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Introduction. A complete classification of abelian groups by their ele-

mentary properties (i.e. properties that can be formalized in the lower predi-

cate calculus) was given by Szmielew [9]. No such attempt, however, has

so far been made with respect to ordered groups. In the present paper the

classification by elementary properties will be carried out for all archimedean

ordered abelian groups and, moreover, for a certain more general class of

groups which we shall call regularly ordered. Simultaneously, necessary and

sufficient conditions will be established for two such groups to be elementarily

equivalent, i.e. to have all their elementary properties in common (see Theo-

rem 4.7).

By a complete classification of a class of groups we mean its partition

into disjoint subclasses in such a way that two groups belong to one subclass

if, and only if, they are elementarily equivalent. This goal will be attained by

setting up a series of (finite or infinite) complete systems of axioms, each sys-

tem defining a certain subclass of ordered abelian groups.

The notation and terminology of [8] will be used throughout. In par-

ticular, the concept of model-completeness introduced in [8] and [7] will be

applied. A novelty feature of the present paper is that the method based on

model-completeness will be combined with what we shall call "adjunction of

new relations." To illustrate the usefulness of the method, we shall also apply

it to give new simplified proofs of some theorems by Langford and Tarski

on the completeness of certain systems of axioms referring to ordered sets.

This will constitute an additional result of the paper (see §2).

1. Preliminaries, terminology and notation. The concept of an ordered set

can be formalized in the lower predicate calculus by means of the following

system of axioms based on a binary relation of "equivalence," E(x, y), (read:

"x is equivalent to y") and a binary relation of "order," Q(x, y) (read: "x is

less than, or equivalent to, y"):

1.1. Axioms of equivalence^).

(a) (x)E(x, x).

(b) (x)(y)[E(x,y)-D-E(y,x)].
(c) (x)(y)(z)[E(x, y)AE(y, z)-D-E(x, *)].

(d) (3x)(3y)[~E(x, y)].

Received by the editors July 20, 1959.
(') We use the connectives Ai V. ~> O". • = • Ior conjunction, disjunction, negation,

implication and logical equivalence respectively, (x) is the universal and ( 3x) the existential

quantifier.
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1.2. Axioms of order.

(a) (x)(y) [Q(x, y)AQ(y, x) ■ m -E(x, y)\.
(b) (x)(y)[Q(x,y)VQ(y,x)}.
(c) (*)(y)(z) [Q(x, y)/\Q(y, z)O ■ Q(x, z)].
(d) (*) (y) (z) (w) [Q(x, y) /\E(x, z) AE(y, w) ■ D • Q(z, w) ].

To obtain the concept of an ordered abelian group we add a ternary rela-

tion, S(x, y, z), (read: "z is the sum of x and y") and the following axioms:

1.3. Group axioms(2).

(a) (x)(y)(3z)S(x, y, z).

(b) (x)(y)(z)(w) [S(x, y, z)AS(x, y, w) O -E(z, w)].

(c) (x)(y)(z)[S(x,y,z)-D-S(y,x,z)].

(d) (u)(v)(w)(x)(y)(z)[S(u, v, w) AS(w, x, y)AS(v, x, z)-D-S(u, z, y)].

(e) (u)(v)(w)(x)(y)(z)[S(u,v,w) AE(u,x) AE(v,y) AE(w,z) • D ■ S(x,y,z)].

(f) (x)(y)(Bz)S(x, z, y).

(g) (x)(y)(z)(v)(w)[Q(y, v)AS(x, y, z)AS(x, v, w)-D-Q(z, w)].

The three predicates, E, Q, S, will be called the "atomic predicates" of our

system of axioms. Any well-formed formula of the lower predicate calculus

that does not contain any predicates except E, Q, S (or is logically equivalent

to such a formula) will be referred to as an elementary formula of group

theory. If ordered sets (not groups) are considered, the same definitions

apply, with the only difference that the relation 5 is excluded(3). A set of

statements K (in particular, a set of axioms) is said to be elementary if so

are all the statements belonging to K. K is referred to as complete if, for any

elementary statement X which does not contain any constants other than

those occurring in K, either X or ~X is deducible from K.

A formula is said to be atomic if it consists of a single atomic predicate

in which the argument places have been filled by individual variables or

constants; in our case then all atomic formulae are of the form E(x, y) or

Q(x, y) or S(x, y, z). A well-formed formula is referred to as primitive if it

has the form

(1.4) (3yi)(3y2) • • • (Byn)Z(yi, 3/2, • • • , yn)

where Z(yu • • • , yn) is a conjunction of atomic formulae and  (or) their

negations, which contain the free variables yi, y2, • • • , yn. For example, we

(s) In 1.3 the axioms (a), (b) express the fact that the group is closed under addition and

that the sum is unique; axioms (c), (d) give the commutative and associative laws; (e) ex-

presses the substitutivity of the equivalence relation with respect to addition; (f) ensures the

existence of the inverse, and (g) means, in ordinary notation, that y^v always implies x+y

Sx+v.
(3) For the general concept of an elementary formula, cf. [8].
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shall define a sequence of primitive formulae, Dn(x) (« = 2, 3,4, • • • ) that will

be used later(4):

Dn(x) ■ m • (ayi) (3y2) ■ • • ( 3y„_,) [S(yh yu y2) A S(yi, y2, yz) A • ■ ■

(1-5)
A 5(yi, yn-2, yn-i) A Sfji, y„_i, *)].

