
Preface

This revised edition of my 1986 Ph.D. dissertation was

originally authored on a CDC 6600
1
 using TROFF with TBL

and EQN. The text for this edition was provided courtesy of

The Internet Archive and initially published online in March,

2011. This revised PDF edition was published online August

22, 2013.

1 The same CDC 6600 that a group from the Transcendental Students

took hostage in 1970 in an anti-war protest. Some of the students, possibly

members of the Weathermen, attempted to destroy the computer with

incendiary devices. However, several staff and faculty, including Peter D.

Lax, managed to disable the devices and save the machine.

1. Introduction

The topic of compiler optimization covers a wide range of

program analysis methods and program transformations

which are applied primarily to improve the speed or space

efficiency of a target program. These techniques are typically

applied to a representation of the target program which is, to

some degree, removed from the program representation

executed by the hardware. The representations on which

optimization techniques are applied include source-to-source

transformations ([Parts 83], [Schn 73]) down to

optimizations on assembly code ([Fras 84], [Lower 69],

[McKee 65]).

However, in many program development environments,

some significant optimization techniques cannot be

performed on any program representation prior to the

Machine Code Optimization – Improving Executable Object Code

Clinton F. Goss

Westport, CT, USA. Email: clint@goss.com

ARTICLE INFORMATION

Initial publication: June 1986

Advisor: Edmond Schonberg

Institution: Courant Institute, NYU

Web publication: March 2011

This revision: August 22, 2013

This work is licensed under the

Creative Commons Attribution-

Noncommercial 3.0 license.

Keywords:

Compiler optimization;

Machine code;

Code elimination;

Operand Reduction;

Macro compression

ABSTRACT

This dissertation explores classes of compiler optimization techniques that are applicable late in

the compilation process, after all executable code for a program has been linked. I concentrate on

techniques which, for various reasons, cannot be applied earlier in the compilation process. In

addition to a theoretical treatment of this class of optimization techniques, this dissertation

reports on an implementation of these techniques in a production environment. I describe the

details of the implementation which allows these techniques to be re-targeted easily and report

on improvements gained when optimizing production software.

I begin by demonstrating the need for optimizations at this level in the UNIX programming

environment. I then describe a Machine Code Optimizer that improves code in executable task

files in that environment. The specific details of certain algorithms are then described: code

elimination to remove unreachable code, code distribution to re-order sections of code, operand

reduction to convert operands to use more advantageous addressing modes available on the

target architecture, and macro compression to collapse common sequences of instructions. I

show that the problem of finding optimal solutions for code distribution to be NP-Complete and

discuss heuristics for practical solutions.

I then describe the implementation of a Machine Code Optimizer containing the code

elimination, code distribution, and operand reduction algorithms. This optimizer operates in a

production environment and incorporates a machine-independent architecture representation that

allows it to be ported across a large class of machines.

I demonstrate the portability of the Machine Code Optimizer to the Motorola MC68000 and the

Digital VAX-11 instruction sets. Finally, metrics on the improvements obtained across

architectures and across the optimization techniques are provided along with proposed lines of

further research. The metrics demonstrate that substantial reductions in code space and more

modest improvements in execution speed can be obtained using these techniques.

Citation for this article: Goss C. 1986/2013. Machine Code Optimization – Improving Executable Object Code. Ph.D. dissertation,

Technical Report #246, Courant Institute of Mathematical Sciences, New York University, June 1986. Revised August 22, 2013.

41 pages. http://www.ClintGoss.com/mco/. Retrieved [Date-of-Retrieval].

http://archive.org/
mailto:clint@goss.com?subject=Intraoral%20Pressure%20in%20Native%20American%20Flutes%20and%20Ethnic%20Wind%20Instruments
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.clintgoss.com/mco

Goss Machine Code Optimization 2 2

representation executed by the hardware, without general re-

design of that environment.

It is my thesis that the application of optimization

techniques at this level is warranted and can be shown to

yield a significant decrease in code space and a more modest

improvement in execution speed. As a result, this dissertation

describes two aspects of this area in parallel. I explore

analysis and optimization techniques from a theoretical

viewpoint. Some of these are new and some are extensions of

techniques which have been applied in other phases of the

compilation process. In addition, I report on the

implementation of a production quality Machine Code

Optimizer. This optimizer represents the first time that these

techniques have been brought together in this fashion and at

this level. The performance of this optimizer substantiates

the expected speed and space improvements on two target

architectures.

In this chapter, I demonstrate the need for optimizations

at this level and suggest that such optimizations can he

carried out despite the lack of auxiliary information which

would normally be available to an optimizer. I also survey

existing work in closely related areas and outline the

remainder of this dissertation.

1.1. Background

As a working example throughout this dissertation, I will

consider the compilation and optimization of programs under

UNIX and UNIX-like program development environments.

These environments will be considered specifically for

machines based on architectures such as the Digital

Equipment Corporation VAX-11 ([DEC 77]), Motorola

MC68000 ([Motor 84a]), and the Texas Instruments TI32000

([Texas 85]). I will, unless specifically noted, rely only on

features of UNIX which are generally available in program

development environments. The scope of architectures

considered in this research is discussed later in this section.

In source form, a program consists of a number of

modules, each containing one or more subprograms

(subroutines, functions, etc.). A compiler for the given high

level language reads the source code of a single module,

possibly translating into one or more internal forms over

which optimization techniques are performed, and produces

a single object file. This file contains machine code

consisting of instructions to be executed by the hardware,

data objects which are operated on by the instructions, and

other information.

The architectures to be considered here have a memory

area consisting of locations with an associated linear

ordering. The locations are numbered sequentially by

addresses that follow the ordering. Each instruction on these

architectures has an opcode which names the operation to be

performed and a number of operands which yield values or

give the address of data objects or memory locations to be

operated on. Each operand requires an area, called an

extension word, in the instruction to hold information on the

value or machine address which the operand represents.

The bit representations of the instructions and data objects

in an object file are identical to those which will appear in

memory when the program is executed, except that

references to code and data objects in other modules as well

as references to absolute addresses in the current object file

are not set. Such references are called relocatable references.

Any operand of an instruction containing a relocatable

reference is called a relocatable operand and the address it

references is called the effective address.

Information regarding where relocatable references are

and what they refer to is contained in the relocation

information in each object file. The location of a relocatable

reference, as specified by the relocation information, is

called its relocation point.

When all modules of a program are compiled, the object

files are supplied to a system linker. The linker produces a

task file which can be directly loaded into memory and

executed by the hardware. Such a task file contains areas of

code, data objects, and optionally, relocation information.

Each area, or segment, is formed by catenating the

corresponding areas from each object file, in the order they

were supplied to the linker, and resolving relocatable

references by installing the actual machine address in each

reference.

For a particular high level language, it is typical to

organize a set of object files that implement the primitives of

the language (e.g. SIN(x) in BASIC, Indexed Read in

COBOL, and printf() in C) into a library. Such libraries

can be given to the linker, which selects only those object

files that contain code or data referenced by other modules

already linked into the task file.

This general approach reduces the compilation work

necessary to effect small changes in a program: only the

affected modules need be recompiled. Since linking object

files is far faster than re-compiling the whole program from

source, this system greatly speeds development of highly

modularized programs.

However, this general approach results in a number of

inefficiencies in the code in the task files. Furthermore, the

optimization techniques that might remove these

inefficiencies must be performed after the link phase on the

given architecture.

Goss Machine Code Optimization 3 3

The first inefficiency arises when linking an object file

which contains code for several subprograms. If any of the

subprograms or data objects in such an object file is

referenced, the entire object file is linked into the task file.

This situation frequently arises in UNIX environments where

large libraries implementing primitives of various types are

linked into an application. Furthermore, it cannot be avoided

prior to the link phase, except by restructuring the offending

object files.

Another inefficiency deals with the use of the instruction

set itself. The given architectures all have a set of addressing

modes which can be used to represent the semantics of

instruction operands. Included in this set are a number of

location-relative modes which yield an effective address by

giving an offset from the location of the operand or the start

of the instruction. Often, the location-relative modes require

less space and yield an effective address that is decoded (by

the hardware) faster than absolute modes which simply name

the effective address. However, the short offset employed

limits the effective address to within a specified distance

from the operand. This limitation is called the span of the

mode.

For example, many machines have several addressing

modes for operands of branch instructions. Each addressing

mode has its own span restrictions. Often, the most general

form allows an arbitrary branch target, but is the most

expensive in terms of space and execution speed. Shorter and

more efficient forms of branch operands compute their target

address relative to the memory address of the branch

instruction itself, together with an offset from the start of the

instruction. However, the offset must be small, allowing only

relatively local branch targets.

Often, these location-relative modes cannot be used in

UNIX task files due to the method of linking. After an object

file is produced, the sizes of instructions do not change; the

linker merely fills in resolved addresses in relocatable

operands. Again, this allows a fast linker to perform minimal

work when code to a single module is changed.

However, relocatable effective addresses which cannot be

confined within the span of a location-dependent mode must

be implemented using the most general and usually most

expensive addressing mode. Under the UNIX scheme, this

includes references to code in other modules as well as all

references to static data, since the data appears in memory

after all code and can be arbitrarily far away from an

operand.

Finally, the installation of location-relative modes is itself

limited by the order in which object files are linked.

Typically, libraries containing code for primitives are linked

in at the end of the text segment. Thus, they tend to be far

away from the code which uses them. In many high level

languages, primitives tend to be the most frequently

referenced routines, and locating them at the end of the text

segment may significantly reduce an optimizer's ability to

install location-relative modes in operands. Such high-use

subprograms need to be placed near their references.

Conversely, code generated from the user's source

appears at the beginning, far removed from the data segment

containing referenced global variables. This code should

appear near the end of the text segment, as close to the data

segment as possible.

The inefficiencies described thus far are common across a

variety of architectures. These generally include machines

with a linear address space which provide several

interchangeable addressing modes to access this space. Other

than the MC68000, VAX-11, and TI32000 mentioned

earlier, the Digital PDP-11 ([DEC 75]), Interdata 8/32, IBM

1130, CDC 6600 Peripheral Processor, and the Prime 400

(see [Bell 71] for a general discussion) are in this class. The

above remarks do not apply to architectures with a purely

segmented architecture such as the Intel 8086 ([Russ 80]).

The generic techniques for handling the inefficiencies

described above are applicable across this full class of

architectures. However, the implementation of these

techniques for a given architecture is highly dependent on the

specifics of the instruction set, addressing structure, and

memory model of the target machine. A straightforward

implementation of these techniques will be riddled with

specific references to the architecture. Therefore, it is of

special interest to develop, in conjunction with generic

techniques for handling these inefficiencies, a technology for

instantiating those techniques in an architecture-independent

fashion.

1.2. Related Work

The general topic of compiler optimization has received

much attention, with the bulk of the work concentrating on

transformations applicable to some intermediate

representation between source code and executable code. I

have borrowed a number of high level concepts and

techniques from a number of sources, applying them with

greater effectiveness at the machine code level. While the

specific work in each area is reviewed in detail in the

relevant sections which follow, I outline the major references

in each area: A number of the inefficiencies described above

can be partially removed by means of techniques applied at a

higher program level. These include the implementation of

code elimination of various forms, as described in [Aho 77],

the handling of span-dependent instructions at the assembly

code level in [Szym 78], and the compression of repeated

code sequences at the assembly code level in [Fras 84].

Goss Machine Code Optimization 4 4

Many techniques appear in the literature which deal with

low-level constructs, but are not applicable to machine code

optimization due to their effectiveness on an intra-module

basis. Thus they are more efficiently applied before the

machine code level so that work is not repeated on a given

module. These techniques include ordering basic blocks to

minimize the number of branches [Raman 84], chaining

span-dependent jumps [Lever 80], and peephole optimization

[McKee 65].

Comparatively little work has been done on optimizations

at the machine code level. The works known to the author

are those by [Dewar 79a] on compressing an interpretive

byte stream and [Rober 79] on distribution of data

throughout the code segment as described in Chapter 4.

1.3. Organization of the Dissertation

In response to the inefficiencies described in Section §1.1

and building on the work surveyed in the last Section, a

Machine Code Optimizer (MCO) was constructed to make

machine code smaller and faster. The remainder of this

dissertation deals mainly with the design, implementation,

and performance of the MCO. I concentrate on describing

those techniques which, for various reasons, cannot be

applied before the link phase of compilation.

The next Chapter gives an overview of the organization

of the MCO and outlines the design of particular areas.

Chapter 3, Chapter 4, and Chapter 5 expand on the

specific techniques for removing the inefficiencies in Section

§1.1. References to related work in each area are given as

well as the specific algorithms and their analysis.

Chapter 6 describes a number of techniques relating to

recognizing and compressing common sequences of code.

These are not used in the current MCO for various

implementation or efficiency reasons, but the experience

gained is of interest to compiler constructors.

Chapter 7 presents statistics on the space and speed

improvements gained by the MCO on VAX-11 and

MC68000 code for various high level languages. Statistics on

the space and time cost of the MCO itself are also presented

as well as the effort of re-targeting the MCO from the 68000

to the VAX architecture.

Finally, Chapter 8 reviews the work, summarizes the

results obtained, and proposes lines of future research.

2. Design of the MCO

The MCO reads an input task file containing executable

machine code, data, and relocation information data for a

given architecture, applies various techniques for improving

machine code, and outputs another task file which is

semantically equivalent.

Briefly, the MCO operates in the following sequential

phases: The input task file is read and augmented by a set of

dynamic data structures which hold information about the

instructions and data of the program. These are built up

during instruction parsing in which the byte stream

containing program code is partitioned into machine

instructions and data areas. This list of instructions and data

areas is then partitioned into subprograms during text

blocking.

The next phase, called operand linking, is responsible for

identifying all relocatable operands and determining what

they refer to.

The first optimization performed is code elimination in

which unreferenced areas of code and subprograms are

removed from the dynamic data structures.

Then, code distribution is performed. Sections of code

and data are re-ordered to reduce the average distance

between instruction operands and the effective addresses

they reference. This transformation by itself does not

improve the code, but makes the next technique more

effective.

Operand reduction converts each instruction operand to

use the least expensive addressing mode which can represent

the operand on the given architecture. This operates in two

sub-phases: MINIMIZE contracts all operands to use the least

expensive applicable addressing mode and LENGTHEN

expands minimized operands as necessary to satisfy

constraints on the addressing modes.

Finally, the code relocation phase installs changes in the

bit patterns of instructions as a result of the improvement

techniques applied and writes the output task file.

One of the design goals of the MCO is to ease the onus of

re-targeting the MCO to various architectures. Toward this

goal, most of the relevant information about the target

architecture is kept in a set of static data structures. They

describe the details of the instruction set and addressing

modes of the target architecture which are needed by the

MCO, especially during Operand Reduction. The static data

structures allow the MCO to be largely table driven in areas

where re-targeting is an issue.

In this chapter, I give a more detailed description of the

dynamic data structures and the phases of the MCO I have

just outlined. Particular attention is given to how the phases

interface and what their effects are on the dynamic data

structures. Certain algorithms as well as the static data

structures are described and analyzed in later chapters.

Goss Machine Code Optimization 5 5

2.1. Input

Input to the MCO consists of a single task file. This file

contains the following areas of information:

The Header: A fixed-size structure containing the sizes

of the other areas, the program load address where the

program is loaded into memory, and the entry point giving

the location of the first instruction to be executed.

The Text Segment: A byte stream containing the

machine code instructions of the program, possibly

interspersed with areas of program data. At execution time,

the byte stream is loaded into memory (possibly in a virtual

fashion) by a system loader, beginning at the program load

address specified in the header. The address at which an

instruction is loaded into memory is called that instruction's

load address.

The Data Segment: A byte stream similar to the text

segment, but containing only program data. It is loaded by

the system loader either directly after the text segment or at

some address specified in the header. The rules as to where

the data segment may be loaded in relation to the text

segment (e.g. at the next 64-byte boundary) vary depending

on the environment. The location where the data is loaded

into memory is the data load address.

The Symbol Table: A list of structures which map

symbolic names onto symbol types and machine addresses.

Relocation Information: A list of locations in the text

and data segments which reference machine addresses. These

may be instruction operands which specify the address of an

object in the data segment or a pointer in the data segment

initialized to point to another piece of data or an instruction.

Each such area specified is the size of a pointer on the target

architecture.

Except for the last area, the information required by the

MCO in a task file is standard in that such information is

logically required for a system loader to be able to load a

program into memory.

The Relocation Information is optionally provided by the

UNIX linker, which links together object files. On some

systems, the linker cannot provide this information in the

task file. However, the relocation information is simply

distilled by the UNIX linker from similar information in each

of the object files it links together. This information must be

present in some form in object files in order for a linker to

assign proper values to pointers. In this case, the MCO can

extract and distill it in the same way that the UNIX linker

does.

