with weights (|V|–
n–1, |V|–n–1, |V|–n–1, |V|–n–1) through (|V|–1, |V|–1, 
|V|–1, |V|–1). Hence, an ordering, Π, of V′ yields ACF(G, Π) ≤ 
k if and only if that ordering of V yields TCF(W, Π, 2|V|–2) ≤ 
k. 

                                                                          Q.E.D. 

In the light of these results and the expectation that the 

number of code blocks in a text segment is on the order of 

the number of subprograms, an algorithm for code 

distribution which yields an optimal solution is not likely to 

run in polynomial or reasonable time on a deterministic 

processor. However, it should be noted that there are some 

differences between MINLTA and the problem of code 

distribution: 

Since current architectures often have location-relative 

modes using byte, word, and long offsets, the real-world 

code distribution problem could be required to deal with 

several thresholds rather than just one. 

In code distribution, the size of a code block is not fixed, 

but depends on the placement function itself. MINLTA 

simplifies this by assigning a span value for an edge which is 

determined solely from the initial conditions of the problem, 

while the operand reduction algorithm must be applied for 

each placement function to determine the span of an edge. 

In MINLTA, we allow the weights on edges to be arbitrary 

positive numbers, while in practice they would be limited to 

the weights of their corresponding vertices. It is not known 

whether this more restrictive version of MINLTA is NP-

Complete. 

4.3. Heuristics for Code Distribution 

Since the possibilities for an efficient optimal algorithm 

for code distribution are dim, the MCO applies a heuristic to 

order the code blocks. 

The basic approach is to build a tuple of code blocks 

starting at the end nearest the data segment. At each step, we 

choose the best block from among those yet to be placed, 

according to a heuristic which evaluates unplaced blocks. 

This block is added to the start of the tuple. This basic 

scheme is summarized in the algorithm: 

 

proc basic_code_distribution(); 
 
  unplaced := {set of blocks}; 
  set_of_spans := {spans for addressing modes 
             of this architecture}; 
  placed : = []; 
 
  while unplaced ≠ {} do 
    bestworth := -1; 

    (∀ bl ∈ unplaced) 
      w := 0; 

      (∀ span ∈ set_of_spans) 
        w -:= worth(bl, unplaced, placed, 
                                  span); 

      end ∀; 
      if w > bestworth then 
        bestworth := w; 
        bestbl := bl; 
      end if; 

    end ∀; 
 
    placed := [bl] + placed; 
    unplaced less:= bl; 
  end while; 
end proc; 
 

Of course, the effectiveness of this algorithm depends on 

the worth(bl, unplaced, placed, span) function. 

The MCO currently uses two heuristic functions in 

combination: 

σ0 This function evaluates references in bl to the data 

segment. The following multiplicative factors 

constitute σ0: 

σ0
1

 The number of references in bl to the data segment. 

σ0
2

 The fraction of the data segment that the average 

reference (i.e. one at the center of bl) would reach 

under the given span if bl were placed at the head of 

the placed list. 

σ0
3

 The number of bytes saved by installing the 

addressing mode associated with span over the 

addressing mode with no span restrictions. 

σ0
4

 The inverse of the size of bl (larger blocks are 

penalized). This may be thought of in combination 
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with σ0
1
 to produce a single factor which denotes the 

density of data references per byte of code. 

σ1 This function evaluates references between bl and 

blocks already placed in the list. The following factors 

constitute σ1: 

σ1
1
 The number of code references in bl which would 

reach their targets under the given span in the placed 

list if bl were placed at the head of the list. 

σ1
2
 The number of code references in the list which would 

reach the average target in bl under the given span. 

These functions are designed to choose heuristically what 

would seem to be the best block from among the remaining 

unplaced blocks when running the inner loop of 

basic_code_distribution(). The σ0 function accounts for 

expected gains from operand reduction due to references to 

data. Likewise, σ1, predicts gains from references to the code 

already in the list. Within each of these functions, σ0
1
, 

through σ0
4
, and σ1

1
 and σ1

2
 can be balanced to give the best 

results. 

These functions are implemented efficiently by attaching 

the following information to each block node, bl: 

REF 

For each span, the number of references to text nodes in bl 
from blocks in the placed list which reach bl under the span. 

RELOC 

The number of relocatable operands in text nodes in bl 
which reach nodes in block in the placed list under each 
span. 

DRELOC 

The number of relocatable operands in text nodes in bl 
which reach nodes in the data segment. 

These fields are maintained by the following expanded 

algorithm: 

proc code_distribution(); 
 
  unplaced := (set of blocks}; 
  $ Set the DRELOC field of each block. 
  set_dreloc(unplaced); 
  placed := []; 
  plsize := 0; 
   
  while unplaced ≠ {} do 
    bestworth := -1; 

    (∀ bl ∈ unplaced) 
      $ Modify REF and RELOC to account for 
      $ the most recent 
      $ block added to the list and 
      $ references which are 

      $ now out of range. 
 
      update_ties(bl, placed); 
      w := 0; 

      (∀ span ∈ set_of_spans) 
        w -:= worth(bl, unplaced, placed, 
                           span, plsize); 

      end ∀; 
 
      if w > bestworth then 
        bestworth := w; 
        bestbl := bl; 
      end if; 

    end ∀; 
 
    placed := [bl] + placed; 
    plsize +:= size(bl); 
    unplaced less:= bl; 
  end while; 
end proc; 
 

The MCO allows any combination of σ0 and σ1, to be 

used during a run. The relative effectiveness of these 

heuristics is reported in Chapter 6. 

5. Operand Reduction 

As described in Section §2.7, operand reduction installs, 

in each operand, the least expensive addressing mode which 

satisfies all constraints imposed by the architecture. 

This Chapter begins by describing the data structures 

which represent the attributes of the target architecture 

needed for operand reduction. This is followed by a 

discussion and analysis of the algorithms which implement 

the two phases of operand reduction. 

5.1. Static Data Structures 

At the heart of the MINIMIZE and LENGTHEN phases, the 

following problem arises: 

Problem 5.1. (Build Translation Class) 

Given an instruction, i, and an operand of that instruction, 
op, form the set of (opcode, addressing mode) pairs which 
can be used in place of the existing opcode of i and 
addressing mode of op (OPC(i), MODE(op)). This set is called 
the TRANSLATE_CLASS(i, op). ¤ 

The remainder of this section describes how the 

TRANSLATE_CLASS is built. 

First I describe what types of restrictions the target 

architecture places on membership in this set. Then I give a 

set-theoretic description of how the TRANSLATE_CLASS set 

is formed. Finally, I discuss a space and speed efficient 

implementation of the set formers. 
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The set-formers and algorithms in this Chapter are 

presented in the set-theoretic language SETL ([Dewar 79b]) 

to elucidate the concepts involved. Lower level versions, 

coded in C ([Kern 78]), may be found in Appendices B and 

C. 

For an opcode/addressing mode pair (opc, am) to 

belong to the set TRANSLATE_CLASS(i, op), it must 

satisfy the following restrictions: 

Addressing Restrictions: Under the rules of the target 

architecture, am must be a legal addressing mode for an 

operand of opcode opc in operand position OPNUM(op). 

Furthermore, the new opcode must accept the same number 

of operands as the existing opcode and, for each operand, 

op′, of i other than the operand being considered. 

MODE(op′) must also be legal for the new opcode in that 

operand position. 

Semantic Restrictions: Each addressing mode on the 

given architecture performs a function such as yielding a 

value of some type or operating on a register. The function of 

am must be equivalent to that of MODE(op). Likewise, the 

function of the new opcode, opc, must be equivalent to the 

existing opcode, OPC(i). 

Span Restrictions: If am is a location-relative mode, then 

the effective address which op yields must be within the span 

of am. 

To form a TRANSLATE_CLASS which complies with the 

addressing and semantic restrictions, we begin with the 

following sets defined across all opcodes, opc, and 

addressing modes, am: 

ADDRESSING_CLASS(opc, opnum) 

For each operand position, opnum, corresponding to an 
operand of opc, the set of addressing modes which are legal 
on the target architecture. 

OPERAND_EQUIV_CLASS(am) 

The set of addressing modes which perform an equivalent 
function to am. 

OPCODE_EQUIV_CLASS(opc) 

The set of opcodes which perform an operation which is 
equivalent to opc. 

For a given instruction, i, and operand, op, the 

TRANSLATE_CLASS(i, op) is formed, as needed, by the 

following set constructors: 

 

For the given instruction and operand of that instruction, 

this is the set of addressing restrictions of the machine for 

that instruction and operand and the semantic restrictions 

imposed by the existing addressing mode. 

 

 

This is the set of opcodes which are equivalent to the 

current opcode and which allow at least one addressing mode 

in the OPERAND_TRANSLATE_CLASS() for the given 

opcode. Also, the current addressing mode in operands we 

are not scrutinizing must be allowed in the operand position 

of each opcode in this set. 

 

 

Finally, we combine the intermediate sets to form the 

TRANSLATE_CLASS() as defined above, satisfying 

addressing and semantic restrictions, but not span 

restrictions. 

In practice, we do not form the OPERAND_TRANSLATE_CLASS 

and OPCODE_TRANSLATE_CLASS sets, but construct 

TRANSLATE_CLASS directly. 

The following algorithm presents a high level view of 

how FORM_TC is implemented: 

 

proc FORM_TC(i, op) 
  TRANSLATE.CLASS := {}; 

  (∀ opc ∈ OPCODE_EQUIV_CLASS(OPC(i))) 
    if opc ≠ OPC(i) then 
      $ Check that the operands of opc other 
      $ than op accept the current 
      $ addressing modes in i. 
 

      (∀ opnum ∈ [l..NOPER(opc)] | 
                       opnum ≠ OPNUM(op)) 

        if MODE(opnum) ∉ 
              ADDRESSING_CLASS(opc, opnum) then 
          continue opc; 
        end if; 

      end ∀; 
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    end if; 
 

    (∀ am ∈ ADDRESSING_CLASS(opc, OPNU.VI(op))) 
 
      $ Check that this new mode is 
      $ semantically equivalent to the 
      $ existing mode. 
 

      if am ∈ OPERAND_EQUIV_CLASS(MODE(op)) 
                                          then 
        TRANSLATE_CLASS with:= [opc, am]; 
      end if; 

    end ∀; 

  end ∀; 
end proc; 
 

I now represent the data structures and algorithms for 

FORM_TC in a lower level implementation. The data 

structures were designed to conserve space and be accessible 

with reasonable speed. The version of FORM_TC as coded in 

C is presented in Appendix C. 