Now let K be a consistent elementary set of axioms, M a model of K,

and X some elementary statement; then X is said to be defined in X (in M

respectively) if X does not contain any constants other than those occurring

in K (denoting elements of M, respectively). Any other model M' of K is

called an extension of M if MCTAf' and if every atomic statement defined in

M holds either in both M and M' or in none of them. M is called a prime

model of 7£ if every other model M' of 7? contains a model Jkf" of K such that

M' is an extension of M", and M" is isomorphic to Jlf.

We shall now list, for further references, some theorems proved in [8]

that will be needed in the sequel. (The first of them can serve as a definition

of the important concept of model-completeness):

1.6. A consistent elementary set of axioms K is model-complete if, and only

if, for every pair of models of K, M and M', such that M' is an extension of M,

no primitive statement Y which is defined in M can hold in M' unless it holds

already in M (cf. [8, p. 16]).

1.7. If a model-complete set of axioms K has a prime model, then K is com-

plete (cf. [8, p. 74]).

1.8. Let K be a model-complete countable set of axioms with the following

properties: (a) Any two countable models of K, which have no constants in com-

mon other than the constants of K (if any), can be embedded in a joint extension

M; (b) K has infinite models only. Under these assumptions, K is complete^1).

It should be well noted that all notions defined in this section are depend-

ent on the choice of the atomic predicates (in our case E, Q and S). Any

change in that choice automatically involves a change in the meaning of such

terms as "elementary formula," "atomic formula," "primitive formula,"

"extension," etc. Such a change occurs, in the first place, whenever entirely

new atomic predicates (undefinable in terms of the already given ones) are

introduced. In this paper, however, we shall be concerned solely with predi-

(4) In ordinary terminology the formula D„(x) means: "the group element x is divisible

by the integer n," i.e. "there exists an element z such that nz = x." Formula 1.5 gives the defini-

tion of Dn(x) in terms of our atomic predicates. Each Dn is a primitive monadic predicate.

(6) This is a modified version of Theorem 4.2.1 proved in [8, p. 74]. It is proved in the

same way as the latter, with insignificant changes based on the well known theorem by Loewen-

heim-Skolem which makes it possible to replace uncountable models by countable ones when-

ever the set of axioms is countable. The term "countable," in this paper, always means "de-

numerably infinite."
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cates that can be defined in terms of E, Q and S, such as, for instance, the

predicates D„ defined in 1.5.

It is very important, for our purposes, to note the simple fact that we

may, of course, regard such definable predicates as new atomic ones, provided

only that we treat their definitions as new axioms to be added to the originally

given system of axioms K. In this way a new system of axioms, K* say, is

obtained which we shall strictly distinguish from the original system K.

This distinction is necessary because K* contains new atomic predicates,

and, consequently, such concepts as "primitive formula," "prime-model,"

"extension of a model," etc. obtain a different meaning inK*. As we shall see,

it may happen that K* is model-complete whereas K is not. On the other

hand, it is clear that the consistency and completeness of K implies that of

K*, and vice versa; for the introduction of well-formed definitions in the

capacity of axioms has no effect on either consistency or completeness. This

fact will be used later.

The process of adjoining definable predicates in the capacity of new

atomic predicates and, simultaneously, adjoining their definitions as new

axioms, will be referred to as adjunction of new relations. It will be applied in

almost all our proofs.

2. Some completeness theorems on ordered sets(6). In this section the

predicate 5 and Axioms 1.3 will be excluded; so only the predicates E and Q

of §1 count as atomic. We shall start with Axioms 1.1 and 1.2. This set of

axioms is incomplete. It can, however, be made complete by adjoining some

new axioms, as will be shown below.

I. Let us adjoin the two axioms:

(2.1) (x)(y)(3z){Q(y, x) V [~Q(*. ») A ~ Q(y, z)]}.

(2.2) (*)(ay)(a*)[~0(*, y) A ~ Q(z, *)].

These axioms state, in ordinary language, that the ordered set under con-

sideration is densely ordered (2.1), and that it has no first and no last element

(2.2). Now we shall prove the following:

2.3. Theorem. The system of axioms for a densely ordered set with no first

and no last element in it (i.e. the system consisting of 1.1, 1.2, 2.1 and 2.2) is

complete.

Proof. First we shall show that the system of these axioms (call it K) is

model-complete. As K is clearly consistent and elementary, we may apply

1.6. Let M be a model of K, M' an extension of M, and Y a primitive state-

ment of the form 1.4, defined in M, and holding in M'. We have to show

(6) Equivalent or similar theorems have been proved by Langford [5] and Tarski [10].