2.2. Instruction Parsing and Internal Representations

After opening the input task file and reading the header,

the MCO begins parsing the text and data segments to build

an internal representation of the program. First, the contents

of the text and data segments are read into buffers in

memory. Then the MCO creates a list of text and data nodes

in memory to hold relevant information about the program.

Each text node describes a single machine instruction and

each data node is associated with a single area of contiguous

data. The last node on the list is always a data node which

represents the data segment.

Appendix A provides a detailed description of the fields

in a text node and what they represent. Figure 2.1

summarizes the fields of a text node using an example of an

instruction on the 68000 architecture as they would appear

after instruction parsing. In this example, the target address,

S, is represented using the absolute long mode.

Instruction: 0A00 jsr S
 0A06
 ...
 0C20 S:

Text Node:
 OPC: o_jsr -- instruction opcode
 SIZE: sz_none -- size of object being
 -- operated on
 IADDR: 0A00 -- address of start of
 -- instruction
 FADDR: (NULL) -- used for operand reduction
 INSTR: 4EB900000C20 -- instruction bytes
 NEXT: -- text node of instruction
 -- at addr 0A06
 IBYTES: 6 -- Initial # of instruction bytes
 NBYTES: 6 -- Current # of instruction bytes
 REF: 0 -- # of references to this instr
 JSR: 0 -- # of calls to this instr
 OP[0]: -- operand descriptor for
 -- first operand
 ADDR: 0 -- relocatable address referenced
 TARGET: -- target text node of operand
 MODE: am_abs -- current addressing mode
 OFFSET: 2 -- byte offset of operand bytes
 REG: NULL -- identity of register(s) used

Figure 2.1 Example Text Node

Each data node holds information pertaining to a single

contiguous block of data. The data may be in the text or data

segments. Data notes have IADDR, FADDR, NEXT, NBYTES,

and REF fields which are identical to text nodes. They also

Goss Machine Code Optimization 6 6

have a DATA field which serves the same purpose as the

INSTR field in the text notes.

The dynamic data structures are built up by an instruction

parsing routine. This routine is given a pointer to a location

in the input text segment and determines the information

needed to initialize a single text or data node for the

instruction or data area beginning at that location. The

instruction parsing routine depends heavily on the

architecture and takes a significant portion of the processing

time of the MCO.

For the 68000, the logic of parsing instructions is

embedded in a large routine (28 pages of C source) which

was tightly coded for speed. When re-targeting to the VAX

architecture, a data-driven scheme was used. This routine

was small (2 pages of C source), developed and debugged

quickly, but still runs about as fast as the 68000 version. This

was possible due to the greater orthogonality of the VAX

instruction set.
2

2.3. Text Blocking

Instruction parsing organizes the text and data nodes into

a single linked list, in the order they were read in. This single

list is broken down into a two-level data structure during text

blocking.

The text and data nodes are partitioned into blocks, each

of which is assigned a block node.

2 One complication of instruction parsing is that no data can appear in

the text segment. It is usually straightforward to get the compiler to place

constant tables, switch tables, indexed jump tables, etc. into the data

segment. However, the VAX implementation was complicated by the

presence of register masks at the start of each subprogram. These are

arbitrary bit patterns that specify, when control is passed to the

subprogram, which registers are to be preserved. If the instruction parser

were called with a pointer to a register mask, the resulting text node would

be meaningless since the register mask is pure data. Hence, instruction

parsing on the VAX cannot be done in a single sequential pass, as it is on

the 68000. The VAX implementation runs in two passes. The first pass

processes the code sequentially, building a list of known register mask

locations from call instructions which are parsed. Any calls to forward

targets alert this first pass that register masks exist. However, it is not until

the second pass that text nodes are built, when register masks have been

marked. This is a source of potential error in the current MCO for the

VAX. If the first pass encounters an unmarked register mask, it could mis-

parse instructions badly enough to miss another call instruction to a routine

which is called only once This routine would then have an unmarked

register mask, which would cause problems in the second pass. In practice,

the first phase re-synchronizes very quickly (5–10 bytes) and this has not

caused problems. For unreferenced subprograms, the instruction parser

does attempt to parse register masks during the second pass. However, the

text nodes from this parsing will be eliminated during subprogram

elimination. A better solution to this problem is to have the compiler or

assembler emit a short illegal instruction prior to each register mask. Since

execution never flows into a register mask, the marker will do no harm at

execution time and can serve as a flag to the instruction parser.

Text blocking is performed in a single pass over the code.

A pair of text nodes containing an unconditional branch or

subprogram return followed by an instruction with its JSR

field set constitutes a partition point. At these points, a new

block is formed.

Thus, a block is typically one or several subprograms in

the text segment where each block is independent and linked

only via the block nodes. After text blocking, the two-level

data structure is processed by all subsequent algorithms,

rather than the initial single list of text nodes. Figure 2.2

demonstrates this transformation. The specific fields of a

block node are described in detail in Appendix A.

Text blocking is done for two reasons. First, the code

distribution algorithm reorders sections of code. After text

blocking, it simply deals with block nodes rather than lists of

text and data nodes. Second, several of the algorithms

performed on the dynamic data structures have a worst-case

performance which is quadratic in the number of text nodes

since they have to perform linear searches for a node with a

given IADDR.

In these cases, we search through the list of block nodes

to find the correct block and then examine the text and data

nodes in that block. In this way, the quadratic algorithms run

in reasonable time for all but pathological or contrived input.

2.4. Operand Linking

After the instructions have been parsed and the dynamic

data structures built, the relocatable operands are identified

Figure 2.2. Text Blocking

Goss Machine Code Optimization 7 7

and linked to their targets. This operand linking is done in

two passes over the dynamic data structures.

The first pass identifies all relocatable operands. This is

done by a pair of co-routines which pass over the text and

data nodes and over the relocation information in the input

task file. The first co-routine processes instructions up to the

next relocation point specified by the second co-routine. The

second co-routine processes the relocation information to

determine the next text or data node which has a relocatable

operand.

The first co-routine marks any operand which uses some

location-relative addressing mode as relocatable and the

effective address is stored in the ADDR field of the operand.

At a relocation point, we determine whether the address

specified as being relocatable is in a text node or a data node.

If it is in a text node, the operand of the instruction specified

by the relocation information is identified and again marked

as relocatable by setting its ADDR field. Since no relocation

information is kept in data nodes, relocation directives

specifying relocatable references in data nodes are ignored.

Note that, except for location-relative addressing modes,

it is crucial to use the relocation information to identify

relocatable operands. If we rely on the apparent nature of the

operand based on its addressing mode, operands could not be

unambiguously identified as relocatable. Consider an

instruction which loads the address of its operand.

Although this operand appears to be relocatable, the

idioms

 lea val,An (on the 68000) and
 moval val,Rn (on the VAX)

are often used to load constant (non-relocatable) values.

Conversely, a comparison with an immediate operand may

be a constant, but could also be comparing a value with the

(relocatable) address of a routine.

After the first operand linking pass, all operands which

are relocatable have their ADDR field set. The second pass

sets the TARGET field for all such operands. This field is set

to point to the text or data node containing the code or data

that will be loaded at the ADDR address. Note that the ADDR

field need not refer to the start of the code or data in the

referenced node; the referenced node must simply contain

the target.

It is this second pass which runs in quadratic time in the

number of block nodes. However, due to the blocked data

structure employed, the second pass runs with reasonable

speed (see Section §7.2).

In addition to setting the TARGET field, the REF field of

any text node referenced by a relocatable operand anywhere

in a text or data node is incremented during pass 2. Also, the

JSR field is incremented if the relocatable operand is the

operand of some subprogram call instruction.

Thus, at the end of operand linking, the ADDR and

TARGET fields are set for all and only those operands which

are relocatable. Also, the REF field contains an exact count of

the number of relocatable references to a text or data node.

The JSR field contains a lower bound on the number of call

instructions which refer to a given text node. Due to indirect

calls through pointers to procedures, some text nodes which

may be the target of a call instruction at execution time

cannot be identified. However, such nodes will always have

a non-zero REF field.

Figure 2.3 depicts the text nodes from Figure 2.1 after the

operand linking phase.

Instruction: 0A00 jsr S
 0A06
 ...
 0C20 S:

Text Node:
 OPC: o_jsr
 SIZE: sz_none
 IADDR: 0A00
 FADDR: (NULL)
 INSTR: 4EB900000C20
 NEXT: -- text node of instruction at
 -- addr 0A06
 IBYTES: 6
 NBYTES: 6
 REF: 0
 JSR: 0 TN: Text Node at operand target:
 OP[0]:
 ADDR: 0C20 OPC: ??
 TARGET: TN IADDR: 0C20
 MODE: am_abs ...
 OFFSET: 2 REF: 1 -- # references
 REG: NULL JSR: 1 -- # of calls

Figure 2.3 Example Text Node After Operand Linking

2.5. Code Elimination

The first code improvement performed by the MCO is the

elimination of code which can never be executed. As

previously described, we wish to eliminate sections of code

as well as entire subprograms which are never referenced.

The code elimination algorithm is an augmented version

of unreferenced code elimination ([Aho 77]). It relies on the

Goss Machine Code Optimization 8 8

REF and JSR fields set during the previous phase to

determine what code can safely be eliminated. This is done

in a single forward pass over the code. The algorithm

removes unreferenced code as well as certain referenced

sections which are not reachable from the program entry.

The algorithm and the restrictions on what input programs

it operates on are given in Chapter 3.

2.6. Code Distribution

As mentioned in the introduction, one of the

inefficiencies in the way UNIX task images are linked arises

from the order in which subprograms in the text segments are

arranged. Both the order of subprograms in a module and the

order in which modules are supplied to the linker give no

consideration to placing span-dependent operands near their

targets.

The code distribution phase re-orders subprograms in the

text segment to place span-dependent operands near their

targets. The target might be in another subprogram or in the

data segment at the end of the program.

In Chapter 4, I discuss the general problems of re-

ordering sections of the data segment as well as the text

segment from a theoretical viewpoint and show these

problems to be difficult to solve. Due to these results, I

employ efficient heuristics to distribute the blocks. These

heuristics are described in Chapter 4, along with other related

optimization techniques not employed in the current MCO.

2.7. Operand Reduction

After code elimination and distribution, the operand

reduction algorithm is employed. This algorithm makes

aggressive use of the addressing modes available on the

target architecture to transform existing instruction operands

to make them smaller and faster.

The general operand reduction algorithm is loosely based

on the one proposed by [Szym 78] for assembling code for

architectures with span-dependent instructions. The

correctness and termination arguments in that paper apply in

a similar fashion to operand reduction.

As with the assembler algorithm of [Szym 78], we

perform operand reduction in two phases. The first phase,

MINIMIZE, makes a single pass over the code. For

instructions and operands which can potentially be reduced

(all relocatable operands and certain others with specified

addressing modes), we form the set of all legal

opcode/addressing mode pairs which can yield a

semantically equivalent instruction. We then choose the

shortest combination and install it.

After MINIMIZE, the LENGTHEN phase iterates over the

code identifying operands which employ addressing modes

that are unsuitable due to some span-dependent constraint on

the mode. Again, we form the set of possible

opcode/addressing mode substitutions. We now choose the

least expensive one which satisfies all semantic as well as

span-dependent constraints.

Again, no change is made to instruction bit patterns, but

sufficient space is maintained in the text node to store the full

instruction.

The operand reduction algorithm is implemented in a

largely machine-independent fashion using static data

structures to describe the necessary attributes of the

instruction set and addressing modes of the target

architecture. The details of these static data structures and the

associated algorithms outlined above are given in Chapter 5.

2.8. Code Relocation

The final phase of the MCO, code relocation, installs the

changes made during earlier code improvements in the bit

patterns of each instruction and data area and produces an

output task file.

First, a single pass is made over the code to install new bit

patterns in instruction opcodes and operands which were

subject to operand reduction. The lengths of instructions are

correctly maintained by MINIMIZE and LENGTHEN, so no re-

allocation of buffers to hold instruction bytes is needed

during code relocation.

Next, the relocation information in the input task file is

re-scanned to find any relocation directives referring to

relocatable addresses in the data nodes. We then modify the

pointer value in the referenced data node to contain the

FADDR of the node whose IADDR was equal to the input

pointer value. If the input pointer referenced an instruction,

we make sure that it points to the start of the instruction. An

input pointer to the middle of a data area can safely be

translated since data nodes are never contracted or expanded.

We simply add the same offset to the FADDR address that the

original pointer was offset from the IADDR of the target data

node.

Finally, a file header for the output task file is written,

followed by the contents of each text and data node. To

satisfy the requirements of UNIX debuggers, a copy of the

input symbol table modified to reflect the changes in the

machine address for each symbol is also output.

3. Code Elimination

The code elimination phase of the MCO removes

subprograms which can never be invoked. It uses an

augmented version of a simple single-pass code elimination

algorithm that employs a good heuristic to test which

sections of the flow graph have circularities but are not

Goss Machine Code Optimization 9 9

connected to the program entry point. In this way, entire

subprograms, especially ones with loops, can be eliminated

in a single pass.

This chapter begins by describing the limitations to which

the input program must be subject in order for this technique

to be applicable. I then give a classification of existing code

elimination techniques and present my algorithm in light of

these.

3.1. Restrictions on the Input Program

In general, the problem of code elimination on machine

code is complicated by two considerations: First, since we

are not improving code from a given high-level source

language, we cannot rely on any rules of program structure

(e.g. a task image compiled from PASCAL source would

never have a jump into the middle of a subprogram). Rather,

we must accept any valid machine code generated from any

high-level language.

This problem is handled by the MCO by using the

relocation information to set the REF field of all instructions

whose IADDR is referenced by some operand. Hence, each

instruction is treated separately and no assumptions

regarding program structure need be made.

The second problem arises since arbitrary machine code

can appear. For example, it is possible to compute a jump

address from non-relocatable operands without having the

computed address named in the relocation information.

The problem of identifying these situations is

undecidable, since the expression that computes a referenced

address may be arbitrarily complex and take arbitrary inputs.

Consider the following pseudo-machine code:

 load addr(X), regl
 add 17, regl
 jump *regl

In this scheme, the node containing X will have its REF

field set since the load instruction has a relocatable reference

to it. However, the node at X – 17 will not be marked as

referenced, and could be erroneously subject to code

elimination.

Hence, I restrict the target of all (direct and indirect)

control transfers to conform to the following definition: A

branch address is simple if it is identical to the initial address

of some operand or data area specified as relocatable by the

relocation information.

This requires that the compiler generate only simple

branch addresses in order for the REF field of nodes to be

accurate.

Note that the definition of a simple branch target does not

rule out constructs such as:

Jumping to an address which was extracted from an

array. Such code is typically generated for the BASIC ON-

GOTO, Fortran Computed-GOTO, and C switch statements.

Since each entry in the array referring to an address is

specified as a relocatable data area, all possible targets of

such high-level statements will be marked as referenced.

Pointers to code and procedure parameters. Such code

appears in C procedure pointers and Fortran ASSIGN

statements. The pointer values are generally loaded from a

data area, as above, or by some code such as

 load addr(X), reg

in which case the first operand of the load will be marked

as relocatable.

Interrupts and service routines. Although these routines

are called asynchronously in response to some event, their

address appears somewhere in the task file.

Typically, some interrupt vector or table needs to be

initialized when the program begins. This is done either by

installing the address of the routine in a table using

executable code (the address would then appear as a

relocatable operand of an instruction), passing the address of

the routine to a system function (again, the parameter passing

mechanism would contain the relocatable operand), or by

initializing the table directly in the data segment (a

relocatable data item would be in the data segment).

Hence, I do not feel that the requirement for simple

branch operands is a practical restriction on compilers for

most high-level languages. In fact, the MCO has been used

with production compilers for full ANSI COBOL ([Phil

85co]), FORTRAN 77 ([Phil 85ft]), C ([Phil 85c]), and two

versions of BASIC ([Phil 84cb], [Phil 84mb]). None of the

code generators or any of the library code for the language

primitives had to be modified to accommodate this

restriction.

3.2. Current Code Elimination Techniques

I define several methods for performing code elimination,

with increasing degrees of effectiveness:

Unlabeled code elimination removes code which follows

an unconditional branch and is not labeled. This can be done

using a single forward pass over the code.

Unreferenced code elimination eliminates code

following an unconditional branch which is either unlabeled

or is prefaced with a label which is not referred to. After

reference counts are tabulated on labels, unreferenced code is

Goss Machine Code Optimization 10 10

eliminated by a series of converging forward passes over the

code.

Unreachable code elimination eliminates code to which

there is no flow path from the entry point of the program. It

is capable of eliminating, for example, mutually recursive

subprograms whereas unlabeled and unreferenced code

elimination are not. Typically, this technique is implemented

by building a flow graph for the program and removing

disconnected subgraphs which do not contain the entry point.