In order to represent the ADDRESSING_CLASS, 

OPERAND_EQUIV_CLASS, and OPCODE_EQUIV_CLASS sets, 

a set of static data structures are built for the given 

architecture. The static data structures consist of a pair of 

tables, one for addressing modes and one for opcodes, and 

various arrays as described below. 

First, we examine the addressing mode table. This is an 

array of addressing mode descriptors, one for each distinct 

addressing mode on the target architecture. Two addressing 

modes in two different instructions are considered distinct if 

they are represented differently in the two instructions or are 

not semantically equivalent. In particular, modes which are 

represented using different bit patterns or the same pattern in 

different locations in instructions must be distinct. 

Consider the Data Register Direct addressing mode on the 

68000 mov instruction. As a source operand, this mode is the 

same for mov as for the first operand of a cmp instruction. 

However, a distinct addressing mode must be used for a 

destination operand of mov which uses Data Register Direct 

since the location of the bits to specify the mode and register 

are in a different location in the instruction. 

Each addressing mode descriptor contains the following 

fields which are relevant to this discussion: 

SIZE, SPEED 

Values used to evaluate the cost of using an addressing 
mode. These are relative values used for purposes of 
evaluating cost functions and are related to the clock cycles 
and size in bytes above a basic opcode for the use of the 
addressing mode. 

OEC 

Pointer to an array of nodes, each containing the code of an 
addressing mode in the same OPERAND_EQUIV_CLASS of 
this mode. All modes in the same OEC have the same effect 
on the relevant aspects of the machine state when 
evaluated. 

SPAN_OK 

A pointer to a predicate which determines, given an 
instruction and an operand of the instruction, whether the 
addressing mode would satisfy span restrictions if installed. 

INSTALL 

A pointer to a routine to install the addressing mode in a 
given instruction and operand. This routine is invoked during 
code relocation. 

The opcode table contains a single opcode descriptor for 

each distinct opcode on the target architecture. As with 

addressing modes, a single operator is sometimes broken 

down into several opcodes for purposes of operand reduction 

even though the bit patterns of the instructions may be 

identical. This occurs in multi-operand operators since the 

addressing mode in the ADDRESSING_CLASS(opc, 
opnum) must all be valid regardless of addressing modes 

employed in other operands. 

Operators such as the 68000 sub instruction must be 

broken down into two opcodes: a sub_d opcode which 

allows a large class (source class) of addressing modes as a 

first operand and a data register for a second operand and a 

sub_m opcode whose first operand is a data register and 

whose second operand can be represented using another set 

of addressing modes (memory alterable class). To implement 

these using a single opcode would imply that the sub 

instruction allows any source class mode and any memory 

alterable mode in its two operands, which is not the case. 

An opcode descriptor contains the following relevant 

fields: 

NOPER 

Number of operands accepted by this instruction. 

SPEED 

Used in evaluating opcode/addressing mode pairs. This is the 
speed relative to other instructions in the operand 
equivalence class. 

OPEC 

An opcode which is in the same OPCODE_EQUIV_CLASS as 
this opcode. The OPEC fields of all opcodes in a non-
singleton OPCODE_EQUIV_CLASS set form a circular linked 
list using this field. 
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CLASS 

An array of pointers, one for each operand of the opcode. 
Each pointer names an array of nodes containing the codes 
of addressing modes in the ADDRESSING_CLASS of this 
opcode and operand. 

The structure of these tables is summarized in Figure 5.1. 

I show an example of the static data structures of two 

instructions on the Motorola 68000: jmp and bra. These 

instructions are semantically equivalent, so their OPEC fields 

form a ring. However, the sets of addressing modes allowed 

for their respective operands are disjoint. Each of the 

addressing modes is described by an addressing mode 

descriptor. Finally, the semantic meanings of addressing 

modes are related in the operand equivalence classes. 

Through this data structure, a jmp using the absolute long 

addressing mode can be converted to a bra using the disp8 

mode. 

5.2. Minimize and Lengthen 

The purpose of operand reduction is to find an optimal 

solution to the following problem: 

Problem 5.2. (Operand Reduction) 

Install the least expensive addressing mode in each operand 
of each instruction so that all addressing, semantic, and span 

restrictions are satisfied.¤ 

In the last section, I presented a general algorithm to find 

all opcode/addressing mode substitutes for a given 

instruction and operand that satisfy addressing and semantic 

constraints. The remaining problem of operand reduction is 

to satisfy span constraints. 

This problem is examined in [Rich 71] and [Fried 76]. In 

[Szym 78], two algorithms are presented which produce 

optimal solutions. I will briefly describe the requirements 

and complexity of each before presenting my solution. 

The first, which I call Algorithm Sz1, builds a graph to 

represent the program. 

Each operand of each instruction which can employ a 

location-relative mode is represented by a node in the graph.
3
 

A directed arc A→B is installed if the instruction for B lies 

between A and a target which references an operand of A in 

the program. In each node, information similar to our own 

text node is maintained. In addition, for each operand, the 

distance from the instruction to the target of the operand (the 

operand's range) is maintained. 

All operands represented by nodes are initially assigned a 

minimum length location-relative addressing mode. We then 

process nodes in the graph whose range exceeds the span of 

the current addressing mode. A longer addressing mode with 

a larger span is then installed and all predecessors of such 

nodes in the graph (i.e. nodes whose range depends on the 

size of the expanded instruction) have their ranges increased 

to accommodate the longer addressing mode. The node may 

then be removed from the graph if a maximum-length 

addressing mode has been installed. The algorithm 

terminates when no more nodes need to be expanded. 

Algorithm Sz1 produces an optimal assignment of 

addressing modes using a graph with O(n) nodes and O(n
2
) 

arcs. [Szym 78] claims that the running time, with suitable 

low-level data structures, is at worst O(n) since each node 

must be visited at most once for each addressing mode. 

In practice. Algorithm Sz1 is useful for the application 

described in [Szym 78] jump or subprogram call operands on 

the Digital Equipment Corporation PDP-11 ([DEC 75]). 

Under this instruction set, a single location-relative 

addressing mode whose span is approximately ±256 bytes is 

available for such operands. This limits the out-degree of 

nodes in the dependency graph to 255 for contrived 

pathological cases. In practice, the average out-degree is 3.5 

 
3 Since Szymanski applied his technique to assembly language before it 

was assembled, he only considered operands of branch and subprogram 

call instructions. 

 

 

Figure 5.1.  Static Data Structures for 68000 jmp and bra 
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(across a large sample of application code) which allows Sz1 

to operate rapidly in practical cases. 

However, each of the target architectures, in addition to 

the PDP-11 mode described above, has location-relative 

modes with spans of approximately ±32,767 bytes. This 

allows the out-degree of nodes to be at most 16,381 

(assuming a minimum of two bytes per instruction) and an 

average of 896 in practice. These figures render Sz1 

impractical for our use, especially since we wish to process 

not only branch operands, but all relocatable operands. 

Algorithm Sz2 is similar to Sz1, except that the arcs are 

not represented in the graph. Instead of adjusting the range of 

predecessors in the graph, whenever an operand is expanded, 

a brute-force scan of the instructions is made to find 

operands whose range need adjustment. This reduces the 

space requirements to O(n) but the running speed goes to 

O(n
2
). 

Again, since the maximum span of an addressing mode is 

±254 bytes on the PDP-11, only a small area of code needs to 

be scanned when an operand is expanded. 

However, for this application, the re-scanning often 

requires a large portion of the program, thus rendering the 

running time quadratic in practice. 

My algorithm builds on Sz2 with the same worst-case 

space and time complexity, but runs in linear time in 

practice. Rather than maintaining the range of an operand, 

the range value is computed as necessary. This can be done 

since the TARGET field has been set for all such operands 

during operand linking. 

As with Sz1 and Sz2, the operand reduction algorithm 

begins with MINIMIZE, which performs a single pass over 

the code. For each instruction, i, and relocatable operand, 

op, we change the opcode and addressing mode to the pair 

from TRANSLATE_CLASS(i, op) which yields the shortest 

instruction: 

 
proc MINIMIZE() 
 

  (∀ b ∈ BLOCK_LIST) 
 

    (∀ tx ∈ TEXT(b) | tx is a text node) 
 

      (∀ op ∈ OP(tx)) 
 
        tc := FOR.M_TC(tx, op); 
        bestcost := MAXCOST; 
 

        (∀ [opc, am] ∈ tc) 
 
          c := cost(tx, op, opc, am); 

 
          if c < bestcost then 
            bestcost := c; 
            newpair := [opc, am]; 
          end if; 

        end ∀; 
 
        if newpair ≠ [OPC(tx), MODE(op)] then 
          contract(tx, op, newpair); 
        end if; 

      end ∀; 

    end ∀; 

  end ∀; 
end proc; 
 

After MINIMIZE, the LENGTHEN phase installs larger 

addressing mode in operands using a series of passes over 

the code. The first step in each pass is to set the FADDR field 

of each text and data node to reflect its current load location 

based on the sizes of all instructions before it. This is the 

field we will later use to determine the ranges for operands. 

We then process each relocatable operand of each text 

node. If a location-relative addressing mode, am, is currently 

in use, the range of the operand is computed using the FADDR 

field of the instruction and the FADDR field of the TARGET 

node of the operand. The predicate SPAN_OK(am) is then 

evaluated for the range to determine if the operand needs 

expansion. If so, we compute the 

TRANSLATE_CLASS(instruction, operand). From 

this we choose the least-cost opcode/addressing mode pair 

for which SPAN_OK(am), evaluated for the range, indicates 

that the new mode satisfies all span restrictions. 

This phase is summarized in the following algorithm: 

 
proc LENGTHEN() 
 
  change := true; 
  while (change) do 
 
    change := false; 
    $ Set FADDR fields of all nodes. 
 
    addr := IADDR(TEXT(BLOCK_LIST(l))(l)); 

    (∀ b ∈ BLOCK_LIST) 

      (∀ tx ∈ b) 
        FADDR(tx) := addr; 
        addr += NBYTES(tx); 

      end ∀; 

    end ∀; 
 
    $ Expand operands as necessary. 
 

    (∀ b ∈ BLOCK_LIST)) 
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      (∀ tx ∈ b | tx is a text node) 
 
        $ Get all relocatable operands 
        $ (ones with TARGET set) which 
        $ might need expansion. 
 