3.3. Subprogram Elimination

For purposes of the MCO, unlabeled code elimination is

not effective since every instruction is potentially labeled.

Unreachable code elimination, although the most

aggressive technique, is also not applicable. In the presence

of an indirect jump through a quantity in a register, the MCO

would need to trace all possible values in the register to

determine the possible successors to a flow graph node.

Failing this, all nodes would need to be labeled as

successors, rendering the entire flow graph connected. Such

jumps often arise when generating code for high level

constructs such as C switch statements and COBOL

perform statements, so this technique would yield poor

results.

Due to the presence of reliable reference counts,

unreferenced code elimination is most suitable for the MCO.

However, it fails to fully eliminate a subprogram that has a

loop in it. Consider the following code:

 return
 SUB1: instr
 instr
 LOOP: instr
 instr
 jump LOOP
 instr
 return
 SUB2: instr

where SUB1 is an unreferenced instruction, LOOP is

referenced due to the loop, and SUB2 is the beginning of the

next subprogram which is referenced.

Basic unreferenced code elimination removes code from

SUB1 up to, but not including, LOOP (denoted SUB1~LOOP).

However, LOOP up to SUB2 (LOOP~SUB2) is not eliminated

since LOOP is referenced.

In order to eliminate such routines, I implement an

augmented version of unreferenced code elimination called

subprogram elimination. This eliminates likely sections of

code on a trial basis and checks the resulting program for

consistency. When a candidate for unreferenced code

elimination is detected, we perform the following algorithm:

1. Let SUB1 be an unreferenced instruction following an

unconditional branch, return, etc. Let LOOP be the first

referenced instruction following SUB1 and let SUB2 be

the first instruction with its JSR field set at or after

LOOP. Perform basic unreferenced code elimination

and remove SUB1~LOOP.

2. Decrement the reference count of any instruction

which is the target of an operand of an instruction in

LOOP~SUB2.

3. Scan LOOP~SUB2 and determine if any instructions

are still referenced.

4. If no instructions in LOOP~SUB2 are referenced, then

any instructions in LOOP~SUB2 which were

referenced before step 2 were the target of operands

within LOOP~SUB2. The instructions in LOOP~SUB2

can he eliminated and further code elimination

continue at SUB2.

5. Otherwise, some operand outside the range

LOOP~SUB2 has the referenced instruction found in

Step 3 as a target. The instructions in LOOP~SUB2

cannot be eliminated and we must repair the damage

done to the reference counts in Step 2.

Further code elimination proceeds from the jump to

LOOP.

Whenever an instruction is removed during the

subprogram elimination algorithm, we decrement the

reference count of any targets of operands of the instruction.

(This is handled differently in steps 2, 4, and 5 above, but the

net effect is the same). If the resulting reference count goes

to zero and the target is not currently being eliminated

(precedes LOOP in the above algorithm), another opportunity

for code elimination has occurred. However, since

subprogram elimination works by forward passes only, this

opportunity will not be caught on this forward pass. Hence,

we repeat subprogram elimination until no such situations

arise.

4. Code Distribution

The code distribution phase of the MCO re-orders

sections of a program to improve the effectiveness of

operand reduction.

I divide the task of re-ordering a program into two

problems:

Goss Machine Code Optimization 11 11

Problem 4.1 (Data Distribution)

Partition the data segment into independent data objects,
each of which can be moved without regard for the load
location of other independent data objects. Then reallocate
these objects in slots in the code segment which are not on
an execution path (e.g. following a return or unconditional
branch) in order to place them closer to operands which
reference them. ¤

Problem 4.2 (Code Distribution)

Re-order the code blocks created during text blocking to
reduce the distance between inter-block branches and their
targets. ¤

This division corresponds to improving the effectiveness

of operand reduction as it deals with two distinct types of

operands; those which reference targets in the data segment

and those which reference other code blocks.

In this chapter, I examine both these problems as

implemented in [Rober 79] and the MCO, respectively.

4.1. Data Distribution

Given the class of code improvements to which the MCO

is addressed (those which can only be done at or after the

link phase), an algorithm for data distribution would be

appropriate in the MCO. However, a number of problems

prevent it from being implemented in this application.

The first problem is the lack of a reliable way of

partitioning the data segment into independent data objects,

which preserves the semantics of the input program. The

input data segment is seen as a single block of data. No

information is provided regarding what areas of the data

segment must remain in a fixed position relative to other

areas. For example, it is unclear where one array ends and

another begins.

To obtain a complete partitioning, information as to the

layout of the data segment would have to be provided by the

compiler for each module in the task file. This is feasible, but

is outside the current design of the MCO.

The second problem with data distribution concerns the

ramifications of placing modifiable program data in the same

area in memory as program code or constant data.

All code currently generated by the compilers with which

the MCO operates is reentrant, thus allowing the text

segment to be shared in a multi-task environment. Data

distribution renders the code non-reentrant since data would

be interleaved in the text segment. Thus it could not be used

where text is shared or on a system where the text segment is

protected by hardware support.

Another problem with data distribution concerns the

expectation, on the part of the programmer, that the data

segment will be laid out in the order that static data is

declared in the source code. Although the layout of static

data is usually unspecified in language standards, compilers

have had no reason to allocate data in other than the input

order.

As a result, the folklore for certain languages dictates that

certain programming constructs which rely on the order of

static data are acceptable.

For example, a well-known technique in FORTRAN for

building a zero-based array of integers is to declare as

follows:

 INTEGER DUMMY
 INTEGER A(99)

where DUMMY becomes an alias for A(0). Although

illegal, this usage is not detectable in general, not flagged as

an error even in specific cases where it is detectable (e.g.

constant subscript), and actually works on all FORTRAN

compilers known to the author (FTN [Contr 75], FORTRAN

System/370 [IBM 74], Philon FAST/FORTRAN [Phil 85ft]).

Finally, there are the issues of actually performing data

distribution in reasonable time and space. The problem of

data distribution was first examined in [Rober 79] from a

theoretical viewpoint. He showed that the problem of finding

an optimal solution to Problem 4.1 is NP-Complete [Garey

79]. Furthermore, the problem of finding a solution which is

within a (non-trivial) constant factor of the optimal solution

is also NP-Complete.

Thus, the best we could hope for is a well-tuned heuristic

which places variables well. In the UNIX environment,

where data resides at the end of the text segment, even a

simple heuristic could improve the code substantially. For

example, one might go through the independent data objects

in order, placing each in the slot which maximizes the

number of references to it which can be made short at the

time. In the absence of the problems already mentioned (e.g.

on a single-user dedicated machine with no memory

protection), such a heuristic might be worthwhile.

4.2. Complexity of Code Distribution

The problem of code distribution as stated at the

beginning of this Chapter is characterized in graph theoretic

terms as follows:

A directed graph G = (V, E) consists of a finite set V of
vertices and a finite collection of edges, E: V × V, where each
edge connects a pair of distinct vertices in V. The collection
of edges of a graph may have duplicates (parallel edges) but
the set of vertices may not. Edges are denoted μ→ν where

Goss Machine Code Optimization 12 12

μ,ν ∈ V. If μ→ν ∈ E then vertex μ is adjacent to ν. The set of
all vertices adjacent to vertex ν is denoted adj(ν). A weighted
graph W = (V, E, Wv, We) is a directed graph with functions
Wv: V → (N = {0, 1, …}) and We: E → N × N × N × N.

In characterizing code distribution, we map the code

blocks of the text segment onto the vertices of a weighted

graph and use the edges to represent the inter-block

references.

We allow parallel edges since a block may reference

another block many times, but we allow no self-loops (edges

must connect distinct vertices) since intra-block references

are not considered.

The weight function on vertices, Wv, gives the size, in

bytes, of the code block as read in from the text segment.

The weight function on edges is formulated from the position

of the source and destination of the inter-block reference

within their respective blocks. In Figure 4.1, the source of the

reference is offset s bytes in code block α and the target is at

position t in code block γ. Thus, We(α→γ) = (s, s′, t, t′).

The goal of code distribution is to find a permutation of

the vertices, ψ: V↔{1, 2, …, |V|}, which keeps the number

of edges requiring a long addressing mode to a minimum.

Given a permutation, ψ, for each edge μ→ν, we define:

span(μ→ν) = endpoints(μ→ν) + interposed(μ→ν)

endpoints(μ→ν) = if ψ(μ) < ψ(ν) then

 We(μ→ν)(2) + We(μ→ν)(3)

 else

 We(μ→ν)(1) + We(μ→ν)(4)

The span of an inter-block reference must account for the

location of the source and destination of the reference in their

respective blocks (the endpoints() function) as well as the

size of all intervening blocks in the ordering of code blocks

(the interposed() function).

Given a weighted graph W = (V, E, Wv, We), a permutation

ψ: V↔{1, 2, …, |V|}, and a threshold T, we define the

threshold cost function:

TCF(W, ψ, T) = |μ→ν ∈ E : span(μ→ν) ≥ T|

The problem of code distribution is analogous to the

problem MINLTA:

Problem 4.3 (MINLTA - Minimum Linear Threshold
Arrangement)

Given a weighted graph W = (V, E, Wv, We), we wish to find a
permutation ψ: V↔{1, 2, …, |V|} which orders the vertices
such that the threshold cost function, TCF(W, ψ, T), for a
given threshold T, is minimized. ¤

MINLTA relates to code distribution as follows: We wish

to order the code blocks in the text segment to minimize the

number of inter-block references whose span exceeds a

certain threshold T.

For example, in Figure 4.2, if blocks α and γ are ordered

with block β between them, then the span of α→γ is the sum

of s′, r, and t. In MINLTA, the s′ and t are incorporated in

endpoints(α→γ) while r is represented in interposed(α→γ).

I now show that the decision version of MINLTA is NP-

Complete [Garey 79] by

1. showing that the problem can be solved non-

deterministically in polynomial time and

2. by polynomially reducing instances of a related

problem, MINLA, to instances of MINLTA such that

MINLTA yields the same answer as MINLA would

have.

Figure 4.1. Inter-block Reference

Goss Machine Code Optimization 13 13

Problem 4.4 (Decision Version of MINLTA)

Given a weighted graph W = (V, E, Wv, We), a threshold T,
and an integer k, is there a permutation ψ: V↔1, 2, …, |V|
which orders the vertices such that TCF(W, ψ, T) ≤ k. ¤

Problem 4.5 (MINLA - Minimum Linear Arrangement)

Given a directed graph G = (V, E) and a positive integer k, is
there a permutation ψ: V↔1, 2, …, |V| which orders the
vertices such that the additive cost function, ACF(G, ψ) ≤ k,
where:

This cost function is identical to the span(μ→ν) function

given for MINLTA with Wv(ν) = 1 and We(μ→ν) = (0, 0, 0, 0)

for all vertices and edges, respectively. ¤

A simpler version of Problem 4.5, in which the graph was

undirected, was shown to be NP-Complete in [Even 75] and

[Even 79] by a two-stage reduction from the maximum cut

set problem on graphs.

Theorem 4.1

The decision version of MINLTA is NP-Complete.

Proof: First, we assert that MINLTA can be solved non-

deterministically in polynomial time. This is done by non-

deterministically choosing the appropriate permutation, Π,

from the O(|V|!) permutations of the vertices and evaluating

TCF(W, Π, T).

Next, we reduce instances of MINLA to instances of

MINLTA: Given an instance of MINLA consisting of G = (V′,

E′) and an integer k, we define an instance of Problem 4.4 as

follows: The vertices V of W are the same as those of V′ of G.

For each edge e ∈ E', E contains a bundle of |V|–1 edges e1,

e2, …, e|V|–1. The weight of an edge We(ei) = (i, i, i, i). The

weight of all vertices Wv(v) = 2 (see Figure 4.3).

Figure 4.2. Computing the Span of a Reference

Figure 4.3. Mapping MINLA onto MINLTA

Goss Machine Code Optimization 14 14

I propose that any ordering function, p, on V will yield the

same value for TCF(W, Π, 2|V|-2) under MINLTA as ACF(G,

Π) under MINLA.

Case 1

Consider two vertices, α and β, which are placed sequentially
by Π. Under MINLA, an edge α→β between them contributes
one to ACF(G, Π). Under MINLTA, exactly one of the edges
between α and β from among those generated from α→β
yields a span ≥ 2|V|-2 (the edge with weight (|V|–1, |V|–1,
|V|–1, |V|–1)) so one is added to TCF(W, Π, 2|V|–2).

Case 2

Under MINLA, if there are n vertices interposed between the
endpoints of α→β, then the edge α→β adds n–1 to ACF(G,
Π). Likewise, under MINLTA, exactly n–1 edges from the
bundle of edges generated from α→β would be included in
TCF(W, Π, 2|V|–2). Those are the edges with weights (|V|–
n–1, |V|–n–1, |V|–n–1, |V|–n–1) through (|V|–1, |V|–1,
|V|–1, |V|–1). Hence, an ordering, Π, of V′ yields ACF(G, Π) ≤
k if and only if that ordering of V yields TCF(W, Π, 2|V|–2) ≤
k.

 Q.E.D.

In the light of these results and the expectation that the

number of code blocks in a text segment is on the order of

the number of subprograms, an algorithm for code

distribution which yields an optimal solution is not likely to

run in polynomial or reasonable time on a deterministic

processor. However, it should be noted that there are some

differences between MINLTA and the problem of code

distribution:

Since current architectures often have location-relative

modes using byte, word, and long offsets, the real-world

code distribution problem could be required to deal with

several thresholds rather than just one.

In code distribution, the size of a code block is not fixed,

but depends on the placement function itself. MINLTA

simplifies this by assigning a span value for an edge which is

determined solely from the initial conditions of the problem,

while the operand reduction algorithm must be applied for

each placement function to determine the span of an edge.

In MINLTA, we allow the weights on edges to be arbitrary

positive numbers, while in practice they would be limited to

the weights of their corresponding vertices. It is not known

whether this more restrictive version of MINLTA is NP-

Complete.

4.3. Heuristics for Code Distribution

Since the possibilities for an efficient optimal algorithm

for code distribution are dim, the MCO applies a heuristic to

order the code blocks.

The basic approach is to build a tuple of code blocks

starting at the end nearest the data segment. At each step, we

choose the best block from among those yet to be placed,

according to a heuristic which evaluates unplaced blocks.

This block is added to the start of the tuple. This basic

scheme is summarized in the algorithm:

proc basic_code_distribution();

 unplaced := {set of blocks};
 set_of_spans := {spans for addressing modes
 of this architecture};
 placed : = [];

 while unplaced ≠ {} do
 bestworth := -1;

 (∀ bl ∈ unplaced)
 w := 0;

 (∀ span ∈ set_of_spans)
 w -:= worth(bl, unplaced, placed,
 span);

 end ∀;
 if w > bestworth then
 bestworth := w;
 bestbl := bl;
 end if;

 end ∀;

 placed := [bl] + placed;
 unplaced less:= bl;
 end while;
end proc;

Of course, the effectiveness of this algorithm depends on

the worth(bl, unplaced, placed, span) function.

The MCO currently uses two heuristic functions in

combination:

σ0 This function evaluates references in bl to the data

segment. The following multiplicative factors

constitute σ0:

σ0
1

 The number of references in bl to the data segment.

σ0
2

 The fraction of the data segment that the average

reference (i.e. one at the center of bl) would reach

under the given span if bl were placed at the head of

the placed list.

σ0
3

 The number of bytes saved by installing the

addressing mode associated with span over the

addressing mode with no span restrictions.

σ0
4

 The inverse of the size of bl (larger blocks are

penalized). This may be thought of in combination

Goss Machine Code Optimization 15 15

with σ0
1
 to produce a single factor which denotes the

density of data references per byte of code.

σ1 This function evaluates references between bl and

blocks already placed in the list. The following factors

constitute σ1:

σ1
1
 The number of code references in bl which would

reach their targets under the given span in the placed

list if bl were placed at the head of the list.

σ1
2
 The number of code references in the list which would

reach the average target in bl under the given span.

These functions are designed to choose heuristically what

would seem to be the best block from among the remaining

unplaced blocks when running the inner loop of

basic_code_distribution(). The σ0 function accounts for

expected gains from operand reduction due to references to

data. Likewise, σ1, predicts gains from references to the code

already in the list. Within each of these functions, σ0
1
,

through σ0
4
, and σ1

1
 and σ1

2
 can be balanced to give the best

results.

These functions are implemented efficiently by attaching

the following information to each block node, bl:

REF

For each span, the number of references to text nodes in bl
from blocks in the placed list which reach bl under the span.

RELOC

The number of relocatable operands in text nodes in bl
which reach nodes in block in the placed list under each
span.

DRELOC

The number of relocatable operands in text nodes in bl
which reach nodes in the data segment.

These fields are maintained by the following expanded

algorithm:

proc code_distribution();

 unplaced := (set of blocks};
 $ Set the DRELOC field of each block.
 set_dreloc(unplaced);
 placed := [];
 plsize := 0;

 while unplaced ≠ {} do
 bestworth := -1;

 (∀ bl ∈ unplaced)
 $ Modify REF and RELOC to account for
 $ the most recent
 $ block added to the list and
 $ references which are

 $ now out of range.

 update_ties(bl, placed);
 w := 0;

 (∀ span ∈ set_of_spans)
 w -:= worth(bl, unplaced, placed,
 span, plsize);

 end ∀;

 if w > bestworth then
 bestworth := w;
 bestbl := bl;
 end if;

 end ∀;

 placed := [bl] + placed;
 plsize +:= size(bl);
 unplaced less:= bl;
 end while;
end proc;

The MCO allows any combination of σ0 and σ1, to be

used during a run. The relative effectiveness of these

heuristics is reported in Chapter 6.

5. Operand Reduction

As described in Section §2.7, operand reduction installs,

in each operand, the least expensive addressing mode which

satisfies all constraints imposed by the architecture.

This Chapter begins by describing the data structures

which represent the attributes of the target architecture

needed for operand reduction. This is followed by a

discussion and analysis of the algorithms which implement

the two phases of operand reduction.

5.1. Static Data Structures

At the heart of the MINIMIZE and LENGTHEN phases, the

following problem arises:

Problem 5.1. (Build Translation Class)

Given an instruction, i, and an operand of that instruction,
op, form the set of (opcode, addressing mode) pairs which
can be used in place of the existing opcode of i and
addressing mode of op (OPC(i), MODE(op)). This set is called
the TRANSLATE_CLASS(i, op). ¤

The remainder of this section describes how the

TRANSLATE_CLASS is built.

First I describe what types of restrictions the target

architecture places on membership in this set. Then I give a

set-theoretic description of how the TRANSLATE_CLASS set

is formed. Finally, I discuss a space and speed efficient

implementation of the set formers.

Goss Machine Code Optimization 16 16

The set-formers and algorithms in this Chapter are

presented in the set-theoretic language SETL ([Dewar 79b])

to elucidate the concepts involved. Lower level versions,

coded in C ([Kern 78]), may be found in Appendices B and

C.

For an opcode/addressing mode pair (opc, am) to

belong to the set TRANSLATE_CLASS(i, op), it must

satisfy the following restrictions:

Addressing Restrictions: Under the rules of the target

architecture, am must be a legal addressing mode for an

operand of opcode opc in operand position OPNUM(op).

Furthermore, the new opcode must accept the same number

of operands as the existing opcode and, for each operand,

op′, of i other than the operand being considered.

MODE(op′) must also be legal for the new opcode in that

operand position.

Semantic Restrictions: Each addressing mode on the

given architecture performs a function such as yielding a

value of some type or operating on a register. The function of

am must be equivalent to that of MODE(op). Likewise, the

function of the new opcode, opc, must be equivalent to the

existing opcode, OPC(i).

Span Restrictions: If am is a location-relative mode, then

the effective address which op yields must be within the span

of am.

To form a TRANSLATE_CLASS which complies with the

addressing and semantic restrictions, we begin with the

following sets defined across all opcodes, opc, and

addressing modes, am:

ADDRESSING_CLASS(opc, opnum)

For each operand position, opnum, corresponding to an
operand of opc, the set of addressing modes which are legal
on the target architecture.

OPERAND_EQUIV_CLASS(am)

The set of addressing modes which perform an equivalent
function to am.

OPCODE_EQUIV_CLASS(opc)

The set of opcodes which perform an operation which is
equivalent to opc.

For a given instruction, i, and operand, op, the

TRANSLATE_CLASS(i, op) is formed, as needed, by the

following set constructors:

For the given instruction and operand of that instruction,

this is the set of addressing restrictions of the machine for

that instruction and operand and the semantic restrictions

imposed by the existing addressing mode.

This is the set of opcodes which are equivalent to the

current opcode and which allow at least one addressing mode

in the OPERAND_TRANSLATE_CLASS() for the given

opcode. Also, the current addressing mode in operands we

are not scrutinizing must be allowed in the operand position

of each opcode in this set.

Finally, we combine the intermediate sets to form the

TRANSLATE_CLASS() as defined above, satisfying

addressing and semantic restrictions, but not span

restrictions.

In practice, we do not form the OPERAND_TRANSLATE_CLASS

and OPCODE_TRANSLATE_CLASS sets, but construct

TRANSLATE_CLASS directly.

The following algorithm presents a high level view of

how FORM_TC is implemented:

proc FORM_TC(i, op)
 TRANSLATE.CLASS := {};

 (∀ opc ∈ OPCODE_EQUIV_CLASS(OPC(i)))
 if opc ≠ OPC(i) then
 $ Check that the operands of opc other
 $ than op accept the current
 $ addressing modes in i.

 (∀ opnum ∈ [l..NOPER(opc)] |
 opnum ≠ OPNUM(op))

 if MODE(opnum) ∉
 ADDRESSING_CLASS(opc, opnum) then
 continue opc;
 end if;

 end ∀;

Goss Machine Code Optimization 17 17

 end if;

 (∀ am ∈ ADDRESSING_CLASS(opc, OPNU.VI(op)))

 $ Check that this new mode is
 $ semantically equivalent to the
 $ existing mode.

 if am ∈ OPERAND_EQUIV_CLASS(MODE(op))
 then
 TRANSLATE_CLASS with:= [opc, am];
 end if;

 end ∀;

 end ∀;
end proc;

I now represent the data structures and algorithms for

FORM_TC in a lower level implementation. The data

structures were designed to conserve space and be accessible

with reasonable speed. The version of FORM_TC as coded in

C is presented in Appendix C.

In order to represent the ADDRESSING_CLASS,

OPERAND_EQUIV_CLASS, and OPCODE_EQUIV_CLASS sets,

a set of static data structures are built for the given

architecture. The static data structures consist of a pair of

tables, one for addressing modes and one for opcodes, and

various arrays as described below.

First, we examine the addressing mode table. This is an

array of addressing mode descriptors, one for each distinct

addressing mode on the target architecture. Two addressing

modes in two different instructions are considered distinct if

they are represented differently in the two instructions or are

not semantically equivalent. In particular, modes which are

represented using different bit patterns or the same pattern in

different locations in instructions must be distinct.

Consider the Data Register Direct addressing mode on the

68000 mov instruction. As a source operand, this mode is the

same for mov as for the first operand of a cmp instruction.

However, a distinct addressing mode must be used for a

destination operand of mov which uses Data Register Direct

since the location of the bits to specify the mode and register

are in a different location in the instruction.

Each addressing mode descriptor contains the following

fields which are relevant to this discussion:

SIZE, SPEED

Values used to evaluate the cost of using an addressing
mode. These are relative values used for purposes of
evaluating cost functions and are related to the clock cycles
and size in bytes above a basic opcode for the use of the
addressing mode.

OEC

Pointer to an array of nodes, each containing the code of an
addressing mode in the same OPERAND_EQUIV_CLASS of
this mode. All modes in the same OEC have the same effect
on the relevant aspects of the machine state when
evaluated.

SPAN_OK

A pointer to a predicate which determines, given an
instruction and an operand of the instruction, whether the
addressing mode would satisfy span restrictions if installed.

INSTALL

A pointer to a routine to install the addressing mode in a
given instruction and operand. This routine is invoked during
code relocation.

The opcode table contains a single opcode descriptor for

each distinct opcode on the target architecture. As with

addressing modes, a single operator is sometimes broken

down into several opcodes for purposes of operand reduction

even though the bit patterns of the instructions may be

identical. This occurs in multi-operand operators since the

addressing mode in the ADDRESSING_CLASS(opc,
opnum) must all be valid regardless of addressing modes

employed in other operands.

Operators such as the 68000 sub instruction must be

broken down into two opcodes: a sub_d opcode which

allows a large class (source class) of addressing modes as a

first operand and a data register for a second operand and a

sub_m opcode whose first operand is a data register and

whose second operand can be represented using another set

of addressing modes (memory alterable class). To implement

these using a single opcode would imply that the sub

instruction allows any source class mode and any memory

alterable mode in its two operands, which is not the case.

An opcode descriptor contains the following relevant

fields:

NOPER

Number of operands accepted by this instruction.

SPEED

Used in evaluating opcode/addressing mode pairs. This is the
speed relative to other instructions in the operand
equivalence class.

OPEC

An opcode which is in the same OPCODE_EQUIV_CLASS as
this opcode. The OPEC fields of all opcodes in a non-
singleton OPCODE_EQUIV_CLASS set form a circular linked
list using this field.

Goss Machine Code Optimization 18 18

CLASS

An array of pointers, one for each operand of the opcode.
Each pointer names an array of nodes containing the codes
of addressing modes in the ADDRESSING_CLASS of this
opcode and operand.

The structure of these tables is summarized in Figure 5.1.

I show an example of the static data structures of two

instructions on the Motorola 68000: jmp and bra. These

instructions are semantically equivalent, so their OPEC fields

form a ring. However, the sets of addressing modes allowed

for their respective operands are disjoint. Each of the

addressing modes is described by an addressing mode

descriptor. Finally, the semantic meanings of addressing

modes are related in the operand equivalence classes.

Through this data structure, a jmp using the absolute long

addressing mode can be converted to a bra using the disp8

mode.

5.2. Minimize and Lengthen

The purpose of operand reduction is to find an optimal

solution to the following problem:

Problem 5.2. (Operand Reduction)

Install the least expensive addressing mode in each operand
of each instruction so that all addressing, semantic, and span

restrictions are satisfied.¤

In the last section, I presented a general algorithm to find

all opcode/addressing mode substitutes for a given

instruction and operand that satisfy addressing and semantic

constraints. The remaining problem of operand reduction is

to satisfy span constraints.

This problem is examined in [Rich 71] and [Fried 76]. In

[Szym 78], two algorithms are presented which produce

optimal solutions. I will briefly describe the requirements

and complexity of each before presenting my solution.

The first, which I call Algorithm Sz1, builds a graph to

represent the program.

Each operand of each instruction which can employ a

location-relative mode is represented by a node in the graph.
3

A directed arc A→B is installed if the instruction for B lies

between A and a target which references an operand of A in

the program. In each node, information similar to our own

text node is maintained. In addition, for each operand, the

distance from the instruction to the target of the operand (the

operand's range) is maintained.

All operands represented by nodes are initially assigned a

minimum length location-relative addressing mode. We then

process nodes in the graph whose range exceeds the span of

the current addressing mode. A longer addressing mode with

a larger span is then installed and all predecessors of such

nodes in the graph (i.e. nodes whose range depends on the

size of the expanded instruction) have their ranges increased

to accommodate the longer addressing mode. The node may

then be removed from the graph if a maximum-length

addressing mode has been installed. The algorithm

terminates when no more nodes need to be expanded.

Algorithm Sz1 produces an optimal assignment of

addressing modes using a graph with O(n) nodes and O(n
2
)

arcs. [Szym 78] claims that the running time, with suitable

low-level data structures, is at worst O(n) since each node

must be visited at most once for each addressing mode.

In practice. Algorithm Sz1 is useful for the application

described in [Szym 78] jump or subprogram call operands on

the Digital Equipment Corporation PDP-11 ([DEC 75]).

Under this instruction set, a single location-relative

addressing mode whose span is approximately ±256 bytes is

available for such operands. This limits the out-degree of

nodes in the dependency graph to 255 for contrived

pathological cases. In practice, the average out-degree is 3.5

3 Since Szymanski applied his technique to assembly language before it

was assembled, he only considered operands of branch and subprogram

call instructions.

Figure 5.1. Static Data Structures for 68000 jmp and bra

Goss Machine Code Optimization 19 19

(across a large sample of application code) which allows Sz1

to operate rapidly in practical cases.

However, each of the target architectures, in addition to

the PDP-11 mode described above, has location-relative

modes with spans of approximately ±32,767 bytes. This

allows the out-degree of nodes to be at most 16,381

(assuming a minimum of two bytes per instruction) and an

average of 896 in practice. These figures render Sz1

impractical for our use, especially since we wish to process

not only branch operands, but all relocatable operands.

Algorithm Sz2 is similar to Sz1, except that the arcs are

not represented in the graph. Instead of adjusting the range of

predecessors in the graph, whenever an operand is expanded,

a brute-force scan of the instructions is made to find

operands whose range need adjustment. This reduces the

space requirements to O(n) but the running speed goes to

O(n
2
).

Again, since the maximum span of an addressing mode is

±254 bytes on the PDP-11, only a small area of code needs to

be scanned when an operand is expanded.

However, for this application, the re-scanning often

requires a large portion of the program, thus rendering the

running time quadratic in practice.

My algorithm builds on Sz2 with the same worst-case

space and time complexity, but runs in linear time in

practice. Rather than maintaining the range of an operand,

the range value is computed as necessary. This can be done

since the TARGET field has been set for all such operands

during operand linking.

As with Sz1 and Sz2, the operand reduction algorithm

begins with MINIMIZE, which performs a single pass over

the code. For each instruction, i, and relocatable operand,

op, we change the opcode and addressing mode to the pair

from TRANSLATE_CLASS(i, op) which yields the shortest

instruction:

proc MINIMIZE()

 (∀ b ∈ BLOCK_LIST)

 (∀ tx ∈ TEXT(b) | tx is a text node)

 (∀ op ∈ OP(tx))

 tc := FOR.M_TC(tx, op);
 bestcost := MAXCOST;

 (∀ [opc, am] ∈ tc)

 c := cost(tx, op, opc, am);

 if c < bestcost then
 bestcost := c;
 newpair := [opc, am];
 end if;

 end ∀;

 if newpair ≠ [OPC(tx), MODE(op)] then
 contract(tx, op, newpair);
 end if;

 end ∀;

 end ∀;

 end ∀;
end proc;

After MINIMIZE, the LENGTHEN phase installs larger

addressing mode in operands using a series of passes over

the code. The first step in each pass is to set the FADDR field

of each text and data node to reflect its current load location

based on the sizes of all instructions before it. This is the

field we will later use to determine the ranges for operands.

We then process each relocatable operand of each text

node. If a location-relative addressing mode, am, is currently

in use, the range of the operand is computed using the FADDR

field of the instruction and the FADDR field of the TARGET

node of the operand. The predicate SPAN_OK(am) is then

evaluated for the range to determine if the operand needs

expansion. If so, we compute the

TRANSLATE_CLASS(instruction, operand). From

this we choose the least-cost opcode/addressing mode pair

for which SPAN_OK(am), evaluated for the range, indicates

that the new mode satisfies all span restrictions.

This phase is summarized in the following algorithm:

proc LENGTHEN()

 change := true;
 while (change) do

 change := false;
 $ Set FADDR fields of all nodes.

 addr := IADDR(TEXT(BLOCK_LIST(l))(l));

 (∀ b ∈ BLOCK_LIST)

 (∀ tx ∈ b)
 FADDR(tx) := addr;
 addr += NBYTES(tx);

 end ∀;

 end ∀;

 $ Expand operands as necessary.

 (∀ b ∈ BLOCK_LIST))

Goss Machine Code Optimization 20 20

 (∀ tx ∈ b | tx is a text node)

 $ Get all relocatable operands
 $ (ones with TARGET set) which
 $ might need expansion.

 (∀ op ∈ OP(tx) | TARGET(op) ≠ Ω and
 loc_relative(MODE(op)))

 range := FADDR(TARGET(op)) –
 FADDR(tx);
 if SPAN_OK(MODE(op))(range) then
 continue;
 end if;

 tc := FORM_TC(tx, op);
 bestcost := MAXCOST;

 (∀ [opc, am] ∈ tc)

 c := cost(tx, op, opc, am);

 if c < bestcost then
 bestcost := c;
 newpair := [opc, am];
 end if ;

 end ∀;

 if [OPC(tx), MODE(op)] * newpair then
 expand(tx, op, newpair);
 ehange := true;
 end if;

 end ∀;

 end ∀;

 end ∀;
 end while;
end proc;

This algorithm performs well in practice since range

values are changed only at the start of each pass and are done

through the TARGET pointer rather than maintaining explicit

range values in operand descriptors. The TARGET field

generally requires O(n
2
) time to compute but, during operand

linking, we compute these efficiently using the blocked

dynamic data structure (see Section §2.3). Likewise, O(n)

passes could be made through the code during LENGTHEN,

giving an O(n
2
) worst case. In practice, the algorithm

converges in 2–5 iterations (see Section §7.2).

5.3. Register Tracking

The design of operand reduction, as described thus far,

falls short in one major area: it utilizes index modes which

use only the program counter, while many architectures

allow indexing off other registers. For example, on the

Motorola 68000, even if a target is not within the span of a

PC-indexed mode, if an address register points in the vicinity

of the target, an address register-indexed mode is available

which costs the same space and time as the PC-indexed

mode.