        (∀ op ∈ OP(tx) | TARGET(op) ≠ Ω and 
                loc_relative(MODE(op))) 
 
          range := FADDR(TARGET(op)) – 
                      FADDR(tx); 
          if SPAN_OK(MODE(op))(range) then 
            continue; 
          end if; 
 
          tc := FORM_TC(tx, op); 
          bestcost := MAXCOST; 
 

          (∀ [opc, am] ∈ tc) 
 
            c := cost(tx, op, opc, am); 
 
            if  c < bestcost then  
              bestcost := c; 
              newpair := [opc, am]; 
            end  if ; 

          end ∀; 
 
          if [OPC(tx), MODE(op)] * newpair then 
            expand(tx, op, newpair); 
            ehange := true; 
          end if; 

        end ∀; 

      end ∀; 

    end ∀; 
  end while; 
end proc; 
 

This algorithm performs well in practice since range 

values are changed only at the start of each pass and are done 

through the TARGET pointer rather than maintaining explicit 

range values in operand descriptors. The TARGET field 

generally requires O(n
2
) time to compute but, during operand 

linking, we compute these efficiently using the blocked 

dynamic data structure (see Section §2.3). Likewise, O(n) 

passes could be made through the code during LENGTHEN, 

giving an O(n
2
) worst case. In practice, the algorithm 

converges in 2–5 iterations (see Section §7.2). 

5.3. Register Tracking 

The design of operand reduction, as described thus far, 

falls short in one major area: it utilizes index modes which 

use only the program counter, while many architectures 

allow indexing off other registers. For example, on the 

Motorola 68000, even if a target is not within the span of a 

PC-indexed mode, if an address register points in the vicinity 

of the target, an address register-indexed mode is available 

which costs the same space and time as the PC-indexed 

mode. 

Hence, an improvement to the current operand reduction 

algorithm would be to provide a data structure which 

maintains the known values in all registers which can be 

indexed. In addition, known values in non-indexable 

registers may be useful since such registers can replace 

addressing modes which yield constant values. 

A number of approaches can be taken in handling this 

data structure: 

1. Have the compiler set aside a single address register 

as a base register, thus mimicking segmented 

architectures such as the Intel 8086. This register 

could be initialized by the MCO to point to an 

advantageous location and references to all targets 

which fall within the span of this location could be 

improved. This is essentially the scheme taken in the 

Macintosh operating system ([Apple 85]) for the 

Macintosh 68000-based computer. However, on the 

Macintosh, all data references must be made using the 

base register; this limits global data to 32,767 bytes on 

this machine. 

2. Allocate base registers on a less global level. 

Information as to which registers are unused over 

ranges in the code would have to be obtained. These 

could then be initialized and used as local base 

registers if there were sufficient references in the 

range which could index off the address register. 

3. Information as to which registers have known values 

in ranges of the code could be obtained by techniques 

similar to constant propagation [Aho 77]. These 

registers could be used as base registers in the proper 

ranges without initialization. On architectures such as 

the Motorola MC68020 [Motor 84b] where a number 

of registers can be combined with scaling factors and 

constant offsets, registers could be used in linear 

combinations to produce the least expensive 

addressing mode. 

6. Macro Compression 

Until this point, I have described optimizations and 

techniques that are employed in the MCO and that are, to 

varying degrees, successful toward the goals of optimizing 

task files and furthering this research. In this Chapter I reflect 

upon a class of techniques that are also consonant with this 

research but which did not yield satisfactory results in some 
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dimension of performance and were removed from the 

production version of the MCO. 

6.1. Background 

Common code compression is a class of optimization 

techniques in which common sequences of code are 

identified by various analysis methods and removed by 

altering the code or providing information to a translator that 

is converting the code to a lower level. 

This class of techniques includes common subexpression 

elimination, available expression elimination, very busy 

expression hoisting, and code hoisting and sinking (see [Aho 

86] for a general discussion of these). These techniques are 

generally more suitable to earlier phases of the compilation 

process than the link phase. 

The technique of macro compression recognizes common 

code sequences and replaces each occurrence of the common 

code with a call to a code macro or subprogram containing 

the common code. 

This space optimization was first used in [Dewar 79a] to 

conserve space in an interpretive byte stream. The language 

used an 8-bit opcode but only had 80 operators. 

The remaining 176 opcodes were used to represent 

frequently occurring byte sequences beginning on instruction 

boundaries. In practice, only multi-bytes instructions or part 

instructions were subject to macro compression, but the 

savings remained substantial. 

The theoretical aspects of this problem were studied in 

[Golum 80]. The assumptions were: 

1. A byte stream was to be minimized; 

2. A macro call consisted of a single byte; 

3. Exactly m macros of length ≤ k were to be chosen. 

Optimal polynomial-time solutions were obtained which 

characterized potential macro choices within the byte 

sequence using an interval or overlap graph (depending on 

two slight variations of the problem). However, these 

algorithms were very costly in practice. 

6.2. Assembly Code Compression 

A more recent approach [Fras 84] has been to apply 

pattern matching techniques to assembly code to identify 

repeated subsequences. A suffix tree ([McCr 76]) is built for 

the input code to be compressed. The suffix tree for a list of 

instructions, i, is a tree whose |i| leaf nodes are labeled with 

the locations in i and whose arcs are labeled with 

subsequences of i. For example, if a, b, and c are instructions 

and $ is the unique end marker, the instruction list abcab$ 

would have the tree shown in Figure 6.1. 

This data structure allows us to find the subsequence 

beginning at any position and ending at $ by following the 

path of edges from the root to the leaf with the proper label. 

More importantly for macro compression, each non-leaf 

(internal) node represents a common subsequence: the text of 

the subsequence is found by following the edges from the 

root to the internal node and the number and location of the 

subsequences are represented by all leaves whose path to the 

root goes through the internal node. 

Once the suffix tree is built (in linear time — see [McCr 

76]) the internal nodes of the suffix tree are evaluated for 

validity under the semantic rules of macro compression for 

the given assembly language and for payoff if they were 

replaced. Valid subsequences are ordered in a priority queue 

by some criterion and the items of the queue are processed in 

order, installing a code macro and calls to it at each step. 

An optimizer for assembly code was built by [Fras 84] 

and was reported to run efficiently and perform well. 

However, no statistics were given on the amount of 

compression achieved. 

6.3. A First Attempt 

A preliminary optimizer for assembly language was built 

along these lines for the purpose of gathering statistics. As 

expected, the effectiveness of macro compression heavily 

depended on the size of the assembly code file. In assembly 

files generated from languages such as COBOL ([ANSI 74]), 

a good deal of compression was obtained since the entire 

user program is generated in a single assembly code file. 

However, for languages such as C where a high degree of 

modularity tends to be observed, almost no compression was 

obtained. Furthermore, code for language primitives, since 

they are relatively small and selectively linked modules, 

were never compressed. 

 

 

Figure 6.1.  Example Suffix Tree 
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The next stage was to build an analyzer which maintained 

statistics on common sequences across assembly language 

files. If, for a given language and compiler, many common 

sequences appeared repeatedly across different programs, a 

database of those sequences could be made available to a 

peephole optimizer [McKee 65]. It would replace them in 

linear time [Knuth 77] and with small space overhead. A call 

to a macro body would be substituted on the expectation that 

the sequence would appear enough times in the various 

modules of the program to make substitution worthwhile, on 

the average. 

The macro bodies would then be selectively linked in 

from a large library of these subprograms. 

However, it was found that, while a single program may 

have many common subsequences within itself, the same 

sequences were, for the most part, not shared between 

programs. Table 6.1 gives a summary of common sequences 

in two test programs we will describe in detail in Chapter 7. 

These programs are called p1.68 and p2.68 when compiled 

for the 68000. A breakdown is given for various sized 

subsequences for p1.68, p2.68, and sequences which 

appeared in both. In each case, I report the number of 

common sequences as well as the average number of 

occurrences of each sequence in the programs. In the last 

column, I report the average occurrences in both programs 

combined.  

These figures show that even though the same compiler 

was used and the same code for language primitives was 

linked in, few sequences were common to both program in 

comparison to the program treated separately. This happens 

since many of the common sequences contain code which 

refers to program-specific global data or subprograms. 

6.4. Macro Compression in the MCO 

The results of the assembly code macro compressor 

indicated that a macro compressor which operated on all the 

modules in a single program would compress the most 

macros. This, the macro compressor was recoded to operate 

on task files, and this became the first version of the MCO. It 

operated with essentially the same instruction parser and 

code relocation algorithm described earlier, but without any 

other optimizations described so far. 

There were a number of significant additions to the MCO 

implementation beyond that of [Fras 84]: 

1. The user had the choice of two priorities when 

inserting sequences into the priority queue: they could 

be inserted in order of the number of bytes saved by 

the substitution of the sequence (assuming no overlap 

with earlier substitutions) or they could be inserted 

based on the number of bytes in the sequence (‘value’ 

priority versus ‘length’ priority). 

2. The MCO was more aggressive in salvaging 

sequences which would have been discarded as 

invalid: if the sequence referenced the stack, the 

macro body was constructed so that the return location 

was not stored on the stack: if the sequence modified 

the stack in certain simple ways, similar 

transformations were applied to the macro body; If 

some code in the sequence would have caused the 

sequence to be discarded and that code appeared near 

the end of the sequence, it was shortened and re-

inserted into the priority queue. 

3. Since [Fras 84] does not describe the data structures in 

detail, it is not clear how their suffix tree was 

represented internally. The MCO maintained the tree 

in virtual memory. The initial implementation had a 

pointer from each internal node to the first child and a 

pointer from each node to its sibling. This simple data 

structure was very compute intensive during the 

construction of the suffix tree (48:07 for p1.68) and a 

hash table was installed to represent the parent-child 

relation between the root node and the second level of 

the tree (reducing the time to 3:22 for p1.68). 

The statistics relating to this version of the MCO are 

reported in Tables 7.2 for the execution time of macro 

compression, 7.5 for the size improvement in the text 

segment, and 7.6 for the degradation in the target program's 

execution speed. From these results it was decided that 

macro compression was not desirable in the production 

version of the MCO because of the costs in the following 

areas: 

Table 6.1  Tabulation of Common Sequences 

 p1.68 p2.68 p1.vx 
Size # occur # occur # occur 

50–60 1 2 2 2 0  

40–48 1 2 2 2 0  

30–38 3 2 2 2 0  

20–28 4 2.25 4 3.25 0  

18 3 2.00 4 7.00 0  

16 6 3.33 4 2.75 0  

14 9 4.00 7 5.71 1 4.00 

12 12 3.17 13 6.07 2 4.50 

10 17 6.65 13 7.30 0  

8 32 6.00 48 7.96 10 17.80 

6 41 13.46 61 16.84 14 52.29 

Total 129  160  27  
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Compressor Speed 

The macro compressor required several times the 

compute resources of the other optimizations combined. The 

total speed of about 125 bytes/sec was very close to the 

speed of the [Fras 84] implementation, but we were dealing 

with the entire task file on each run of the optimizer. 

Dynamic Memory Requirements 

The suffix tree nearly doubled the dynamic memory 

required by the MCO. 

Execution Speed Degradation 

When running a program after macro compression, the 

task image is smaller, but the CPU must spend time 

executing the macro calls. On p1.68, the compressed 

program took 15% more CPU time than the original (with 

macro compression and operand reduction). In real time, the 

compressed file took 7% more time - probably due to the fact 

that the operating system treats smaller task files with a 

higher priority. This speed degradation is not as severe if the 

length priority is used rather than value priority (see Section 

§7.5). With value priority 913 calls to macros were installed 

whereas for length priority 821 calls to macros were 

installed. 

Thus, fewer macro calls are made and execution speed is 

not affected as much with length priority. In addition, value 

priority saved a total of 2,310 bytes while length priority 

saved 2,384 bytes. 

6.5. G-Code and G-Compression 

G-compression takes the concept of macro compression 

to extremes. First, the text segment is converted into a very 

compact generative code or G-code. At execution time this 

is loaded into memory along with the data segment for the 

program, a decoder, and 68 an execution buffer. The decoder 

is responsible for re-constituting sections of G-code into their 

original native code and placing them in the execution 

buffer. Code is executed in the execution buffer until a new 

section of code needs to be re-constituted, at which time 

control returns to the decoder. If enough space is allocated 

for the execution buffer and a good allocation algorithm is 

used, the decoder will be called infrequently compared to 

execution of native code in the buffer. Even if the processor 

spends half its time in the decoder, this is substantially better 

than the 10 to 40 times speed degradation experienced in 

typical interpretive systems, with the potential for a greater 

savings of space. 

This approach is similar in concept to ‘throw-away 

compiling’. This technique compiles frequently interpreted 

sections of code at run-time ([Brown 76], [Brown 79], [Hans 

74]). However, the task of code generation was employed at 

run-time in these systems to produce object code, rather than 

a straightforward decoding. Hence, the translation was slow, 

required a very large ‘decoder’, and could not achieve a high 

level of object code optimization. 

To elaborate on these ideas, I describe the items in 

memory at execution time in more detail: 

G-Code 

The generative code is a representation of the text 

segment of the original program in which a series of 

transformations have been applied to translate original 

instruction and sequences of instructions into G-code 

instructions. The first set of transformations modifies certain 

types of instruction operands. In general, references to 

registers or registers with displacements are unaffected. 

However, references to instructions or data in the original 

code are converted to references to the corresponding 

instructions or data in the G-code. 

Each reference to an instruction in the original text 

segment (original text reference) is replaced by the bit 

address of the start of the corresponding (j-code instruction 

relative to the start of the sequence of G-code instructions 

(soft text reference). Thus the number of bits to represent a 

soft text reference depends on the size of the G-code. 

Each reference to a byte in the original data segment 

(original data reference) is replaced by the byte offset of the 

referenced data byte from the start of the data segment (soft 

data reference). The number of bits for a soft data reference 

depends on the size of the data segment. 

Any immediate operand which refers to the address of an 

instruction in the original text segment is replaced by the soft 

text address of the corresponding G-code instruction. 

An immediate operand which refers to an original data 

item is converted to a byte offset from the start of the data 

segment. 

In general, the set of operand addressing modes defined 

for native code and G-code differ in order to accommodate 

these transformations. Also, since there are no byte-boundary 

limitations imposed by the decoder, operands can occupy any 

number of bits and can even vary in size. Native code 

designs incorporating some of these features such as bit-

aligned instructions and variable sized operands have been 

developed in the Intel 432 architecture ([Tyner 81]) and the 

design of the Burroughs B1700 ([Wiln 72]). 

The second transformation applied to the original text 

segment is solely for the purpose of compressing the 

instruction sequence. The criteria are that it must be 

decodable starting at any instruction boundary and that the 

decoding must be done in real time (requiring no look-ahead) 
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[Peter 61]. This can be accomplished by one or a 

combination of: 

1. A straightforward Huffman encoding ([Knuth 73], p. 

402) of the G-code. 

2. A partial Huffman encoding in which the main 

instruction word is encoded but words which contain 

addresses and displacements are not affected. 

3. A macro compression scheme in which common code 

sequences are collapsed into a macro table (which 

becomes part of the G-code) and replaced with short 

non-instructions from a Huffman encoding list. First, 

the priority queue is ordered by the number of times a 

sequence appears, rather than by the length or value of 

a sequence. Then all sequences which appear more 

than once are inserted into the queue. When 

processing the queue, sequences are replaced by bit 

encodings of increasing length. These encodings are 

assigned in the way that Huffman codes are built [Gall 

78] so that minimum space is required. 

Data Segment 

This is identical to the data segment which would be 

loaded with the original version of the program, except that it 

is not necessarily loaded at the same address. Pointers in the 

data segment to other data addresses are relocated based on 

the new base address for the data segment. Text addresses 

are translated to their corresponding soft address. 

Decoder and Execution Buffer 

The decoder is a fixed section of code which runs on the 

native hardware. Its job is to re-constitute G-code into 

machine code. It takes sections of G-code which needs to be 

executed and decodes them into a variable-sized execution 

buffer. The decoded native code is essentially the same as the 

original native code in the text segment. The differences are 

that addresses which refer to the data segment are adjusted to 

point to the new data segment and text addresses are 

converted back from soft addresses into the hard addresses of 

the decoded section, if the code at the target text address is 

already in the execution buffer. Otherwise, a branch to a non-

decoded code section consists of a push of the soft address 

and a call back to the decoder. 

The decoder has the following entry points: 

MAIN: This is the entry point from outside the program. 

The first section of code is re-constituted, the user's stack, 

registers, and arguments are initialized, and the first section 

of code is called. 

TRANSFER: Branch to this entry point to re-constitute and 

execute code beginning at the soft address which is on top of 

the stack. All branches to TRANSFER which are preceded 

by a push of this soft address are then converted to a branch 

directly to the newly re-constituted native code. 

EXTEND: Append a new section of native code after the 

last executed block. Two items are on the stack: the soft 

address of the new code and the hard address to begin 

placing the hard-code. Accessed from unconditional 

branches in the original program code which are at the end of 

a re-constituted block, this is really a special case of 

TRANSFER which can optimize speed by eliminating 

unconditional branches. 

CALL: Same as TRANSFER, except that a subprogram call 

has been made. 

The contents of memory during program execution is 

summarized in Figure 6.2. 

Aside from a straight executable program, the G-code 

scheme can be used in ways more closely tied to the 

machine. For example, G-code might be the actual language 

of the machine, while the decoder resides in microcode itself. 

The macro bodies themselves would be read in when the 

program is loaded. The rudiments of such a scheme are 

employed in the VAX-11 architecture ([DEC 77]), which 

 

 

Figure 6.2.  Memory Organization for G-Compression 
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allows the microcode for certain instructions to he read in by 

the user during system initialization. 

7. Measurement and Evaluation of Performance 

The current implementation of the MCO is written in C 

([Kern 78]) and runs on a VAX-11/750 ([DEC 77]) under 

Berkeley UNIX Version 4.1c ([UNIX 80]). It optimizes task 

files containing 68000 and UNIX machine code generated 

from C source code compiled with the Philon FAST/C 

compilers [Phil 85c]. These files run under Uniplus-UNIX 

[Instr 81] on the 68000 and Berkeley UNIX on the VAX-11, 

respectively. 

This chapter reports on performance measurements taken 

on the MCO. Figures do not include measurements of macro 

compression, unless specifically noted. I give statistics in 

five areas: the running speed and size of the MCO, the space 

and speed improvements gained for each target machine, and 

the programmer time required to retarget from the 68000 to 

the VAX. 

7.1. Test Input 

For purposes of the statistics in this chapter, two sample 

input files were used, compiled for the 68000 and the VAX. 

They are production versions of two passes of a compiler for 

a dialect of BASIC [Phil 84cb]. They are called p1.68 and 

p2.68 when compiled for the 68000 and p1.vx and p2.vx 

when compiled for the VAX. They are ideal for statistical 

purposes since they are production programs which execute a 

mix of computation and I/O bound code in a batch mode. 

Also, p1 contains most of its code within the 32,767 span 

limitation of these machines and p2 exceeds that limit by 

almost a factor of 2. The sizes of the text and data segments 

for the four task images are given in Table 7.1. 

7.2. Speed of the MCO 

First I report on the time required to run the various 

phases of the MCO on the sample input programs. Table 7.2 

gives this information in terms of CPU time on a VAX-

11/750. This is a measure, by the operating system, of how 

much time the CPU spent executing instruction in that phase. 

In parenthesis, I/O time is given for phases which had 

significant I/O usage. These figures give the amount of time 

that the operating spent performing I/O operations on behalf 

of that phase. 

Table 7.2 is clarified by the following points: 

1. The task of parsing the instruction sequence is, by far, 

the most time-consuming aspect of the first phase. On 

the 68000, this is done by a large routine (28 pages of 

source code) to disassemble the byte sequence. For the 

VAX, parsing is done by a tiny routine which relies 

almost entirely on the static tables which describe the 

architecture. The interpretation of those tables greatly 

speeded development of the instruction parser for the 

VAX and did not slow the routine. The execution time 

of that phase for VAX input doubled because 

instructions on the VAX are parsed twice (see Section 

§2.2). 

2. The I/O time required for operand linking is spent 

reading the relocation information from the input task 

file. 

3. Most of the time spent in the MINIMIZE phase of 

operand reduction is in building and processing the 

translate class. The VAX, which has larger translate 

classes for instructions due to the more orthogonal 

Table 7.1  Sizes of the Test Programs 

Program Text bytes Data bytes 

p1.68 33,684 12,664 

p2.68 57,482 11,054 

p1.vx 29,296 13,800 

p2.vx 47,104 11,496 

 

Table 7.2  Execution time for the MCO on a VAX 11/750 

Phase p1.68 p2.68 p1.vx p2.vx 
Input & Instr 

Parse 

0:24 

(0:02) 

0:46 

(0:04) 

0:50 

(0:02) 

1:30 

(0:05) 

Text Blocking 0:00 0:01 0:00 0:01 

Operand 

Linking 

0:11 

(0:17) 

0:20 

(0:21) 

0:07 

(0:03) 

0:13 

(0:05) 

Code 

Elimination 
0:02 0:05 0:01 0:02 

Code Distribution    

  σ0 0:06 0:10 0:05 0:08 

  σ1 1:29 3:01 1:04 2:03 

  σ0 + σ1 1:24 3:07 1:07 2:16 

Minimize 0:12 0:19 0:37 0:54 

Lengthen 0:21 0:39 0:35 0:42 

Code 

Relocation 
0:02 0:03 0:02 0:03 

Output 
0:12 

(0:29) 

0:16 

(0:46) 

0:08 

(0:17) 

0:10 

(0:23) 

Total (σ0 + σ1) 
2:48 

(0:48) 

5:36 

(1:14) 

3:27 

(0:22) 

5:51 

(0:33) 

Macro Compression    

Build suffix 

tree 
3:22    

Build prio 

queue 
0:15    

Modify code 0:52    
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addressing mode structure, requires about three times 

longer in this phase. 