Hence, an improvement to the current operand reduction

algorithm would be to provide a data structure which

maintains the known values in all registers which can be

indexed. In addition, known values in non-indexable

registers may be useful since such registers can replace

addressing modes which yield constant values.

A number of approaches can be taken in handling this

data structure:

1. Have the compiler set aside a single address register

as a base register, thus mimicking segmented

architectures such as the Intel 8086. This register

could be initialized by the MCO to point to an

advantageous location and references to all targets

which fall within the span of this location could be

improved. This is essentially the scheme taken in the

Macintosh operating system ([Apple 85]) for the

Macintosh 68000-based computer. However, on the

Macintosh, all data references must be made using the

base register; this limits global data to 32,767 bytes on

this machine.

2. Allocate base registers on a less global level.

Information as to which registers are unused over

ranges in the code would have to be obtained. These

could then be initialized and used as local base

registers if there were sufficient references in the

range which could index off the address register.

3. Information as to which registers have known values

in ranges of the code could be obtained by techniques

similar to constant propagation [Aho 77]. These

registers could be used as base registers in the proper

ranges without initialization. On architectures such as

the Motorola MC68020 [Motor 84b] where a number

of registers can be combined with scaling factors and

constant offsets, registers could be used in linear

combinations to produce the least expensive

addressing mode.

6. Macro Compression

Until this point, I have described optimizations and

techniques that are employed in the MCO and that are, to

varying degrees, successful toward the goals of optimizing

task files and furthering this research. In this Chapter I reflect

upon a class of techniques that are also consonant with this

research but which did not yield satisfactory results in some

Goss Machine Code Optimization 21 21

dimension of performance and were removed from the

production version of the MCO.

6.1. Background

Common code compression is a class of optimization

techniques in which common sequences of code are

identified by various analysis methods and removed by

altering the code or providing information to a translator that

is converting the code to a lower level.

This class of techniques includes common subexpression

elimination, available expression elimination, very busy

expression hoisting, and code hoisting and sinking (see [Aho

86] for a general discussion of these). These techniques are

generally more suitable to earlier phases of the compilation

process than the link phase.

The technique of macro compression recognizes common

code sequences and replaces each occurrence of the common

code with a call to a code macro or subprogram containing

the common code.

This space optimization was first used in [Dewar 79a] to

conserve space in an interpretive byte stream. The language

used an 8-bit opcode but only had 80 operators.

The remaining 176 opcodes were used to represent

frequently occurring byte sequences beginning on instruction

boundaries. In practice, only multi-bytes instructions or part

instructions were subject to macro compression, but the

savings remained substantial.

The theoretical aspects of this problem were studied in

[Golum 80]. The assumptions were:

1. A byte stream was to be minimized;

2. A macro call consisted of a single byte;

3. Exactly m macros of length ≤ k were to be chosen.

Optimal polynomial-time solutions were obtained which

characterized potential macro choices within the byte

sequence using an interval or overlap graph (depending on

two slight variations of the problem). However, these

algorithms were very costly in practice.

6.2. Assembly Code Compression

A more recent approach [Fras 84] has been to apply

pattern matching techniques to assembly code to identify

repeated subsequences. A suffix tree ([McCr 76]) is built for

the input code to be compressed. The suffix tree for a list of

instructions, i, is a tree whose |i| leaf nodes are labeled with

the locations in i and whose arcs are labeled with

subsequences of i. For example, if a, b, and c are instructions

and $ is the unique end marker, the instruction list abcab$

would have the tree shown in Figure 6.1.

This data structure allows us to find the subsequence

beginning at any position and ending at $ by following the

path of edges from the root to the leaf with the proper label.

More importantly for macro compression, each non-leaf

(internal) node represents a common subsequence: the text of

the subsequence is found by following the edges from the

root to the internal node and the number and location of the

subsequences are represented by all leaves whose path to the

root goes through the internal node.

Once the suffix tree is built (in linear time — see [McCr

76]) the internal nodes of the suffix tree are evaluated for

validity under the semantic rules of macro compression for

the given assembly language and for payoff if they were

replaced. Valid subsequences are ordered in a priority queue

by some criterion and the items of the queue are processed in

order, installing a code macro and calls to it at each step.

An optimizer for assembly code was built by [Fras 84]

and was reported to run efficiently and perform well.

However, no statistics were given on the amount of

compression achieved.

6.3. A First Attempt

A preliminary optimizer for assembly language was built

along these lines for the purpose of gathering statistics. As

expected, the effectiveness of macro compression heavily

depended on the size of the assembly code file. In assembly

files generated from languages such as COBOL ([ANSI 74]),

a good deal of compression was obtained since the entire

user program is generated in a single assembly code file.

However, for languages such as C where a high degree of

modularity tends to be observed, almost no compression was

obtained. Furthermore, code for language primitives, since

they are relatively small and selectively linked modules,

were never compressed.

Figure 6.1. Example Suffix Tree

Goss Machine Code Optimization 22 22

The next stage was to build an analyzer which maintained

statistics on common sequences across assembly language

files. If, for a given language and compiler, many common

sequences appeared repeatedly across different programs, a

database of those sequences could be made available to a

peephole optimizer [McKee 65]. It would replace them in

linear time [Knuth 77] and with small space overhead. A call

to a macro body would be substituted on the expectation that

the sequence would appear enough times in the various

modules of the program to make substitution worthwhile, on

the average.

The macro bodies would then be selectively linked in

from a large library of these subprograms.

However, it was found that, while a single program may

have many common subsequences within itself, the same

sequences were, for the most part, not shared between

programs. Table 6.1 gives a summary of common sequences

in two test programs we will describe in detail in Chapter 7.

These programs are called p1.68 and p2.68 when compiled

for the 68000. A breakdown is given for various sized

subsequences for p1.68, p2.68, and sequences which

appeared in both. In each case, I report the number of

common sequences as well as the average number of

occurrences of each sequence in the programs. In the last

column, I report the average occurrences in both programs

combined.

These figures show that even though the same compiler

was used and the same code for language primitives was

linked in, few sequences were common to both program in

comparison to the program treated separately. This happens

since many of the common sequences contain code which

refers to program-specific global data or subprograms.

6.4. Macro Compression in the MCO

The results of the assembly code macro compressor

indicated that a macro compressor which operated on all the

modules in a single program would compress the most

macros. This, the macro compressor was recoded to operate

on task files, and this became the first version of the MCO. It

operated with essentially the same instruction parser and

code relocation algorithm described earlier, but without any

other optimizations described so far.

There were a number of significant additions to the MCO

implementation beyond that of [Fras 84]:

1. The user had the choice of two priorities when

inserting sequences into the priority queue: they could

be inserted in order of the number of bytes saved by

the substitution of the sequence (assuming no overlap

with earlier substitutions) or they could be inserted

based on the number of bytes in the sequence (‘value’

priority versus ‘length’ priority).

2. The MCO was more aggressive in salvaging

sequences which would have been discarded as

invalid: if the sequence referenced the stack, the

macro body was constructed so that the return location

was not stored on the stack: if the sequence modified

the stack in certain simple ways, similar

transformations were applied to the macro body; If

some code in the sequence would have caused the

sequence to be discarded and that code appeared near

the end of the sequence, it was shortened and re-

inserted into the priority queue.

3. Since [Fras 84] does not describe the data structures in

detail, it is not clear how their suffix tree was

represented internally. The MCO maintained the tree

in virtual memory. The initial implementation had a

pointer from each internal node to the first child and a

pointer from each node to its sibling. This simple data

structure was very compute intensive during the

construction of the suffix tree (48:07 for p1.68) and a

hash table was installed to represent the parent-child

relation between the root node and the second level of

the tree (reducing the time to 3:22 for p1.68).

The statistics relating to this version of the MCO are

reported in Tables 7.2 for the execution time of macro

compression, 7.5 for the size improvement in the text

segment, and 7.6 for the degradation in the target program's

execution speed. From these results it was decided that

macro compression was not desirable in the production

version of the MCO because of the costs in the following

areas:

Table 6.1 Tabulation of Common Sequences

 p1.68 p2.68 p1.vx
Size # occur # occur # occur

50–60 1 2 2 2 0

40–48 1 2 2 2 0

30–38 3 2 2 2 0

20–28 4 2.25 4 3.25 0

18 3 2.00 4 7.00 0

16 6 3.33 4 2.75 0

14 9 4.00 7 5.71 1 4.00

12 12 3.17 13 6.07 2 4.50

10 17 6.65 13 7.30 0

8 32 6.00 48 7.96 10 17.80

6 41 13.46 61 16.84 14 52.29

Total 129 160 27

Goss Machine Code Optimization 23 23

Compressor Speed

The macro compressor required several times the

compute resources of the other optimizations combined. The

total speed of about 125 bytes/sec was very close to the

speed of the [Fras 84] implementation, but we were dealing

with the entire task file on each run of the optimizer.

Dynamic Memory Requirements

The suffix tree nearly doubled the dynamic memory

required by the MCO.

Execution Speed Degradation

When running a program after macro compression, the

task image is smaller, but the CPU must spend time

executing the macro calls. On p1.68, the compressed

program took 15% more CPU time than the original (with

macro compression and operand reduction). In real time, the

compressed file took 7% more time - probably due to the fact

that the operating system treats smaller task files with a

higher priority. This speed degradation is not as severe if the

length priority is used rather than value priority (see Section

§7.5). With value priority 913 calls to macros were installed

whereas for length priority 821 calls to macros were

installed.

Thus, fewer macro calls are made and execution speed is

not affected as much with length priority. In addition, value

priority saved a total of 2,310 bytes while length priority

saved 2,384 bytes.

6.5. G-Code and G-Compression

G-compression takes the concept of macro compression

to extremes. First, the text segment is converted into a very

compact generative code or G-code. At execution time this

is loaded into memory along with the data segment for the

program, a decoder, and 68 an execution buffer. The decoder

is responsible for re-constituting sections of G-code into their

original native code and placing them in the execution

buffer. Code is executed in the execution buffer until a new

section of code needs to be re-constituted, at which time

control returns to the decoder. If enough space is allocated

for the execution buffer and a good allocation algorithm is

used, the decoder will be called infrequently compared to

execution of native code in the buffer. Even if the processor

spends half its time in the decoder, this is substantially better

than the 10 to 40 times speed degradation experienced in

typical interpretive systems, with the potential for a greater

savings of space.

This approach is similar in concept to ‘throw-away

compiling’. This technique compiles frequently interpreted

sections of code at run-time ([Brown 76], [Brown 79], [Hans

74]). However, the task of code generation was employed at

run-time in these systems to produce object code, rather than

a straightforward decoding. Hence, the translation was slow,

required a very large ‘decoder’, and could not achieve a high

level of object code optimization.

To elaborate on these ideas, I describe the items in

memory at execution time in more detail:

G-Code

The generative code is a representation of the text

segment of the original program in which a series of

transformations have been applied to translate original

instruction and sequences of instructions into G-code

instructions. The first set of transformations modifies certain

types of instruction operands. In general, references to

registers or registers with displacements are unaffected.

However, references to instructions or data in the original

code are converted to references to the corresponding

instructions or data in the G-code.

Each reference to an instruction in the original text

segment (original text reference) is replaced by the bit

address of the start of the corresponding (j-code instruction

relative to the start of the sequence of G-code instructions

(soft text reference). Thus the number of bits to represent a

soft text reference depends on the size of the G-code.

Each reference to a byte in the original data segment

(original data reference) is replaced by the byte offset of the

referenced data byte from the start of the data segment (soft

data reference). The number of bits for a soft data reference

depends on the size of the data segment.

Any immediate operand which refers to the address of an

instruction in the original text segment is replaced by the soft

text address of the corresponding G-code instruction.

An immediate operand which refers to an original data

item is converted to a byte offset from the start of the data

segment.

In general, the set of operand addressing modes defined

for native code and G-code differ in order to accommodate

these transformations. Also, since there are no byte-boundary

limitations imposed by the decoder, operands can occupy any

number of bits and can even vary in size. Native code

designs incorporating some of these features such as bit-

aligned instructions and variable sized operands have been

developed in the Intel 432 architecture ([Tyner 81]) and the

design of the Burroughs B1700 ([Wiln 72]).

The second transformation applied to the original text

segment is solely for the purpose of compressing the

instruction sequence. The criteria are that it must be

decodable starting at any instruction boundary and that the

decoding must be done in real time (requiring no look-ahead)

Goss Machine Code Optimization 24 24

[Peter 61]. This can be accomplished by one or a

combination of:

1. A straightforward Huffman encoding ([Knuth 73], p.

402) of the G-code.

2. A partial Huffman encoding in which the main

instruction word is encoded but words which contain

addresses and displacements are not affected.

3. A macro compression scheme in which common code

sequences are collapsed into a macro table (which

becomes part of the G-code) and replaced with short

non-instructions from a Huffman encoding list. First,

the priority queue is ordered by the number of times a

sequence appears, rather than by the length or value of

a sequence. Then all sequences which appear more

than once are inserted into the queue. When

processing the queue, sequences are replaced by bit

encodings of increasing length. These encodings are

assigned in the way that Huffman codes are built [Gall

78] so that minimum space is required.

Data Segment

This is identical to the data segment which would be

loaded with the original version of the program, except that it

is not necessarily loaded at the same address. Pointers in the

data segment to other data addresses are relocated based on

the new base address for the data segment. Text addresses

are translated to their corresponding soft address.

Decoder and Execution Buffer

The decoder is a fixed section of code which runs on the

native hardware. Its job is to re-constitute G-code into

machine code. It takes sections of G-code which needs to be

executed and decodes them into a variable-sized execution

buffer. The decoded native code is essentially the same as the

original native code in the text segment. The differences are

that addresses which refer to the data segment are adjusted to

point to the new data segment and text addresses are

converted back from soft addresses into the hard addresses of

the decoded section, if the code at the target text address is

already in the execution buffer. Otherwise, a branch to a non-

decoded code section consists of a push of the soft address

and a call back to the decoder.

The decoder has the following entry points:

MAIN: This is the entry point from outside the program.

The first section of code is re-constituted, the user's stack,

registers, and arguments are initialized, and the first section

of code is called.

TRANSFER: Branch to this entry point to re-constitute and

execute code beginning at the soft address which is on top of

the stack. All branches to TRANSFER which are preceded

by a push of this soft address are then converted to a branch

directly to the newly re-constituted native code.

EXTEND: Append a new section of native code after the

last executed block. Two items are on the stack: the soft

address of the new code and the hard address to begin

placing the hard-code. Accessed from unconditional

branches in the original program code which are at the end of

a re-constituted block, this is really a special case of

TRANSFER which can optimize speed by eliminating

unconditional branches.

CALL: Same as TRANSFER, except that a subprogram call

has been made.

The contents of memory during program execution is

summarized in Figure 6.2.

Aside from a straight executable program, the G-code

scheme can be used in ways more closely tied to the

machine. For example, G-code might be the actual language

of the machine, while the decoder resides in microcode itself.

The macro bodies themselves would be read in when the

program is loaded. The rudiments of such a scheme are

employed in the VAX-11 architecture ([DEC 77]), which

Figure 6.2. Memory Organization for G-Compression

Goss Machine Code Optimization 25 25

allows the microcode for certain instructions to he read in by

the user during system initialization.

7. Measurement and Evaluation of Performance

The current implementation of the MCO is written in C

([Kern 78]) and runs on a VAX-11/750 ([DEC 77]) under

Berkeley UNIX Version 4.1c ([UNIX 80]). It optimizes task

files containing 68000 and UNIX machine code generated

from C source code compiled with the Philon FAST/C

compilers [Phil 85c]. These files run under Uniplus-UNIX

[Instr 81] on the 68000 and Berkeley UNIX on the VAX-11,

respectively.

This chapter reports on performance measurements taken

on the MCO. Figures do not include measurements of macro

compression, unless specifically noted. I give statistics in

five areas: the running speed and size of the MCO, the space

and speed improvements gained for each target machine, and

the programmer time required to retarget from the 68000 to

the VAX.

7.1. Test Input

For purposes of the statistics in this chapter, two sample

input files were used, compiled for the 68000 and the VAX.

They are production versions of two passes of a compiler for

a dialect of BASIC [Phil 84cb]. They are called p1.68 and

p2.68 when compiled for the 68000 and p1.vx and p2.vx

when compiled for the VAX. They are ideal for statistical

purposes since they are production programs which execute a

mix of computation and I/O bound code in a batch mode.

Also, p1 contains most of its code within the 32,767 span

limitation of these machines and p2 exceeds that limit by

almost a factor of 2. The sizes of the text and data segments

for the four task images are given in Table 7.1.