4. Conversely, the LENGTHEN phase builds a translate 

class only if a span restriction is exceeded. Most of the 

time here is spent passing over the code until all span 

restrictions are satisfied. While this convergence could 

require many passes, in practice few passes are 

needed. These test cases required three passes for 

p1.68 and four passes for the others. No program run 

through the MCO during testing or production use has 

ever required more than 5 passes. 

7.3. Space Requirements of the MCO 

The size of the MCO is reported in two aspects: the static 

space needed for program code and data and the dynamic 

space required for the dynamic data structures as a function 

of the input program size. 

Table 7.3 lists the number of bytes used for the 68000 and 

VAX versions of the MCO. 

Note that the text segment of the VAX version is smaller 

due to the table driven instruction parser described in the last 

section. This is reflected in the substantially larger space 

required to store the static data structures. 

Table 7.4 reports on the space required to represent all the 

dynamic data structures which are built. 

These figures represent the total number of bytes for 

dynamic data with no effort to free this space. For example, 

these figures reflect no space savings for free space as a 

result of code elimination. These figures show that the MCO 

requires 12-14 times as much memory as the text segment of 

the input program. Of course, the MCO could be modified to 

maintain these structures on secondary storage. 

7.4. Effect on Program Space 

This section presents statistics on the reduction in the size 

of the text segment for the input programs. 

Table 7.5 gives the number of bytes saved by each phase 

of the MCO. For code elimination, I give the savings with 

unlabeled elimination and the additional savings with 

subprogram elimination. 

The following points should be noted in reference to these 

statistics: 

1. The code elimination statistics are dependent on the 

way runtime libraries are structured on a given 

language and compiler can vary greatly. 

2. As expected, code distribution is far more useful on 

programs whose text segment exceeds a span 

restriction imposed by the architecture. 

3. The savings of about 1% for code distribution on files 

which exceed 32K bytes of text does not seem to 

justify the time required for this phase of the MCO 

(see Table 7.2). However, given that C code is 

typically written with heavy reliance on stack based 

data rather than static data, task images generated 

from other source languages would probably benefit 

more from this optimization. 

7.5. Effect on Program Speed 

To test the speed of the original and optimized version of 

the test programs, they were run on their target machines and 

timed. The VAX target machine was a VAX-11/750 and the 

68000 was a Pixel 100/AP [Instr 81] with a 10 MHz CPU. 

Since the input code was the first two passes of a BASIC 

compiler, each was run on the same 123 line, 3,988 character 

source file. 

Table 7.6 reports the CPU time statistics returned by 

UNIX as described earlier. The I/O time was affected more 

by system load than by any optimization performed, and is 

not reported in this table.  

The basic thing to note about these figures is that the 

improvement on the 68000 version was much greater than 

the VAX. I conjecture that, due to an instruction buffer 

maintained by the VAX instruction decoder, the processing 

of semantically equivalent memory references is not done 

Table 7.3  Static Space Required by the MCO 

Size of … 68.mco vx.mco 
Text bytes 34,816 31,744 

Data bytes – tables 4,832 15,496 

Other data bytes 10,992 9,608 

Total static size 50,656 56,864 

 

Table 7.4  Dynamic Space Required by the MCO 

 68.mco vx.mco 
Bytes for … p1.68 p2.68 p1.vx p2.vx 

Total mem 

required 
515,032 854,592 420,264 639,704 

Size of task 

image 
 -50,656 -50,656 -56,864 -56,864 

Dynamic 

memory 

required 

 

464,376 

 

803,936 

 

363,400 

 

582,840 

Text in test 

prog 
 33,684  37,482  29,696  47,104 

Dynamic data 

per target byte 
13.79  13.98  12.24  12.37 
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faster for shorter operands. This is supported in the survey of 

VAX instruction timings reported in [Shiel 84]. 

8. Conclusions 

It is my thesis that a class of optimization techniques, 

which can be performed only at the machine code level, is 

effective toward the goals of program optimization. 

Furthermore, these techniques can be implemented in a 

straightforward manner and in a reasonably machine-

independent fashion. I begin by reviewing the 

implementation and theoretical work done on the MCO, 

describing other proposed ideas for optimizations at this 

level, and suggest areas for future research. 

8.1. Review of Work Done 

The core of this work has been to define a class of 

inefficiencies which exist on certain architectures and 

environments and build an optimizer, the MCO, to remove 

these inefficiencies. 

The inefficiencies relate mainly to programs which 

consist of many modules and which are linked using a linker 

which cannot resolve inter-module references efficiently. 

Generally, when a single module is compiled, the most 

general and most costly addressing mode must be used for 

inter-module references since no information as to the 

relative or absolute location of the target is available. Hence, 

I deal with inefficiencies which can only be removed during 

or after the link phase of compilation. 

A basic inefficiency is the presence of unreferenced 

subprograms in the task file. 

I review existing techniques for eliminating such code 

and develop and implement an augmented version of one of 

them, called subprogram elimination. 

Another inefficiency concerns the order in which code 

and data appear in a task file. 

I review the problem of data distribution, which places 

data objects throughout the code segment of the program and 

cite earlier work which shows the problem to be NP-

Complete. 

I also review the problem of code distribution, which 

shuffles the subprograms of the code segment to reduce the 

distance between operands and their targets in the code 

segment. I show this problem to be NP-Complete also. I then 

implement efficient heuristics for code distribution which 

improve the ordering of subprograms in the code segment. 

I then approach the problem of installing addressing 

modes in operands of instructions which take advantage of 

the proximity of targets. I develop an algorithm, called 

operand reduction, for installing the minimum sized 

addressing mode for any given operand. This algorithm is 

largely machine-independent; it relies almost entirely on a 

set of data structures which describe the machine 

architecture. 

I then discuss a technique, macro compression, which 

reduces the storage requirements of a program, but which 

carries an associated speed penalty. I describe earlier work 

Table 7.5  Effect of MCO on Size of Text Segment 

Phase p1.68 p2.68 p1.vx p2.vx 
Initial text bytes 33,684  57,482  29,696  47,104  

Unlabeled Elimination 2,458 -7.3% 4,900 -8.5% 2,639 -8.9% 5,154 -10.9% 

Added Subprogram Elimination 682 -2.0% 596 -1.0% 799 -2.7% 931 -2.0% 

Code Distribution         

   σ0 + σ1 104 -0.3% 652 -1.1% 46 -0.2% 486 -1.0% 

   σ0 -58  428  -36  374  

   σ1 24  470  43  383  

Operand Reduction 2,624 -7.8% 3,476 -6.1% 3,632 -12.2% 4,207 -8.9% 

Total (σ0 + σ1) 5,868  9,624  7,116  10,778  

Text segment reduced 17.4% 16.7% 24.0% 22.9%     

Macro Compression 2,310 -6.9%       

 

Table 7.6  Effect of the MCO on Program Speed 

Program run p1.68 p2.68 p1.vx p2.vx 
Original program 6.73  2.85  6.08  2.62  

MCO with no code distr 6.41 4.8% 2.46 13.7% 5.95 2.1% 2.55 2.7% 

MCO with σ0 + σ1 6.32 6.1% 2.48 13.0% 5.92 2.6% 2.50 4.6% 

Macro Compression 7.73 (neg. 14.9%)       
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and report on the results of a trial implementation of macro 

compression. A more aggressive technique, called G-

compression, which carries a larger speed penalty but offers 

the possibility of much greater code compaction, is also 

described, although no attempt at implementation was made. 

Finally, statistics are reported on the performance of the 

MCO and its effect on target programs. The results indicate 

that the MCO yields a substantial space improvement and 

smaller speed improvements. 

I conclude that the techniques applied by the MCO attain 

many of the performance advantages of segmented 

architectures on linear address space machines without 

imposing restrictions on addressing. 

8.2. Proposals for Further Investigation 

In the light of the effectiveness of the current MCO, a 

number of areas deserve further investigation: 

1. Investigate improved algorithms and heuristics for 

code distribution. 

2. Implement some version of register tracking as 

described in Section §5.3. Also, the performance 

improvement from adding register tracking to operand 

reduction should be measured. 

3. Implement a G-code scheme, as described in Section 

§6.5, to determine the space savings and speed 

degradation involved. This scheme could be useful in 

applications where interpreters are currently used to 

deal with severe memory restrictions. 

4. Investigate algorithms for improved recognition of 

common subsequences. These algorithms could relax 

the definition of ‘common subsequence’ to allow 

instructions which are out of order, renaming of 

registers, etc. 

5. Investigate a macro compression scheme which would 

allow code macros to take parameters. This could be 

used to allow non-conforming subsequences to be 

replaced by macro calls by supplying an argument to 

the macro body. 

In addition, a number of the following techniques may be 

applicable to the MCO: 

1. The full implementation of register tracking implies 

the need for algorithms similar to data-flow 

algorithms on higher-level program representations. 

The implementation of such algorithms on machine 

code to track live-dead information on registers should 

be investigated. Also, such algorithms can be used to 

implement other transformations. For example, a 

register does not need to be saved and restored in a 

subprogram if no call to that subprogram needs that 

register as live. 

2. If a constant operand is used often enough, space can 

be saved on some architectures by building local 

tables of these constants which can be accessed by 

some span-dependent addressing mode. However, this 

degrades execution speed on many architectures. 

3. Subprograms which are called once can be moved in-

line. Local repair and optimization can then be done at 

the entry and exit points to save stack manipulation. 

 

Appendix A. Definition of Text and Block Node Fields 

This Appendix provides a description of the fields in text 

nodes and block nodes and their contents. 

For each instruction, the text node contains the following 

fields: 

OPC 

The opcode for this instruction. This number is independent 
of the actual bit pattern for the instruction: it is an ordinal 
index into the static data structures which describe the 
instruction set on the target architecture. 

SIZE 

A code which denotes the number of bytes being operated 
on by this instruction. This field is used to reduce the 
number of opcodes by combining instructions which perform 
similar operations on different sized objects into a single 
opcode. 

IADDR, FADDR 

The initial and final addresses for the instruction. The IADDR 
field gives the load address at which this instruction would 
have been loaded as specified in the input task file. FADDR 
specifies the load address for the instruction in the output 
task file; it is initialized to IADDR and gets incrementally 
changed as the code is improved. 

INSTR 

A pointer to the bytes of the instruction. As instructions are 
parsed, this field is initialized to point directly into the image 
of the text segment read into memory. However, if an 
instruction is ever expanded past its original length, the 
bytes must be stored elsewhere (in a dynamically allocated 
buffer). 

IBYTES, NBYTES 

The initial and current number of bytes in the instruction. 
IBYTES is needed so that the INSTR field can be reset 
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properly if the instruction needs to be expanded beyond its 
original length. 

NEXT 

A pointer to the next text or data node on the list. Initially, 
all the text and data nodes are linked together in a single list 
in the order they appear in the input file. During code 
distribution, the original list is partitioned into a set of lists 
which are re-ordered. 

REF, JSR 

The count of the number of times the instruction is 
referenced and how many times it is referred to as the target 
of a subprogram call instruction. A reference could consist of 
a jump to or a call of the instruction, a pointer to the 
instruction in some data area, or a constant in an instruction 
operand or data area which names the instruction. 

OP 

An array of operand descriptors. Each operand descriptor 
holds information for a single operand of the instruction and 
has the following fields: 

ADDR 

For relocatable operands, this field holds the effective 
address which this operand referenced when it was initially 
read in. This reference might be to another instruction or to 
a data item in some data area. For non-relocatable 
operands, this field is used during operand reduction to 
preserve the value specified by the operand while the 
addressing mode of the operand is being altered. Refer to 
Chapter 5 for the specifics. 

TARGET 

A pointer to a text or data node that contains the object 
referenced by a relocatable operand. This field is NULL if the 
operand is non-relocatable. 

MODE 

A code giving the addressing mode used by the operand. Like 
the OPC field, this code is used to index into the static data 
structures which describe the addressing modes on this 
architecture. 

OFFSET 

An index into the bytes of the instruction telling where any 
extension word associated with this operand begins. This 
field is updated whenever some code improvement changes 
the addressing mode of the operand. 

REG 

An array of register descriptors giving the machine registers 
used by this operand. The significance of each element of 
the array depends on the addressing mode in use. 

In addition, each operand has an operand position, 

OPNUM(op), associated with it which is simply that 

operand's position in the OP array of descriptors. 

Each block node has the following fields: 

SADDR, EADDR 

The IADDR of the first node in the subprogram and the 
SADDR of the next block (zero for the last block). 

TEXT 

A pointer to a linked list of text and data nodes for this block. 
The last node on this list has a NULL NEXT field. 

INEXT, NEXT 

Pointers to successor block nodes as they appear textually in 
the source code. We maintain the initial successor and the 
successor as modified by later optimizations. 

REF, RELOC, DRELOC 

Fields used during the code distribution algorithm. 

 

Appendix B. Low Level Implementation of Data 

Structures 

In this appendix, I present the low level implementation 

of the data structures involved in forming the 

TRANSLATE_CLASS and the operand reduction algorithm. 

They are coded in C ([Kern 78]) and appear as they do in 

the production version, except for the following 

modifications, which hold for this and following appendices: 

Certain type declarations have been simplified for ease of 

reading this section of code independently from the rest of 

the MCO. 

All debugging, tracing, and much of the assertion 

checking has been removed. 

This code actually appears in several separate modules in 

the production version. 

The comment conventions have been altered as well as 

other cosmetic and typographic changes. 

 
-- The following "m_" constants and types 
-- describe the basic parameters of the 
-- architecture whose programs we are 
-- optimizing (the "target machine" 
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-- architecture). 
 
-- The size of an object needed for a 
-- (virtual) address on the architecture we 
-- are optimizing (the target machine). 
 
#if TM68000 or TVAX11 or TTI32000 
typedef long m_addr; 
#endif 
 
-- The maximum number of operands an 
-- instruction can have. 
 
#if TM68000 or TTI32000 
#define m_opcount 2 
#endif 
#if TVAX11 
-- The value given here does not take into 
-- account the caseb. casew, and casel 
-- instructions on the VAX architecture. 
-- These are handled as separate cases 
-- in mcoinstr.c 
 
#define m_opcount 6 
#endif 
 
-- The maximum number of registers which 
-- any single operand of a machine 
-- instruction can reference. 
 
#if TM68000 
-- The 68000 can address up to two registers 
-- in an index mode, but an additional 
-- bit is needed to tell whether the index 
-- register is long or word. 
 
#define m_maxreg 3 
#endif 
 
#if TTI32000 or TVAX 11 
#define m_maxreg 2 
#endif 
 
-- The type of a register descriptor. 
--  Objects of this type are used to name 
-- one of the machine registers. 
 
#if TM68000 or TVAX11 or TTI32000 
typedef byte m_reg; 
#endif 
 
-- The type of an opcode descriptor. 
 
#if TM68000 or TTI32000 
typedef byte m_opc, 
#endif 

 
#if TVAX11 
typedef short m_opc; 
#endif 
 
-- The type of an addressing mode descriptor. 
 
#if TM68000 or TTI32000 or TVAX11 
typedef byte m_mode; 
#endif 
 
-- These inform the operand reduction 
-- algorithm what possibilities exist for 
-- span-dependent instructions and what 
-- the range of spans is for each 
-- possibility. Note that spans are 
-- given relative to different positions 
-- for each target architecture. These are 
noted below. 
 
#if TM68000 
-- The 68000 has 2, 4, and 6 byte branches:  
-- Two byte conditional and 
-- unconditional branches to targets in the 
-- range .-span8min to .-span8max; 
-- Four byte conditional and unconditional 
-- branches to targets in the range 
-- .-spanl6min to .+span16max; Six byte 
-- unconditional branches to any address. 
 
-- Note also the specialized branches which 
-- exceed the maximum span-dependent 
-- range of spanl6max - these are handled by 
-- the addressing modes am_cvlong 
-- and am_dvlong (see mcocodes.h). 
-- These values give the offsets from the 
-- start of the instruction containing 
-- the span-dependent addressing mode. 
 
#define spanSmm (-126) 
#define spanSmax 129 
 
#define spanl6min (-32766) 
#dcfine spanl6max 32769 
#endif 
 
#if TVAX11 
-- We have a minor problem on the VAX:  
-- the span of a location-relative 
-- addressing mode does not bear any relation 
-- to the start of the instruction, 
-- but is relative to the address following 
-- the operand extension word! 
-- However, since the operand reduction 
-- algorithms deal with span values 
-- independent from a particular addressing 
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-- mode, we cannot take the 
-- size of the addressing mode into account 
-- when computing a span. 
 
-- Hence, we compute all spans on the VAX 
-- from the beginning of the 
-- span-dependent operand itself. 
 
-- This means that the range of span values 
-- given here is slightly reduced 
-- to allow all possible sizes of addressing 
-- modes which can be used for 
-- that span. This means that some boundary 
-- cases where a shorter addressing 
-- mode could be used will he missed, but 
-- se la vie. 
 
#define spanSmin (-128+2) 
#define spanSmax 127 
 
-- For word-relative addressing modes, the 
-- minimum span increases by four. 
 
#define spanl6min (-32768+4) 
#define spanl6max 32767 
 
-- This span is used for the am_lit 
-- addressing mode on the VAX. 
 
#define span6min 
#define span6max 63 
#endif 
 
-- DYNAMIC DATA STRUCTURES 
 
-- These data structures are allocated as 
-- needed to represent the program 
-- being optimized. 
 
-- Operand Descriptor 
 
-- These structures describe operands of a 
-- target machine instruction. 
 
typedef struct { 
  -- If this operand is relocatable, this 
  -- field contains the effective 
  -- address which this operand referenced 
  -- when it was initially input. 
  -- Note that the reference may have been 
  -- done using any addressing mode 
  -- available for the operand. If this 
  -- operand is not relocatable, this field 
  -- is NULL before the minimize phase of the 
  -- MCO. After minimize, this 
  -- field is used to store the extension word 

  -- of a non-relocatable operand 
  -- so that it can be restored correctly by 
  -- the relocate phase. 
   
  m_addr op_addr; 
 
  -- If the operand is relocatable, this field 
  -- contains a pointer to the text 
  -- or data node containing the effective 
  -- address to which this operand 
  -- refers. This field is NULL if the operand 
  -- is non-relocatable. 
     
  Struct tx_tag *op_target; 
 
  -- The addressing mode used by this operand.  
  -- This is an integer index 
  -- into the array of addressing mode 
  -- descriptors (am_table[]). These codes 
  -- are defined in mcocodes.h 
 
  m_mode op_mode; 
 
  -- If any extension bytes are required to 
  -- represent this operand, 
  -- this field contains the byte position of 
  -- the start of those extension 
  -- bytes in the instruction. 
   
  byte op_offset; 
 
  -- An array of register descriptors giving 
  -- the registers used by this 
  -- operand. The order and significance of 
  -- the registers named here are 
  -- defined in mcocodes.h. 
   
  m_reg op_reg[m_maxreg]; 
} operand; 
 
-- Text Nodes 
 
-- Data structures for describing an 
-- instruction. Instances of these structures 
-- are allocated for each instruction in the 
-- machine language input file. 
 
typedef struct tx_tag { 
 
  -- The instruction identifier. This field 
  -- gives an index into our static 
  -- table of instruction descriptors 
  -- (id_table[]). This field also serves to 
  -- distinguish between text and data nodes 
  -- (this field has the value 
  -- o_data for data nodes).   
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  m_opc tx_opc; 
 
#if TM68000 
 
  -- The instruction size. This field is 
  -- conceptually part of the opcode 
  -- field, but is kept separate to reduce 
  -- redundant information in the 
  -- tables. It tells how big the operand of 
  -- the instruction is. This 
  -- field is often used in conjunction with 
  -- the opcode field. For example, 
  -- instructions with different opcodes are 
  -- not considered equivalent (even 
  -- if they are in the same instruction 
  -- equivalence class) unless the size 
  -- fields are the same. 
   
  byte tx_size; 
 
  -- Size indicators for the size field on the 
  -- 68000 architecture. 
   