7.2. Speed of the MCO

First I report on the time required to run the various

phases of the MCO on the sample input programs. Table 7.2

gives this information in terms of CPU time on a VAX-

11/750. This is a measure, by the operating system, of how

much time the CPU spent executing instruction in that phase.

In parenthesis, I/O time is given for phases which had

significant I/O usage. These figures give the amount of time

that the operating spent performing I/O operations on behalf

of that phase.

Table 7.2 is clarified by the following points:

1. The task of parsing the instruction sequence is, by far,

the most time-consuming aspect of the first phase. On

the 68000, this is done by a large routine (28 pages of

source code) to disassemble the byte sequence. For the

VAX, parsing is done by a tiny routine which relies

almost entirely on the static tables which describe the

architecture. The interpretation of those tables greatly

speeded development of the instruction parser for the

VAX and did not slow the routine. The execution time

of that phase for VAX input doubled because

instructions on the VAX are parsed twice (see Section

§2.2).

2. The I/O time required for operand linking is spent

reading the relocation information from the input task

file.

3. Most of the time spent in the MINIMIZE phase of

operand reduction is in building and processing the

translate class. The VAX, which has larger translate

classes for instructions due to the more orthogonal

Table 7.1 Sizes of the Test Programs

Program Text bytes Data bytes

p1.68 33,684 12,664

p2.68 57,482 11,054

p1.vx 29,296 13,800

p2.vx 47,104 11,496

Table 7.2 Execution time for the MCO on a VAX 11/750

Phase p1.68 p2.68 p1.vx p2.vx
Input & Instr

Parse

0:24

(0:02)

0:46

(0:04)

0:50

(0:02)

1:30

(0:05)

Text Blocking 0:00 0:01 0:00 0:01

Operand

Linking

0:11

(0:17)

0:20

(0:21)

0:07

(0:03)

0:13

(0:05)

Code

Elimination
0:02 0:05 0:01 0:02

Code Distribution

 σ0 0:06 0:10 0:05 0:08

 σ1 1:29 3:01 1:04 2:03

 σ0 + σ1 1:24 3:07 1:07 2:16

Minimize 0:12 0:19 0:37 0:54

Lengthen 0:21 0:39 0:35 0:42

Code

Relocation
0:02 0:03 0:02 0:03

Output
0:12

(0:29)

0:16

(0:46)

0:08

(0:17)

0:10

(0:23)

Total (σ0 + σ1)
2:48

(0:48)

5:36

(1:14)

3:27

(0:22)

5:51

(0:33)

Macro Compression

Build suffix

tree
3:22

Build prio

queue
0:15

Modify code 0:52

Goss Machine Code Optimization 26 26

addressing mode structure, requires about three times

longer in this phase.

4. Conversely, the LENGTHEN phase builds a translate

class only if a span restriction is exceeded. Most of the

time here is spent passing over the code until all span

restrictions are satisfied. While this convergence could

require many passes, in practice few passes are

needed. These test cases required three passes for

p1.68 and four passes for the others. No program run

through the MCO during testing or production use has

ever required more than 5 passes.

7.3. Space Requirements of the MCO

The size of the MCO is reported in two aspects: the static

space needed for program code and data and the dynamic

space required for the dynamic data structures as a function

of the input program size.

Table 7.3 lists the number of bytes used for the 68000 and

VAX versions of the MCO.

Note that the text segment of the VAX version is smaller

due to the table driven instruction parser described in the last

section. This is reflected in the substantially larger space

required to store the static data structures.

Table 7.4 reports on the space required to represent all the

dynamic data structures which are built.

These figures represent the total number of bytes for

dynamic data with no effort to free this space. For example,

these figures reflect no space savings for free space as a

result of code elimination. These figures show that the MCO

requires 12-14 times as much memory as the text segment of

the input program. Of course, the MCO could be modified to

maintain these structures on secondary storage.

7.4. Effect on Program Space

This section presents statistics on the reduction in the size

of the text segment for the input programs.

Table 7.5 gives the number of bytes saved by each phase

of the MCO. For code elimination, I give the savings with

unlabeled elimination and the additional savings with

subprogram elimination.

The following points should be noted in reference to these

statistics:

1. The code elimination statistics are dependent on the

way runtime libraries are structured on a given

language and compiler can vary greatly.

2. As expected, code distribution is far more useful on

programs whose text segment exceeds a span

restriction imposed by the architecture.

3. The savings of about 1% for code distribution on files

which exceed 32K bytes of text does not seem to

justify the time required for this phase of the MCO

(see Table 7.2). However, given that C code is

typically written with heavy reliance on stack based

data rather than static data, task images generated

from other source languages would probably benefit

more from this optimization.

7.5. Effect on Program Speed

To test the speed of the original and optimized version of

the test programs, they were run on their target machines and

timed. The VAX target machine was a VAX-11/750 and the

68000 was a Pixel 100/AP [Instr 81] with a 10 MHz CPU.

Since the input code was the first two passes of a BASIC

compiler, each was run on the same 123 line, 3,988 character

source file.

Table 7.6 reports the CPU time statistics returned by

UNIX as described earlier. The I/O time was affected more

by system load than by any optimization performed, and is

not reported in this table.

The basic thing to note about these figures is that the

improvement on the 68000 version was much greater than

the VAX. I conjecture that, due to an instruction buffer

maintained by the VAX instruction decoder, the processing

of semantically equivalent memory references is not done

Table 7.3 Static Space Required by the MCO

Size of … 68.mco vx.mco
Text bytes 34,816 31,744

Data bytes – tables 4,832 15,496

Other data bytes 10,992 9,608

Total static size 50,656 56,864

Table 7.4 Dynamic Space Required by the MCO

 68.mco vx.mco
Bytes for … p1.68 p2.68 p1.vx p2.vx

Total mem

required
515,032 854,592 420,264 639,704

Size of task

image
 -50,656 -50,656 -56,864 -56,864

Dynamic

memory

required

464,376

803,936

363,400

582,840

Text in test

prog
 33,684 37,482 29,696 47,104

Dynamic data

per target byte
13.79 13.98 12.24 12.37

Goss Machine Code Optimization 27 27

faster for shorter operands. This is supported in the survey of

VAX instruction timings reported in [Shiel 84].

8. Conclusions

It is my thesis that a class of optimization techniques,

which can be performed only at the machine code level, is

effective toward the goals of program optimization.

Furthermore, these techniques can be implemented in a

straightforward manner and in a reasonably machine-

independent fashion. I begin by reviewing the

implementation and theoretical work done on the MCO,

describing other proposed ideas for optimizations at this

level, and suggest areas for future research.

8.1. Review of Work Done

The core of this work has been to define a class of

inefficiencies which exist on certain architectures and

environments and build an optimizer, the MCO, to remove

these inefficiencies.

The inefficiencies relate mainly to programs which

consist of many modules and which are linked using a linker

which cannot resolve inter-module references efficiently.

Generally, when a single module is compiled, the most

general and most costly addressing mode must be used for

inter-module references since no information as to the

relative or absolute location of the target is available. Hence,

I deal with inefficiencies which can only be removed during

or after the link phase of compilation.

A basic inefficiency is the presence of unreferenced

subprograms in the task file.

I review existing techniques for eliminating such code

and develop and implement an augmented version of one of

them, called subprogram elimination.

Another inefficiency concerns the order in which code

and data appear in a task file.

I review the problem of data distribution, which places

data objects throughout the code segment of the program and

cite earlier work which shows the problem to be NP-

Complete.

I also review the problem of code distribution, which

shuffles the subprograms of the code segment to reduce the

distance between operands and their targets in the code

segment. I show this problem to be NP-Complete also. I then

implement efficient heuristics for code distribution which

improve the ordering of subprograms in the code segment.

I then approach the problem of installing addressing

modes in operands of instructions which take advantage of

the proximity of targets. I develop an algorithm, called

operand reduction, for installing the minimum sized

addressing mode for any given operand. This algorithm is

largely machine-independent; it relies almost entirely on a

set of data structures which describe the machine

architecture.

I then discuss a technique, macro compression, which

reduces the storage requirements of a program, but which

carries an associated speed penalty. I describe earlier work

Table 7.5 Effect of MCO on Size of Text Segment

Phase p1.68 p2.68 p1.vx p2.vx
Initial text bytes 33,684 57,482 29,696 47,104

Unlabeled Elimination 2,458 -7.3% 4,900 -8.5% 2,639 -8.9% 5,154 -10.9%

Added Subprogram Elimination 682 -2.0% 596 -1.0% 799 -2.7% 931 -2.0%

Code Distribution

 σ0 + σ1 104 -0.3% 652 -1.1% 46 -0.2% 486 -1.0%

 σ0 -58 428 -36 374

 σ1 24 470 43 383

Operand Reduction 2,624 -7.8% 3,476 -6.1% 3,632 -12.2% 4,207 -8.9%

Total (σ0 + σ1) 5,868 9,624 7,116 10,778

Text segment reduced 17.4% 16.7% 24.0% 22.9%

Macro Compression 2,310 -6.9%

Table 7.6 Effect of the MCO on Program Speed

Program run p1.68 p2.68 p1.vx p2.vx
Original program 6.73 2.85 6.08 2.62

MCO with no code distr 6.41 4.8% 2.46 13.7% 5.95 2.1% 2.55 2.7%

MCO with σ0 + σ1 6.32 6.1% 2.48 13.0% 5.92 2.6% 2.50 4.6%

Macro Compression 7.73 (neg. 14.9%)

Goss Machine Code Optimization 28 28

and report on the results of a trial implementation of macro

compression. A more aggressive technique, called G-

compression, which carries a larger speed penalty but offers

the possibility of much greater code compaction, is also

described, although no attempt at implementation was made.

Finally, statistics are reported on the performance of the

MCO and its effect on target programs. The results indicate

that the MCO yields a substantial space improvement and

smaller speed improvements.

I conclude that the techniques applied by the MCO attain

many of the performance advantages of segmented

architectures on linear address space machines without

imposing restrictions on addressing.

8.2. Proposals for Further Investigation

In the light of the effectiveness of the current MCO, a

number of areas deserve further investigation:

1. Investigate improved algorithms and heuristics for

code distribution.

2. Implement some version of register tracking as

described in Section §5.3. Also, the performance

improvement from adding register tracking to operand

reduction should be measured.

3. Implement a G-code scheme, as described in Section

§6.5, to determine the space savings and speed

degradation involved. This scheme could be useful in

applications where interpreters are currently used to

deal with severe memory restrictions.

4. Investigate algorithms for improved recognition of

common subsequences. These algorithms could relax

the definition of ‘common subsequence’ to allow

instructions which are out of order, renaming of

registers, etc.

5. Investigate a macro compression scheme which would

allow code macros to take parameters. This could be

used to allow non-conforming subsequences to be

replaced by macro calls by supplying an argument to

the macro body.

In addition, a number of the following techniques may be

applicable to the MCO:

1. The full implementation of register tracking implies

the need for algorithms similar to data-flow

algorithms on higher-level program representations.

The implementation of such algorithms on machine

code to track live-dead information on registers should

be investigated. Also, such algorithms can be used to

implement other transformations. For example, a

register does not need to be saved and restored in a

subprogram if no call to that subprogram needs that

register as live.

2. If a constant operand is used often enough, space can

be saved on some architectures by building local

tables of these constants which can be accessed by

some span-dependent addressing mode. However, this

degrades execution speed on many architectures.

3. Subprograms which are called once can be moved in-

line. Local repair and optimization can then be done at

the entry and exit points to save stack manipulation.

Appendix A. Definition of Text and Block Node Fields

This Appendix provides a description of the fields in text

nodes and block nodes and their contents.

For each instruction, the text node contains the following

fields:

OPC

The opcode for this instruction. This number is independent
of the actual bit pattern for the instruction: it is an ordinal
index into the static data structures which describe the
instruction set on the target architecture.

SIZE

A code which denotes the number of bytes being operated
on by this instruction. This field is used to reduce the
number of opcodes by combining instructions which perform
similar operations on different sized objects into a single
opcode.

IADDR, FADDR

The initial and final addresses for the instruction. The IADDR
field gives the load address at which this instruction would
have been loaded as specified in the input task file. FADDR
specifies the load address for the instruction in the output
task file; it is initialized to IADDR and gets incrementally
changed as the code is improved.

INSTR

A pointer to the bytes of the instruction. As instructions are
parsed, this field is initialized to point directly into the image
of the text segment read into memory. However, if an
instruction is ever expanded past its original length, the
bytes must be stored elsewhere (in a dynamically allocated
buffer).

IBYTES, NBYTES

The initial and current number of bytes in the instruction.
IBYTES is needed so that the INSTR field can be reset

Goss Machine Code Optimization 29 29

properly if the instruction needs to be expanded beyond its
original length.

NEXT

A pointer to the next text or data node on the list. Initially,
all the text and data nodes are linked together in a single list
in the order they appear in the input file. During code
distribution, the original list is partitioned into a set of lists
which are re-ordered.

REF, JSR

The count of the number of times the instruction is
referenced and how many times it is referred to as the target
of a subprogram call instruction. A reference could consist of
a jump to or a call of the instruction, a pointer to the
instruction in some data area, or a constant in an instruction
operand or data area which names the instruction.

OP

An array of operand descriptors. Each operand descriptor
holds information for a single operand of the instruction and
has the following fields:

ADDR

For relocatable operands, this field holds the effective
address which this operand referenced when it was initially
read in. This reference might be to another instruction or to
a data item in some data area. For non-relocatable
operands, this field is used during operand reduction to
preserve the value specified by the operand while the
addressing mode of the operand is being altered. Refer to
Chapter 5 for the specifics.

TARGET

A pointer to a text or data node that contains the object
referenced by a relocatable operand. This field is NULL if the
operand is non-relocatable.

MODE

A code giving the addressing mode used by the operand. Like
the OPC field, this code is used to index into the static data
structures which describe the addressing modes on this
architecture.

OFFSET

An index into the bytes of the instruction telling where any
extension word associated with this operand begins. This
field is updated whenever some code improvement changes
the addressing mode of the operand.

REG

An array of register descriptors giving the machine registers
used by this operand. The significance of each element of
the array depends on the addressing mode in use.

In addition, each operand has an operand position,

OPNUM(op), associated with it which is simply that

operand's position in the OP array of descriptors.

Each block node has the following fields:

SADDR, EADDR

The IADDR of the first node in the subprogram and the
SADDR of the next block (zero for the last block).

TEXT

A pointer to a linked list of text and data nodes for this block.
The last node on this list has a NULL NEXT field.

INEXT, NEXT

Pointers to successor block nodes as they appear textually in
the source code. We maintain the initial successor and the
successor as modified by later optimizations.

REF, RELOC, DRELOC

Fields used during the code distribution algorithm.

Appendix B. Low Level Implementation of Data

Structures

In this appendix, I present the low level implementation

of the data structures involved in forming the

TRANSLATE_CLASS and the operand reduction algorithm.

They are coded in C ([Kern 78]) and appear as they do in

the production version, except for the following

modifications, which hold for this and following appendices:

Certain type declarations have been simplified for ease of

reading this section of code independently from the rest of

the MCO.

All debugging, tracing, and much of the assertion

checking has been removed.

This code actually appears in several separate modules in

the production version.

The comment conventions have been altered as well as

other cosmetic and typographic changes.

-- The following "m_" constants and types
-- describe the basic parameters of the
-- architecture whose programs we are
-- optimizing (the "target machine"

Goss Machine Code Optimization 30 30

-- architecture).

-- The size of an object needed for a
-- (virtual) address on the architecture we
-- are optimizing (the target machine).

#if TM68000 or TVAX11 or TTI32000
typedef long m_addr;
#endif

-- The maximum number of operands an
-- instruction can have.

#if TM68000 or TTI32000
#define m_opcount 2
#endif
#if TVAX11
-- The value given here does not take into
-- account the caseb. casew, and casel
-- instructions on the VAX architecture.
-- These are handled as separate cases
-- in mcoinstr.c

#define m_opcount 6
#endif

-- The maximum number of registers which
-- any single operand of a machine
-- instruction can reference.

#if TM68000
-- The 68000 can address up to two registers
-- in an index mode, but an additional
-- bit is needed to tell whether the index
-- register is long or word.

#define m_maxreg 3
#endif

#if TTI32000 or TVAX 11
#define m_maxreg 2
#endif

-- The type of a register descriptor.
-- Objects of this type are used to name
-- one of the machine registers.

#if TM68000 or TVAX11 or TTI32000
typedef byte m_reg;
#endif

-- The type of an opcode descriptor.

#if TM68000 or TTI32000
typedef byte m_opc,
#endif

#if TVAX11
typedef short m_opc;
#endif

-- The type of an addressing mode descriptor.