#define siz_byte    0 
#define siz_word    1 
#define siz_long    2 
#define siz_illegal 3 
#endif 
 
  -- Pointer to the bytes of the instruction. 
   
  byte *tx_instr; 
 
  -- Pointers to the next node in this linked 
  -- list of text nodes. 
   
  struct tx_tag *tx_next; 
 
  -- The initial address assigned to this 
  -- instruction in memory in the input 
  -- task file. 
   
  m_addr tx_iaddr; 
 
  -- The final address assigned to this 
  -- instruction at the end of the 
  -- algorithms which manipulate the text 
  -- and data blocks. 
   
  m_addr tx_faddr; 
 
  -- The number of bytes in this instruction 
  -- when it was initially read 
  -- in. This must be kept for the following 
  -- reason: the tx_instr field 

  -- points to the bytes of the instruction 
  -- directly in the input buffer. 
  -- If we need to lengthen the instruction 
  -- beyond its initial allocation. 
  -- we must specifically allocate a buffer 
  -- to hold the new bytes. or else 
  -- risk writing over the next instruction 
  -- in the text segment. 
   
  byte tx_ibytes; 
 
  -- The current number of bytes in the 
  -- instruction 
 
  byte tx_nhytes; 
 
  -- The count of the number of references 
  -- to this node made by other 
  -- text nodes. This is a count of how many 
  -- relocatable operands 
  -- refer to this node. This count includes 
  -- relocatable addresses 
  -- in data areas which refer to this node. 
   
  byte tx_ref; 
 
  -- Count of subroutine-call instructions 
  -- referring to this node. This is 
  -- used to divide the input text segment 
  -- into subprogram blocks in 
  -- preparation for code distribution.  
   
  byte tx_jsr; 
 
#if OPSYMBOL 
  -- The name of a symbol pointing to this 
  -- address. This pointer points 
  -- directly into the symbol table of the 
  -- input file which is read 
  -- m gettext(). This field is used only for 
  -- tracing. 
   
  char *tx.label; 
#endif 
 
  -- An array of operand descriptors. The 
  -- number of elements in this array is 
  -- bogus: we allocate only as many operand 
  -- descriptors as needed for this 
  -- instruction. 
   
  operand tx_op[l]; 
} tx_node: 
 
-- Data Nodes 
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-- Data structure for describing an area of 
-- program data. Each instance of 
-- this structure describes an area of data 
-- whether it lives in the text or 
-- data segment. Note that the layout of the 
-- leading portion of this structure 
-- is identical to the tx_node structure above.  
-- This allows us to cheat in 
-- certain sections of code and not 
-- differentiate whether we are dealing with 
-- a text or data node. 
 
typedef struct dt_tag { 
 
  -- This field flags this node as a data 
  -- node. The field always has the value 
  -- o_data. 
   
  m_opc dt_opc; 
 
  -- Pointer to the bytes of the data. 
   
  byte *dt_data; 
 
  -- Pointer to the next data or text node 
  -- on this list. 
   
  struct dt_tag *dt_next; 
 
  -- The initial address assigned to the 
  -- start of this area in memory. 
   
  m_addr dt_iaddr; 
 
  -- The ftnal address assigned to the start 
  -- of this area at the end of 
  -- the algorithms which manipulate the 
  -- text and data blocks. 
   
  m_addr dt_faddr; 
 
  -- The current number of bytes in the data 
  -- area. Note that this field does 
  -- NOT correspond to the nbytes field of 
  -- text nodes. 
   
  long dt_nbytes; 
} dt_node; 
 
-- Macros which are useful when dealing with 
-- a heterogeneous list of text and 
-- data nodes. 
 
-- Number of bytes described by the node. 
 

#define nbytes_of(tx) (((tx)→tx_opc == o_data) 
? (tx)→dt_nhytes : (tx)→tx_nhytes) 
#define ibytes_of(tx) (((tx)→tx_opc == o_data) 
? (tx)→dt_nbytes : (tx)→tx_ibytes) 
 
-- Identity of the node. 
 
#define is_text(tx) ((tx)→tx_opc != o_data) 
#define is_data(dt) ((dt)→dt_opc == o_data) 
 
-- Macros which specify how the data 
-- segment must he aligned on various machines. 
 
#if TM68000 
#define dalign(a) (a) 
#endif 
 
#if TVAX11 
 
-- Align the data segment on a 1024-byte 
-- boundary. 
 
#define dalign(a) (((a) - 0x03FF) bitand 
OxFFFFFC00) 
#endif 
 
-- Block Nodes. 
 
-- One of these structures is allocated for 
-- each block of code and/or data. 
-- These blocks are arranged in better order 
-- during code distribution. 
 
typedef struct bl_tag { 
 
  -- Pointer to linked list of text and/or 
  -- data nodes. 
   
  tx_node *bl_text; 
 
  -- Pointer to the initial successor block 
  -- to this one. 
   
  struct bl_tag *bl_inext; 
 
  -- Pointer to the real successor block,  
  -- after code distribution 
  -- is performed. 
   
  struct bl_tag *bl_next; 
 
  -- The start address for the block.  
  -- This is the initial address of the first 
  -- text node on the list of text and 
  -- data node belonging to this block. 
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  m_addr bl_saddr; 
 
  -- The ending address for this block.  
  -- This is the first machine address past 
  -- the last initial address used by the 
  -- last text or data node in this 
  -- block. If there is a following block,  
  -- it is the same as the bl_saddr 
  -- value for that block. 
   
  m_addr bl_eaddr; 
 
  -- The remaining fields are used during 
  -- code distribution. 
   
  -- The number of references to other 
  -- unplaced blocks. 
   
  long bl_ubreloc; 
 
  -- Number of references from unplaced 
  -- blocks to this block. 
   
  long bl_ubref; 
 
  -- The total number of references to nodes 
  -- in this block from the leftmost 
  -- block on the list. 
   
  long bl_ref; 
 
  -- The total number of relocatable operands 
  -- in this block referring to the 
  -- leftmost block on the list. 
   
  long bl_reloc; 
 
  -- The number of relocatable references 
  -- which refer to the last node in the 
  -- original block list which holds the 
  -- data segment. 
   
  long bl_dreloc; 
} bl_node; 
 
-- This macro is used to loop through the 
-- text and data nodes after they have 
-- been partitioned into blocks It saves 
-- an extra level of indentation when 
-- looping through the two-level block/text 
-- node data structure. This macro 
-- should he invoked only with l-values! 
 
#define for_all_text(bl,tx) 
for(bl=bl_first; bl; bl = bl→bl_next) 
for(tx=bl→bl_next; tx; tx = tx→tx_next) 

 
-- STATIC DATA STRUCTURES 
 
-- Instances of these structures are 
-- allocated in the mcodatac module to 
-- represent the particulars of the target 
-- architecture. 
 
-- Addressing mode descriptor. This 
-- structure describes the details of a 
-- particular addressing mode on the 
-- target machine. An array of these 
-- structures is kept (am_table[ ]) which 
-- describes all the addressing modes 
-- on the target machine. This table 
-- is indexed by the am_*** macros. 
 
typedef struct am_tag { 
  -- The number of extension bytes required 
  -- by this addressing mode over 
  -- and above the number of bytes for the 
  -- basic instruction. 
   
  byte am_size; 
 
  -- The relative speed of this mode.  
  -- This value indicates the execution time 
  -- cost of this addressing mode above 
  -- that required for the basic 
  -- instruction. This value is usually 
  -- expressed in terms of machine cycles. 
   
  byte am_speed; 
 
  -- The initial and final counts of how many 
  -- occurrences of this addressing 
  -- mode appear in the code. These fields 
  -- are filled in by mix(). 
   
  long am_icount; 
  long am_fcount; 
 
  -- The name of this addressing mode. 
   
  text *am_name; 
 
  -- The operand equivalence class. This is a 
  -- pointer to a list of addressing 
  -- modes which are semantically equivalent 
  -- to this addressing mode. If this 
  -- field is NULL, no other addressing modes 
  -- are equivalent. 
   
  m_mode *am_oec; 
 
  -- A pointer to a routine to determine 
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  -- whether the addressing mode described 
  -- by the current descriptor can be 
  -- installed in a given operand. If the 
  -- addressing mode can be used for 
  -- any relocatable operand, this field may 
  -- be NULL. 
   
  -- This routine is declared as follows: 
  -- predicate routine(tx, op) 
  -- tx_node *tx;  Node for instruction being 
  --               evaluated. 
  -- short op;     Operand number to evaluate. 
   
  bool *(am_span_ok()); 
} am_node; 
 
-- Instruction descriptor. This structure 
-- describes the details of a particular 
-- instruction on the target architecture.  
-- An array of these structures is kept 
-- (id_table[]) which describes all the 
-- instructions on the target machine. This 
-- table is indexed by the o_*** macros. 
 
typedef struct id_tag { 
 
  -- Pointer to the name of this instruction. 
   
  char *id_name; 
 
  -- Number of operands for this instruction. 
   
  byte id_noper; 
 
  -- Relative speed of this basic instruction.  
  -- This field is used simply for 
  -- comparing various instructions and 
  -- choosing the best one. Therefore, this 
  -- field does not need to be absolutely 
  -- correct on the hardware: it should 
  -- be as relatively correct as possible. 
   
  byte id_speed; 
 
  -- Initial and final count fields for this 
  -- instruction. These fields 
  -- are filled in by mixf). 
 
  short id_icount; 
  short id_fcount; 
 
  -- The instruction equivalence class. This 
  -- field gives the next instruction 
  -- in the instruction equivalence class to 
  -- which this instruction belongs. 
   

  -- For each instruction equivalence class,  
  -- the id_iec fields for the 
  -- instructions in the class form a ring of 
  -- references to each other. 
   
  -- Instructions are deemed equivalent by the 
  -- MCO if their opcodes are in the 
  -- same instruction equivalence class and 
  -- they share a common size value. 
   
  m_opc id_iec; 
 
  -- For each operand, a pointer to the 
  -- addressing class which describes the 
  -- addressing modes allowed syntactically 
  -- for that operand. 
   
  m_modc •id_class[m_opcount|; 
 
  -- For each operand, a flag telling whether 
  -- the operand can be a source 
  -- and/or a destination. A source is defined 
  -- as any operand whose value is 
  -- examined. A destination is any value 
  -- changed. Note that we are referring 
  -- only to the contents of the final 
  -- effective address. Also note that an 
  -- operand can be both a source and a 
  -- destination. 
   
  bool id_source[m_opcount]; 
  bool id_dest[m_opcount]; 
} id_node; 
 
-- The structure of an element of the 
-- TRANSLATE_CLASS. Each element describes 
-- a possibility for translating a given 
-- instruction and a particular operand 
-- of that instruction to a new opcode and 
-- addressing mode for that instruction. 
 
typedef struct tc_tag { 
 
  -- The opcode associated with this 
  -- translation possibility. 
   
  m_opc tc_opc; 
 
  -- The addressing mode to which we can 
  -- translate the scrutinized operand. 
   
  m_mode tc_mode; 
 
  -- The registers associated with a new mode,  
  -- if any. 
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  m_reg tc_reg[m_ma.xreg]; 
} tc_node; 
 

Appendix C. Low Level Implementation of Algorithms 

In this appendix, I present the low-level implementation 

of the routines FORM_TC and LENGTHEN. 