#if TM68000 or TTI32000 or TVAX11
typedef byte m_mode;
#endif

-- These inform the operand reduction
-- algorithm what possibilities exist for
-- span-dependent instructions and what
-- the range of spans is for each
-- possibility. Note that spans are
-- given relative to different positions
-- for each target architecture. These are
noted below.

#if TM68000
-- The 68000 has 2, 4, and 6 byte branches:
-- Two byte conditional and
-- unconditional branches to targets in the
-- range .-span8min to .-span8max;
-- Four byte conditional and unconditional
-- branches to targets in the range
-- .-spanl6min to .+span16max; Six byte
-- unconditional branches to any address.

-- Note also the specialized branches which
-- exceed the maximum span-dependent
-- range of spanl6max - these are handled by
-- the addressing modes am_cvlong
-- and am_dvlong (see mcocodes.h).
-- These values give the offsets from the
-- start of the instruction containing
-- the span-dependent addressing mode.

#define spanSmm (-126)
#define spanSmax 129

#define spanl6min (-32766)
#dcfine spanl6max 32769
#endif

#if TVAX11
-- We have a minor problem on the VAX:
-- the span of a location-relative
-- addressing mode does not bear any relation
-- to the start of the instruction,
-- but is relative to the address following
-- the operand extension word!
-- However, since the operand reduction
-- algorithms deal with span values
-- independent from a particular addressing

Goss Machine Code Optimization 31 31

-- mode, we cannot take the
-- size of the addressing mode into account
-- when computing a span.

-- Hence, we compute all spans on the VAX
-- from the beginning of the
-- span-dependent operand itself.

-- This means that the range of span values
-- given here is slightly reduced
-- to allow all possible sizes of addressing
-- modes which can be used for
-- that span. This means that some boundary
-- cases where a shorter addressing
-- mode could be used will he missed, but
-- se la vie.

#define spanSmin (-128+2)
#define spanSmax 127

-- For word-relative addressing modes, the
-- minimum span increases by four.

#define spanl6min (-32768+4)
#define spanl6max 32767

-- This span is used for the am_lit
-- addressing mode on the VAX.

#define span6min
#define span6max 63
#endif

-- DYNAMIC DATA STRUCTURES

-- These data structures are allocated as
-- needed to represent the program
-- being optimized.

-- Operand Descriptor

-- These structures describe operands of a
-- target machine instruction.

typedef struct {
 -- If this operand is relocatable, this
 -- field contains the effective
 -- address which this operand referenced
 -- when it was initially input.
 -- Note that the reference may have been
 -- done using any addressing mode
 -- available for the operand. If this
 -- operand is not relocatable, this field
 -- is NULL before the minimize phase of the
 -- MCO. After minimize, this
 -- field is used to store the extension word

 -- of a non-relocatable operand
 -- so that it can be restored correctly by
 -- the relocate phase.

 m_addr op_addr;

 -- If the operand is relocatable, this field
 -- contains a pointer to the text
 -- or data node containing the effective
 -- address to which this operand
 -- refers. This field is NULL if the operand
 -- is non-relocatable.

 Struct tx_tag *op_target;

 -- The addressing mode used by this operand.
 -- This is an integer index
 -- into the array of addressing mode
 -- descriptors (am_table[]). These codes
 -- are defined in mcocodes.h

 m_mode op_mode;

 -- If any extension bytes are required to
 -- represent this operand,
 -- this field contains the byte position of
 -- the start of those extension
 -- bytes in the instruction.

 byte op_offset;

 -- An array of register descriptors giving
 -- the registers used by this
 -- operand. The order and significance of
 -- the registers named here are
 -- defined in mcocodes.h.

 m_reg op_reg[m_maxreg];
} operand;

-- Text Nodes

-- Data structures for describing an
-- instruction. Instances of these structures
-- are allocated for each instruction in the
-- machine language input file.

typedef struct tx_tag {

 -- The instruction identifier. This field
 -- gives an index into our static
 -- table of instruction descriptors
 -- (id_table[]). This field also serves to
 -- distinguish between text and data nodes
 -- (this field has the value
 -- o_data for data nodes).

Goss Machine Code Optimization 32 32

 m_opc tx_opc;

#if TM68000

 -- The instruction size. This field is
 -- conceptually part of the opcode
 -- field, but is kept separate to reduce
 -- redundant information in the
 -- tables. It tells how big the operand of
 -- the instruction is. This
 -- field is often used in conjunction with
 -- the opcode field. For example,
 -- instructions with different opcodes are
 -- not considered equivalent (even
 -- if they are in the same instruction
 -- equivalence class) unless the size
 -- fields are the same.

 byte tx_size;

 -- Size indicators for the size field on the
 -- 68000 architecture.

#define siz_byte 0
#define siz_word 1
#define siz_long 2
#define siz_illegal 3
#endif

 -- Pointer to the bytes of the instruction.

 byte *tx_instr;

 -- Pointers to the next node in this linked
 -- list of text nodes.

 struct tx_tag *tx_next;

 -- The initial address assigned to this
 -- instruction in memory in the input
 -- task file.

 m_addr tx_iaddr;

 -- The final address assigned to this
 -- instruction at the end of the
 -- algorithms which manipulate the text
 -- and data blocks.

 m_addr tx_faddr;

 -- The number of bytes in this instruction
 -- when it was initially read
 -- in. This must be kept for the following
 -- reason: the tx_instr field

 -- points to the bytes of the instruction
 -- directly in the input buffer.
 -- If we need to lengthen the instruction
 -- beyond its initial allocation.
 -- we must specifically allocate a buffer
 -- to hold the new bytes. or else
 -- risk writing over the next instruction
 -- in the text segment.

 byte tx_ibytes;

 -- The current number of bytes in the
 -- instruction

 byte tx_nhytes;

 -- The count of the number of references
 -- to this node made by other
 -- text nodes. This is a count of how many
 -- relocatable operands
 -- refer to this node. This count includes
 -- relocatable addresses
 -- in data areas which refer to this node.

 byte tx_ref;

 -- Count of subroutine-call instructions
 -- referring to this node. This is
 -- used to divide the input text segment
 -- into subprogram blocks in
 -- preparation for code distribution.

 byte tx_jsr;

#if OPSYMBOL
 -- The name of a symbol pointing to this
 -- address. This pointer points
 -- directly into the symbol table of the
 -- input file which is read
 -- m gettext(). This field is used only for
 -- tracing.

 char *tx.label;
#endif

 -- An array of operand descriptors. The
 -- number of elements in this array is
 -- bogus: we allocate only as many operand
 -- descriptors as needed for this
 -- instruction.

 operand tx_op[l];
} tx_node:

-- Data Nodes

Goss Machine Code Optimization 33 33

-- Data structure for describing an area of
-- program data. Each instance of
-- this structure describes an area of data
-- whether it lives in the text or
-- data segment. Note that the layout of the
-- leading portion of this structure
-- is identical to the tx_node structure above.
-- This allows us to cheat in
-- certain sections of code and not
-- differentiate whether we are dealing with
-- a text or data node.

typedef struct dt_tag {

 -- This field flags this node as a data
 -- node. The field always has the value
 -- o_data.

 m_opc dt_opc;

 -- Pointer to the bytes of the data.

 byte *dt_data;

 -- Pointer to the next data or text node
 -- on this list.

 struct dt_tag *dt_next;

 -- The initial address assigned to the
 -- start of this area in memory.

 m_addr dt_iaddr;

 -- The ftnal address assigned to the start
 -- of this area at the end of
 -- the algorithms which manipulate the
 -- text and data blocks.

 m_addr dt_faddr;

 -- The current number of bytes in the data
 -- area. Note that this field does
 -- NOT correspond to the nbytes field of
 -- text nodes.

 long dt_nbytes;
} dt_node;

-- Macros which are useful when dealing with
-- a heterogeneous list of text and
-- data nodes.

-- Number of bytes described by the node.

#define nbytes_of(tx) (((tx)→tx_opc == o_data)
? (tx)→dt_nhytes : (tx)→tx_nhytes)
#define ibytes_of(tx) (((tx)→tx_opc == o_data)
? (tx)→dt_nbytes : (tx)→tx_ibytes)

-- Identity of the node.

#define is_text(tx) ((tx)→tx_opc != o_data)
#define is_data(dt) ((dt)→dt_opc == o_data)

-- Macros which specify how the data
-- segment must he aligned on various machines.

#if TM68000
#define dalign(a) (a)
#endif

#if TVAX11

-- Align the data segment on a 1024-byte
-- boundary.

#define dalign(a) (((a) - 0x03FF) bitand
OxFFFFFC00)
#endif

-- Block Nodes.

-- One of these structures is allocated for
-- each block of code and/or data.
-- These blocks are arranged in better order
-- during code distribution.

typedef struct bl_tag {

 -- Pointer to linked list of text and/or
 -- data nodes.

 tx_node *bl_text;

 -- Pointer to the initial successor block
 -- to this one.

 struct bl_tag *bl_inext;

 -- Pointer to the real successor block,
 -- after code distribution
 -- is performed.

 struct bl_tag *bl_next;

 -- The start address for the block.
 -- This is the initial address of the first
 -- text node on the list of text and
 -- data node belonging to this block.

Goss Machine Code Optimization 34 34

 m_addr bl_saddr;

 -- The ending address for this block.
 -- This is the first machine address past
 -- the last initial address used by the
 -- last text or data node in this
 -- block. If there is a following block,
 -- it is the same as the bl_saddr
 -- value for that block.

 m_addr bl_eaddr;

 -- The remaining fields are used during
 -- code distribution.

 -- The number of references to other
 -- unplaced blocks.

 long bl_ubreloc;

 -- Number of references from unplaced
 -- blocks to this block.

 long bl_ubref;

 -- The total number of references to nodes
 -- in this block from the leftmost
 -- block on the list.

 long bl_ref;

 -- The total number of relocatable operands
 -- in this block referring to the
 -- leftmost block on the list.

 long bl_reloc;

 -- The number of relocatable references
 -- which refer to the last node in the
 -- original block list which holds the
 -- data segment.

 long bl_dreloc;
} bl_node;

-- This macro is used to loop through the
-- text and data nodes after they have
-- been partitioned into blocks It saves
-- an extra level of indentation when
-- looping through the two-level block/text
-- node data structure. This macro
-- should he invoked only with l-values!

#define for_all_text(bl,tx)
for(bl=bl_first; bl; bl = bl→bl_next)
for(tx=bl→bl_next; tx; tx = tx→tx_next)

-- STATIC DATA STRUCTURES

-- Instances of these structures are
-- allocated in the mcodatac module to
-- represent the particulars of the target
-- architecture.

-- Addressing mode descriptor. This
-- structure describes the details of a
-- particular addressing mode on the
-- target machine. An array of these
-- structures is kept (am_table[]) which
-- describes all the addressing modes
-- on the target machine. This table
-- is indexed by the am_*** macros.

typedef struct am_tag {
 -- The number of extension bytes required
 -- by this addressing mode over
 -- and above the number of bytes for the
 -- basic instruction.

 byte am_size;

 -- The relative speed of this mode.
 -- This value indicates the execution time
 -- cost of this addressing mode above
 -- that required for the basic
 -- instruction. This value is usually
 -- expressed in terms of machine cycles.

 byte am_speed;

 -- The initial and final counts of how many
 -- occurrences of this addressing
 -- mode appear in the code. These fields
 -- are filled in by mix().

 long am_icount;
 long am_fcount;

 -- The name of this addressing mode.

 text *am_name;

 -- The operand equivalence class. This is a
 -- pointer to a list of addressing
 -- modes which are semantically equivalent
 -- to this addressing mode. If this
 -- field is NULL, no other addressing modes
 -- are equivalent.

 m_mode *am_oec;

 -- A pointer to a routine to determine

Goss Machine Code Optimization 35 35

 -- whether the addressing mode described
 -- by the current descriptor can be
 -- installed in a given operand. If the
 -- addressing mode can be used for
 -- any relocatable operand, this field may
 -- be NULL.

 -- This routine is declared as follows:
 -- predicate routine(tx, op)
 -- tx_node *tx; Node for instruction being
 -- evaluated.
 -- short op; Operand number to evaluate.

 bool *(am_span_ok());
} am_node;

-- Instruction descriptor. This structure
-- describes the details of a particular
-- instruction on the target architecture.
-- An array of these structures is kept
-- (id_table[]) which describes all the
-- instructions on the target machine. This
-- table is indexed by the o_*** macros.

typedef struct id_tag {

 -- Pointer to the name of this instruction.

 char *id_name;

 -- Number of operands for this instruction.

 byte id_noper;

 -- Relative speed of this basic instruction.
 -- This field is used simply for
 -- comparing various instructions and
 -- choosing the best one. Therefore, this
 -- field does not need to be absolutely
 -- correct on the hardware: it should
 -- be as relatively correct as possible.

 byte id_speed;

 -- Initial and final count fields for this
 -- instruction. These fields
 -- are filled in by mixf).

 short id_icount;
 short id_fcount;

 -- The instruction equivalence class. This
 -- field gives the next instruction
 -- in the instruction equivalence class to
 -- which this instruction belongs.

 -- For each instruction equivalence class,
 -- the id_iec fields for the
 -- instructions in the class form a ring of
 -- references to each other.

 -- Instructions are deemed equivalent by the
 -- MCO if their opcodes are in the
 -- same instruction equivalence class and
 -- they share a common size value.

 m_opc id_iec;

 -- For each operand, a pointer to the
 -- addressing class which describes the
 -- addressing modes allowed syntactically
 -- for that operand.

 m_modc •id_class[m_opcount|;

 -- For each operand, a flag telling whether
 -- the operand can be a source
 -- and/or a destination. A source is defined
 -- as any operand whose value is
 -- examined. A destination is any value
 -- changed. Note that we are referring
 -- only to the contents of the final
 -- effective address. Also note that an
 -- operand can be both a source and a
 -- destination.

 bool id_source[m_opcount];
 bool id_dest[m_opcount];
} id_node;

-- The structure of an element of the
-- TRANSLATE_CLASS. Each element describes
-- a possibility for translating a given
-- instruction and a particular operand
-- of that instruction to a new opcode and
-- addressing mode for that instruction.

typedef struct tc_tag {

 -- The opcode associated with this
 -- translation possibility.

 m_opc tc_opc;

 -- The addressing mode to which we can
 -- translate the scrutinized operand.

 m_mode tc_mode;

 -- The registers associated with a new mode,
 -- if any.

Goss Machine Code Optimization 36 36

 m_reg tc_reg[m_ma.xreg];
} tc_node;

Appendix C. Low Level Implementation of Algorithms

In this appendix, I present the low-level implementation

of the routines FORM_TC and LENGTHEN.