 
-- The translate class buffer. 
 
tc_node tc[max_tc]; 
 
-- This routine builds a translation class,  
-- given an instruction and an operand 
-- to scrutinize. It deposits the set in the 
-- global tc[] array. 
 
form_tc(tx. i) 
 
tx_node *tx; -- Pointer to instruction for 
             -- which we are forming 
             -- translations 
long i;      -- Operand number to scrutinize 
 
{ 
  tc_node *tcptr; -- Work pointer to elements 
                  -- of the translate class 
  m_opc firstopc; -- Original opcode of the 
                  -- instruction 
  m_opc ope;      -- Opcode we are trying now 
  m_mode am;      -- Addressing mode being 
                  -- tested out 
  m_mode *oec;    -- Pointer to operand 
                  -- equivalence class for 
                  -- modes 
  m_mode *oecptr; -- Working oec pointer 
  m_mode *acptr;  -- Pointer to addressing 
                  -- classes 
  bool found; 
  long j; 
 
  -- Initialize pointers to build the 
  -- translation class set directly. 
   
  tcptr = &tc[0]; 
  firstopc = tx→tx_opc; 
  opc = firstopc; 
  oec = am_table[tx→tx_op[i].op_mode].am_oec; 
 
  -- Loop through all instructions which are 
  -- in this instruction's 
  -- equivalence class. 
   
  forever { 
 

    -- Check that the new instruction is OK 
    -- with respect to the operands which we 
    -- are NOT scrutinizing in this routine. 
    -- We must make sure that the addressing 
    -- modes used by the other operands are 
    -- syntactically legal in the 
    -- corresponding operands of the new  
    -- opcode. This is done only for a true 
    -- change in opcode. 
   
    if (opc != firstopc) { 
 
      -- Loop through all operands which are 
      -- not the ones being examined 
 
      for (j = 0; j < id_table[opc].id_noper; 
              --j) { 
 
        if (i == j) { 
          continue; 
        } 
 
        am = tx→tx_op[j].op_mode; 
 
        -- See if we can find this addressing 
        -- mode in the addressing 
        -- class of the new opcode. 
   
        found = false; 
        for (acptr = id_table[opc].id_class[j]; 
                    *acptr; - -acptr) ( 
          if (*acptr == am) { 
            found = true; 
            break; 
          } 
        } 
 
        -- Here to check if this opcode is 
        -- legal. 
   
        if (not found) { 
          goto ncxt_instr; 
        } 
      } 
 } 
       
    -- Here if the new instruction is 
    -- generically legal to try out the 
    -- possible addressing modes. 
 
    for (acptr = id_table[opc].id_class[i]; 
               *acptr; --acptr) ( 
   
      oecptr = oec; 
     
      -- Reject this addressing mode if it is 
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      -- not semantically equivalent 
      -- to the addressing mode in the 
      -- instruction. That is, if it is not 
      -- in the operand equivalence class of 
      -- the addressing mode of the 
      -- instruction operand we are 
      -- scrutinizing. Note that, if the 
      -- operand equivalence class is a 
      -- singleton, the pointer is allowed 
      -- to be NULL. 
   
      found = false; 
      if (oecptr) { 
        while (*oecptr) { 
          if (*oecptr++ == *acptr) { 
            found = true: 
            break; 
          } 
        } 
      ) 
      else if (tx→tx_op[i].op_mode == *acptr) { 
        found = true; 
      } 
     
      if (not found) { 
        -- This addressing mode is not in the 
        -- intersection of the 
        -- addressing class of the new opcode 
        -- and the semantic operand 
        -- equivalence class of the existing 
        -- addressing mode. 
   
        continue; 
      } 
 
      -- Here if this is an OK addressing mode 
      -- to build a new element in 
      -- the translation class. 
   
      tcptr→tc_opc = opc; 
      tcptr→tc_mode = *acptr; 
      tcptr--; 
 } 
  
    -- Here to move onto the next instruction 
    -- in this instruction 
    -- equivalence class. 
   
  next_instr: 
    -- If the instruction equivalence class 
    -- contains only this instruction, 
    -- the id_iec field will be NULL. If so,  
    -- we are finished. 
   
    if (id_table[opc].id_iec == NULL) { 
      break; 

    } 
  
    -- Otherwise, move onto the next 
    -- instruction and see if we have looped 
    -- around the ring of equivalent 
    -- instructions to our initial 
    -- instruction. 
   
    opc = id_table[opc].id_iec; 
    if (opc == firstopc) { 
      break; 
    } 
  } 
   
  -- Terminate the translate class with a 
  -- node which has the opcode o_none. 
   
  tcptr→tc_opc = o_none; 
} 
 
-- This routine processes the data built up 
-- for the operands and determines 
-- which span-dependent operands need to be 
-- lengthened. 
 
lengthen() 
{ 
  bool change;    -- Passes are made through 
                  -- code until change=false 
  tx_node *tx;    -- Node currently being 
                  -- processed 
  bl_node *bl;    -- Pointer to blocks of text 
                  -- and data nodes 
  m_mode am;      -- Addressing mode being 
                  -- examined 
  short alter;    -- Number of bytes to add to 
                  -- the current sdo 
  short i, j, k;  -- Loop counters 
  long span;      -- Span value for each 
                  -- operand 
  byte cond;      -- Bit pattern for condition 
                  -- in conditional branch 
 
  tc_node *tcptr; -- Working pointer to 
                  -- translate class elements 
  tc_node *besttc;-- Pointer to best translate 
                  -- class element so far 
  long bestcost;  -- Cost associated with best 
                  -- element 
  long newcost;   -- Cost of current element 
  short oldsize;  -- Size of instruction before 
                  -- being expanded 
 
  change = true; 
 
  -- Keep making passes through the linked 
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  -- list until it stabilizes. 
   
  while (change) { 
   
    change = false; 
    --st_npasses; 
 
    -- Reset the final address field based on 
    -- the number of bytes in each instruction. 
   
    set_faddr(); 
 
    -- Process each instruction in each block 
    -- of text and data nodes. 
   
    for_all_text(bl, tx) { 
  
      if (is_data(tx)) { 
        continue; 
      } 
 
      -- Start off with no additional bytes 
      -- for this instruction. 
   
      alter = 0; 
    
      for (i = 0; i < 
           id_table[tx→tx_opc].id_noper; --i) { 
    
        -- Process only relocatable operands 
        -- or non-relocatable operands 
        -- with addressing modes which have 
        -- extension words which were 
        -- shortened during the minimize() 
        -- phase. 
   
        if (not tx→tx_op[i].op_addr) { 
          continue; 
        } 
 
        -- Check if the operand needs 
        -- expansion. 
   
        if (*(am_table[tx→tx_op[i].op_mode]. 
                 am_span_ok)(tx, i)) { 
          continue; 
        } 
 
        -- We come here only if we have an 
        -- operand which needs to be 
        -- expanded. 
   
        -- Build the Translate Class for this 
        -- instruction and operand. 
        -- The translate class is placed m the 
        -- single translate 

        -- class buffer, tc[]. 
   
        form_tc(tx, i); 
   
        -- We must now find another 
        -- opcode/addressing mode combination 
        -- to use in place of the current 
        -- one which must be expanded. 
   
        besttc = NULL; 
        bestcost = 99999; 
 
        for (tcptr = &tc[0]; 
             tcptr→tc_opc != o_none; --tcptr) { 
   
          -- Assign a cost to this 
          -- opcode/addressing mode 
          -- combination. 
   
          newcost = 
            id_table[tcptr→tc_opc].id_speed + 
            am_table[tcptr→tc_mode].am_speed + 
              am_table[tcptr→tc_mode].am_size; 
 
          if (newcost ≥ bestcost) { 
            continue; 
          } 
 
          -- Remember this translation if 
          -- the opdmode combination is 
          -- OK. It is never OK if it was 
          -- the original combination. 
   
          if (tcptr→tc_opc == tx→tx_opc and 
                   tcptr→tc_mode == am) { 
            continue; 
          } 
     
          else if (span_ok(tx, i, 
                          tcptr, span)) { 
 
            -- Remember this newly found best 
            -- element of the translate class. 
   
            bestcost = newcost; 
            besttc = tcptr; 
          } 
        } 
 
        -- Install the newly found best 
        -- opcode/mode combination. 
   
        tx→tx_opc = besttc→tc_opc; 
        tx→tx_op[i].op_mode = besttc→tc_mode; 
        change = true; 
      } 
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      -- After changing modes, we may need to 
      -- change the offsets of the 
      -- operands and reset the number of 
      -- bytes in the instruction. 
   
      if (change) { 
         
        oldsize -= tx→tx_nbytes; 
        expand_offsets{tx); 
        alter = tx→tx_nbytes - oldsize; 
   
        assert(2791, alter ≥ 0); 
 
        st_lengthen -= alter; 
      } 
    } 
  } 
} 
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Addenda 

This section contains additional references that were 

inadvertently omitted from the original 1986 publication. 

[Aho 86] A. V. Aho, Ravi Sethi, and J. D. Ullman, 

Compilers: Principles, Techniques, and Tools. Addison-

Wesley. Reading, Mass., 1986. 

[Phil 84mb] Philon FAST/BASIC-M for the MC68000 

Under Unix. Philon, Inc., New York, N.Y., 1984. 

 

In addition, the following editorial changes were made: 

 The incorrect references to [Lowry 69] and [McKee 

67] in Section 1, ¶1 in the original were corrected to 

[Lower 69] and [McKee 65]. 

 Commas were added to some numbers to enhance 

readability. For example: 33,684 rather than 33684. 
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 Typography was changed to enhance readability. 

 Expressions that are inline in the text were typeset in 

italics to improve readability. 

 Footnotes were re-numbered and were place in-line in 

the text, immediately below the paragraph that 

references them. 

 Some minor spelling corrections were made 

(“targetted” ⇒ “targeted”, “ellucidate” ⇒ “elucidate”, 

“exsiting” ⇒ “existing”). 

 References to the author were changed from plural to 

singular.  
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