-- The translate class buffer.

tc_node tc[max_tc];

-- This routine builds a translation class,
-- given an instruction and an operand
-- to scrutinize. It deposits the set in the
-- global tc[] array.

form_tc(tx. i)

tx_node *tx; -- Pointer to instruction for
 -- which we are forming
 -- translations
long i; -- Operand number to scrutinize

{
 tc_node *tcptr; -- Work pointer to elements
 -- of the translate class
 m_opc firstopc; -- Original opcode of the
 -- instruction
 m_opc ope; -- Opcode we are trying now
 m_mode am; -- Addressing mode being
 -- tested out
 m_mode *oec; -- Pointer to operand
 -- equivalence class for
 -- modes
 m_mode *oecptr; -- Working oec pointer
 m_mode *acptr; -- Pointer to addressing
 -- classes
 bool found;
 long j;

 -- Initialize pointers to build the
 -- translation class set directly.

 tcptr = &tc[0];
 firstopc = tx→tx_opc;
 opc = firstopc;
 oec = am_table[tx→tx_op[i].op_mode].am_oec;

 -- Loop through all instructions which are
 -- in this instruction's
 -- equivalence class.

 forever {

 -- Check that the new instruction is OK
 -- with respect to the operands which we
 -- are NOT scrutinizing in this routine.
 -- We must make sure that the addressing
 -- modes used by the other operands are
 -- syntactically legal in the
 -- corresponding operands of the new
 -- opcode. This is done only for a true
 -- change in opcode.

 if (opc != firstopc) {

 -- Loop through all operands which are
 -- not the ones being examined

 for (j = 0; j < id_table[opc].id_noper;
 --j) {

 if (i == j) {
 continue;
 }

 am = tx→tx_op[j].op_mode;

 -- See if we can find this addressing
 -- mode in the addressing
 -- class of the new opcode.

 found = false;
 for (acptr = id_table[opc].id_class[j];
 *acptr; - -acptr) (
 if (*acptr == am) {
 found = true;
 break;
 }
 }

 -- Here to check if this opcode is
 -- legal.

 if (not found) {
 goto ncxt_instr;
 }
 }
 }

 -- Here if the new instruction is
 -- generically legal to try out the
 -- possible addressing modes.

 for (acptr = id_table[opc].id_class[i];
 *acptr; --acptr) (

 oecptr = oec;

 -- Reject this addressing mode if it is

Goss Machine Code Optimization 37 37

 -- not semantically equivalent
 -- to the addressing mode in the
 -- instruction. That is, if it is not
 -- in the operand equivalence class of
 -- the addressing mode of the
 -- instruction operand we are
 -- scrutinizing. Note that, if the
 -- operand equivalence class is a
 -- singleton, the pointer is allowed
 -- to be NULL.

 found = false;
 if (oecptr) {
 while (*oecptr) {
 if (*oecptr++ == *acptr) {
 found = true:
 break;
 }
 }
)
 else if (tx→tx_op[i].op_mode == *acptr) {
 found = true;
 }

 if (not found) {
 -- This addressing mode is not in the
 -- intersection of the
 -- addressing class of the new opcode
 -- and the semantic operand
 -- equivalence class of the existing
 -- addressing mode.

 continue;
 }

 -- Here if this is an OK addressing mode
 -- to build a new element in
 -- the translation class.

 tcptr→tc_opc = opc;
 tcptr→tc_mode = *acptr;
 tcptr--;
 }

 -- Here to move onto the next instruction
 -- in this instruction
 -- equivalence class.

 next_instr:
 -- If the instruction equivalence class
 -- contains only this instruction,
 -- the id_iec field will be NULL. If so,
 -- we are finished.

 if (id_table[opc].id_iec == NULL) {
 break;

 }

 -- Otherwise, move onto the next
 -- instruction and see if we have looped
 -- around the ring of equivalent
 -- instructions to our initial
 -- instruction.

 opc = id_table[opc].id_iec;
 if (opc == firstopc) {
 break;
 }
 }

 -- Terminate the translate class with a
 -- node which has the opcode o_none.

 tcptr→tc_opc = o_none;
}

-- This routine processes the data built up
-- for the operands and determines
-- which span-dependent operands need to be
-- lengthened.

lengthen()
{
 bool change; -- Passes are made through
 -- code until change=false
 tx_node *tx; -- Node currently being
 -- processed
 bl_node *bl; -- Pointer to blocks of text
 -- and data nodes
 m_mode am; -- Addressing mode being
 -- examined
 short alter; -- Number of bytes to add to
 -- the current sdo
 short i, j, k; -- Loop counters
 long span; -- Span value for each
 -- operand
 byte cond; -- Bit pattern for condition
 -- in conditional branch

 tc_node *tcptr; -- Working pointer to
 -- translate class elements
 tc_node *besttc;-- Pointer to best translate
 -- class element so far
 long bestcost; -- Cost associated with best
 -- element
 long newcost; -- Cost of current element
 short oldsize; -- Size of instruction before
 -- being expanded

 change = true;

 -- Keep making passes through the linked

Goss Machine Code Optimization 38 38

 -- list until it stabilizes.

 while (change) {

 change = false;
 --st_npasses;

 -- Reset the final address field based on
 -- the number of bytes in each instruction.

 set_faddr();

 -- Process each instruction in each block
 -- of text and data nodes.

 for_all_text(bl, tx) {

 if (is_data(tx)) {
 continue;
 }

 -- Start off with no additional bytes
 -- for this instruction.

 alter = 0;

 for (i = 0; i <
 id_table[tx→tx_opc].id_noper; --i) {

 -- Process only relocatable operands
 -- or non-relocatable operands
 -- with addressing modes which have
 -- extension words which were
 -- shortened during the minimize()
 -- phase.

 if (not tx→tx_op[i].op_addr) {
 continue;
 }

 -- Check if the operand needs
 -- expansion.

 if (*(am_table[tx→tx_op[i].op_mode].
 am_span_ok)(tx, i)) {
 continue;
 }

 -- We come here only if we have an
 -- operand which needs to be
 -- expanded.

 -- Build the Translate Class for this
 -- instruction and operand.
 -- The translate class is placed m the
 -- single translate

 -- class buffer, tc[].

 form_tc(tx, i);

 -- We must now find another
 -- opcode/addressing mode combination
 -- to use in place of the current
 -- one which must be expanded.

 besttc = NULL;
 bestcost = 99999;

 for (tcptr = &tc[0];
 tcptr→tc_opc != o_none; --tcptr) {

 -- Assign a cost to this
 -- opcode/addressing mode
 -- combination.

 newcost =
 id_table[tcptr→tc_opc].id_speed +
 am_table[tcptr→tc_mode].am_speed +
 am_table[tcptr→tc_mode].am_size;

 if (newcost ≥ bestcost) {
 continue;
 }

 -- Remember this translation if
 -- the opdmode combination is
 -- OK. It is never OK if it was
 -- the original combination.

 if (tcptr→tc_opc == tx→tx_opc and
 tcptr→tc_mode == am) {
 continue;
 }

 else if (span_ok(tx, i,
 tcptr, span)) {

 -- Remember this newly found best
 -- element of the translate class.

 bestcost = newcost;
 besttc = tcptr;
 }
 }

 -- Install the newly found best
 -- opcode/mode combination.

 tx→tx_opc = besttc→tc_opc;
 tx→tx_op[i].op_mode = besttc→tc_mode;
 change = true;
 }

Goss Machine Code Optimization 39 39

 -- After changing modes, we may need to
 -- change the offsets of the
 -- operands and reset the number of
 -- bytes in the instruction.

 if (change) {

 oldsize -= tx→tx_nbytes;
 expand_offsets{tx);
 alter = tx→tx_nbytes - oldsize;

 assert(2791, alter ≥ 0);

 st_lengthen -= alter;
 }
 }
 }
}

Bibliography

[Aho 77] A. V. Aho and J. D. Ullman, Principles of

Compiler Design. Addison-Wesley. Reading, Mass.,

1977, 604 p.

[Apple 85] Inside Macintosh. Apple Computer, Inc., 1985.

[Ankl 82] P. Anklam, D. Cutler, R. Heincn, and M. D.

MacLaren, Engineering a Compiler. Digital Press, 1982,

269 p.

[ANSI 74] American National Standard Programming

Language COBOL, ANSI X3.23-1974.

[Bell 71] C. G. Bell and A. Newell, Computer Structures:

Readings and Examples. McGraw- Hill Book Co., 1971,

668 p.

[Brown 76] P. J. Brown, “Throw-away Compiling”,

Software-Practice and Experience, Vol. 6, No. 3, pp. 423-

434.

[Brown 79] P. J. Brown, Writing Interactive Compilers and

Interpreters, John Wiley and Sons, Ltd., 1975, 265 p.

[Contr 75] Fortran Extended. Version 4. Reference Manual.

Control Data Corp., 1975.

[DEC 75] PDP-11 Processor Handbook. Digital Equipment

Corporation, Maynard. Mass. 1975.

[DEC 77] VAX 11/780 Architecture Handbook, Digital

Equipment Corporation, Maynard, Mass. 1977.

[Dewar 79a] R. B. K. Dewar, M. C. Golumbic, and C. F.

Goss, “MICRO SPITBOL”, Computer Science Technical

Report No. 11. New York University, 19 p. 1979.

[Dewar 79b] R. B. K. Dewar, A. Grand, S. Liu, J. T.

Schwartz, and E. Schonberg, “Program by Refinement, as

Exemplified by the SETL Representation Sublanguage”,

ACM Transactions on Programming Languages and

Systems. Vol. 1, No. 1 (July 1979), pp. 27-49.

[Even 75] S. Even and Y. Shiloach, “NP-Completeness of

Several Arrangement Problems”, Technical Report #43.

Dept. of Comp. Sci., Technion, Haifa, Israel, Jan 1975.

[Even 79] S. Even, Graph Algorithms. Computer Science

Press, 249 p., 1979.

[Fras 84] C. W. Fraser, E. W. Myers, and A. L. Wendt.

"Analyzing and Compressing Assembly Code",

Proceedings of the SIGPLAN '84 Symposium on

Compiler Construction. SIGPLAN Notices, Vol. 19. No.

6 (June 1984), pp. 117-121.

[Fried 76] G. Frieder and H. J. Saal, “A Process for the

Determination of Addresses in Variable Length

Addressing”, Communications of the ACM. Vol. 19, No.

6 (June 1976), pp. 335-338.

[Gall 78] R. G. Gallager, “Variations on a Theme of

Huffman”, IEEE Transactions on Information Theory.

Vol. IT-24. No. 6 (Nov 1978), pp. 668-674.

[Garey 76] .M. R. Garey, D. S. Johnson, and L. J.

Stockmeyer, “Some Simplified NP-Complete Graph

Theory Problems”, Theoretical Computer Science, Vol. 1,

1976, pp. 237-267.

[Garey 79] M. R. Garey and D. S. Johnson, A Guide to the

Theory of NP-Completeness. Wit. Freeman, San

Francisco, 1979.

[Gieg 83] R. Giegerich, “A Formal Framework for the

Derivation of Machine-Specific Optimizers”, ACM

Transactions on Programming Languages and Systems,

Vol. 5, No. 3 (July 1983), pp. 478-498.

[Golum 80] M. C. Golumbic, C. F. Goss, and R. B. K.

Dewar, “Macro Substitutions in .MICRO SPITBOL - A

Combinatorial Analysis”, Congressus Numerantium. Vol.

29 (1980), pp. 485-495.

[Hans 74] G. J. Hansen. Adaptive Systems for the Dynamic

Run Time Optimization nj Programs. Ph. D. Dissertation,

Carnegie-Mellon University, Pittsburgh, Pa.

[IBM 74] IBM System/360 and System/370 FORTRAN IV

Language. Eleventh Edition. May 1974, 169 p.

[Instr 81] The Pixel 100:AP User's Manual. Instrumentation

Laboratory, 1981.

[Kern 78] B. W. Kernighan and D. M. Ritchie. The C

Programming Language. Prentice-Hall, Inc., 1978, 228 p.

Goss Machine Code Optimization 40 40

[Knuth 73] D. E. Knuth. The Art of Computer Programming.

Vol 1. Fundamenlal Algorithms, Second Edition,

Addison-Wesley, Reading, Mass., 1973.

[Knuth 77] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt,

“Fast Pattern Matching in Strings”, SIAM Journal of

Computing, Vol. 6, No. 2 (1977), pp. 323-350.

[Lever 80] B. Leverett and T. G. Szymanski, “Chaining

Span-Dependent Jump Instructions”, ACM Transactions

on Programming Languages and Systems, Vol. 2, No. 3

(July 1980), pp. 274-289.

[Lower 69] E. S. Lowery and C. W. Medlock, “Object Code

Optimization”, Communications of the ACM. Vol 12.

No. 1 (Jan 1969), pp. 13-22.

[McCr 76] E. M. McCreight, “A Space-Economical Suffix

Tree Construction Algorithm”, Journal of the ACM. Vol.

23, No. 2 (April 1976), pp. 262-272.

[McKee 65] W. M. McKeeman, “Peephole Optimization”.

Communications of the ACM. Vol. 8, No. 7 (July 1965).

pp. 443-444.

[Motor 84a] M68000 16/32-Bit Microprocessor -

Programmer's Reference Manual, Motorola, Inc., Fourth

Edition, 1984, 217 p.

[Motor 84b] M68000 32-Bit Microprocessor User's Manual.

Motorola, Inc., Prentice-Hall. 1984.

[Parts 83] H. Partsch and R. Steinbruggen, “Program

Transformation Systems”, ACM Computing Surveys,

Vol. 15, No. 3 (Sept 1983), pp. 199-236.

[Peter 61] W. W. Peterson, Error-Correcting Codes, The M.

I. T. Press and John Wiley & Sons, 1961, 285 p.

[Phil 85c] Philon FAST/C for the MC68000 Under Unix.

Philon, Inc., New York, N.Y., 1985.

[Phil 85co] Philon FAST/COBOL for the MC68000 Under

Unix. Philon. Inc., New York, N.Y. 1985.

[Phil 85ft] Philon FAST/FORTRAN for the MC68000 Under

Unix. Philon, Inc., New York, N.Y., 1985.

[Phil 84cb] Philon FAST/BASIC-C for the MC68000 Under

Unix. Philon, Inc., New York, N.Y., 1984.

[Raman 84] M. V. S. Ramanath and M. Solomon, “Jump

Minimization in Linear Time”, ACM Transactions on

Programming Languages and Systems. Vol. 6, No. 4

(October 1984), pp. 527-545.

[Rich 71] D. L. Richards, “How to Keep the Addresses

Short”, Communications of the ACM. Vol. 14, No. 5

(May 1971), pp. 346-349.

[Rober 79] E. L. Robertson, “Code Generation and Storage

Allocation for Machines with Span- Dependent

Instructions”, ACM Transactions of Programming

Languages and Systems. Vol. 1, No. 1 (July 1979) pp. 71-

83.

[Russ 80] R. Rector and G. Alexv, The 8086 Book. Osborne,

McGraw-Hill, 1980.

[Schn 73] P. B. Schneck and E. Angel, “A Fortran to Fortran

Optimizing Compiler”, Computer Journal. Vol. 16, No. 4

(April 1973), pp. 322-330.

[Shiel 84] L. D. Shields, Measuring SETL Performance. Ph.

D. Dissertation. September 1983, 173 p.

[Szym 78] T. G. Szymanski, “Assembling Code for

Machines with Span-Dependent Instructions”,

Communications of the ACM. Vol. 21, No. 4, pp. 300-

308.

[Texas 85] TI32000 Programmer's Reference Manual. Texas

Instruments, 1985.

[Tyner 81] P. Tyner, iAPX 432 General Data Processor

Architecture Reference Manual. Intel Corp., 1981.

[UNIX 80] UNIX Programmer's Manual. Seventh Edition.

Virtual VAX-11 Version, November 1980.

[Wiln 72] W. T. Wilner, “Design of the Burroughs B1700”,

Proceedings of the AFIPS 1972 Fall Joint Computer

Conference. Vol 41, AFIPS Press, Montvale, N. J., pp.

489-497.

[Wulf 75] W. Wulf, R. K. Johnsson, C. B. Weinstock, S. O.

Hobbs, C. M. Geschke, The Design of an Optimizing

Compiler. Elsevier North-Holland, 1975, 165 p.

Addenda

This section contains additional references that were

inadvertently omitted from the original 1986 publication.

[Aho 86] A. V. Aho, Ravi Sethi, and J. D. Ullman,

Compilers: Principles, Techniques, and Tools. Addison-

Wesley. Reading, Mass., 1986.

[Phil 84mb] Philon FAST/BASIC-M for the MC68000

Under Unix. Philon, Inc., New York, N.Y., 1984.

In addition, the following editorial changes were made:

 The incorrect references to [Lowry 69] and [McKee

67] in Section 1, ¶1 in the original were corrected to

[Lower 69] and [McKee 65].

 Commas were added to some numbers to enhance

readability. For example: 33,684 rather than 33684.

Goss Machine Code Optimization 41 41

 Typography was changed to enhance readability.

 Expressions that are inline in the text were typeset in

italics to improve readability.

 Footnotes were re-numbered and were place in-line in

the text, immediately below the paragraph that

references them.

 Some minor spelling corrections were made

(“targetted” ⇒ “targeted”, “ellucidate” ⇒ “elucidate”,

“exsiting” ⇒ “existing”).

 References to the author were changed from plural to

singular.

	Preface
	1. Introduction
	1.1. Background
	1.2. Related Work
	1.3. Organization of the Dissertation

	2. Design of the MCO
	2.1. Input
	2.2. Instruction Parsing and Internal Representations
	2.3. Text Blocking
	2.4. Operand Linking
	2.5. Code Elimination
	2.6. Code Distribution
	2.7. Operand Reduction
	2.8. Code Relocation

	3. Code Elimination
	3.1. Restrictions on the Input Program
	3.2. Current Code Elimination Techniques
	3.3. Subprogram Elimination

	4. Code Distribution
	4.1. Data Distribution
	4.2. Complexity of Code Distribution
	4.3. Heuristics for Code Distribution

	5. Operand Reduction
	5.1. Static Data Structures
	5.2. Minimize and Lengthen
	5.3. Register Tracking

	6. Macro Compression
	6.1. Background
	6.2. Assembly Code Compression
	6.3. A First Attempt
	6.4. Macro Compression in the MCO
	6.5. G-Code and G-Compression

	7. Measurement and Evaluation of Performance
	7.1. Test Input
	7.2. Speed of the MCO
	7.3. Space Requirements of the MCO
	7.4. Effect on Program Space
	7.5. Effect on Program Speed

	8. Conclusions
	8.1. Review of Work Done
	8.2. Proposals for Further Investigation

	Appendix A. Definition of Text and Block Node Fields
	Appendix B. Low Level Implementation of Data Structures
	Appendix C. Low Level Implementation of Algorithms
	Bibliography
	Addenda