However, the proofs given in this section are considerably simpler than all other proofs known

to the authors, due to the application of the theory of model-completeness.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



226 ABRAHAM ROBINSON AND ELIAS ZAKON [August

that Y holds already in M. By definition (1.4), the statement F, when trans-

lated into ordinary language, means that a particular finite system of equa-

tions and inequalities of the type

(2.3.1) « = ft        d^A        a<B,        a<B

possesses a solution (or, as we shall say, is satisfiable)C). Given that (2.3.1)

has a solution in M', we have to show that it is satisfiable already in M. With-

out loss of generality, we may simplify the system (2.3.1) by eliminating from

it all formulae of the type at^B, a<£.B, and a = B. In fact, a formula of the

type a^B is equivalent to the disjunction a<B\/a>8, where at least one

of the disjuncts must hold in M', so that the other one can be dropped

without affecting the satisfiability of (2.3.1). Similarly, any formula of the

type cc^B splits into B = a\/B<a where one of the disjuncts can be dropped.

When this process is completed we shall be left only with formulas of the

type a = B and a<8. Finally, the formulas of the type a = /3 are disposed of by

simply dropping them after replacing everywhere "8" by "a" (i.e. by eliminat-

ing 8 from the system). Thus we may assume that (2.3.1) consists only of

inequalities of the type a <B. Now let (yi, y2, • • • , y„) be a solution of that

system of inequalities in M' (so that yu y2, • • • , ynGM'); further, let

»j, 02, • • • , am be all the constants of M occurring in (2.3.1). As M' is a model

of 1.1 and 1.2, i.e. an ordered set containing all the y< and ay, we can arrange

the latter in the same order in which they follow each other in M', say

(2.3.2) yi < y2 < oi < • • • < y* < o« < y*+i < • ■ ■ < am < y„_i < yn.

Clearly, we shall solve (2.3.1) within M if we succeed in replacing the y<

by some elements of M in such a way that the inequalities (2.3.2) are pre-

served in M. As regards the constants a,-, they follow each other in M in

the same order as in M' (for M' is an extension of M; so the atomic statements

"a^B" hold in M whenever they hold in M'). All we have to do then is to

insert between the ay (and, possibly, before or after them) some elements

XiG.M, in the same way as the y,- appear in (2.3.2). This, however, must be

possible, for M is a model of K, i.e. a densely ordered set with no first and no

last element in it. Thus, by 1.6, the model-completeness of K is proved. On

the other hand, K clearly has prime models, e.g. the set of all rational num-

bers in their natural order(8). Hence, by 1.7, K is complete, and our Theorem

is proved.

II. Next we shall consider densely ordered sets which have a first but

no last element. Such sets can be characterized by a system of axioms con-

sisting of 1.1, 1.2, 2.1 and the following axiom (which replaces 2.2):

(7) The formulae of (2.3.1) only typify the equations (or inequalities) of the system, and

every one of the four types may occur a finite number of times. The Greek letters a, |3 stand for

constants of M or for the "unknowns," y\, y2, • • ■ , yn, of the system.

(8) For every densely ordered set contains a subset isomorphic to the ordered set of

all rationals; cf. [2, p. 60].
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(2.4) (3x)(y)Q(x, y) A (*)(3y)[~Q(y, *)].

Again we can prove this system to be complete:

2.5. Theorem. The system of axioms for a densely ordered set with a first

but no last element in it (i.e. the system consisting of 1.1, 1.2, 2.1 and 2.4) is

complete.

Proof. A direct application of (1.6) fails this time, for our system of

axioms (call it again K) is model-incomplete(9). So we first adjoin a new rela-

tion, P(x), defined by the axiom(10)

(2.6) P(x)-^-(y)Q(x,y).

Let K* be the system of axioms consisting of 1.1, 1.2, 2.1, 2.4 and 2.6,

with the atomic predicates E, Q, P. We assert that K* is model-complete. In

fact, let M be a model of K*, M' its extension and suppose that a primitive

statement Y (see 1.4) is defined in M and holds in M'. In ordinary language,

Y means that a particular finite system of conditions of the types

(2.6.1) a = 0, a 7* /3, a < /3, a</3, P(a), ~P(a)

is satisfiable. Given that (2.6.1) is satisfiable in M', we have to prove the

same for M. By 2.4, M has a first element, say a0. Then the statement P(a0)

holds in both M and M' [(for P(a0) is atomic; so it must hold in every exten-

sion of M](n). Hence, all conditions of the type P(a) and ~P(a) in (2.6.1)

may be replaced by a = oo and ctj^ao respectively, so that (2.6.1) reduces to

(2.3.1), and the same process as in the proof of 2.3 leads to the conclusion

that K* is model-complete, and also complete in the ordinary sense. But

then K, too, is complete, and our theorem is proved.

Theorems analogous to 2.3 and 2.5 can also be proved, in a similar way,

for densely ordered sets with a last but no first element, and for those with

both a last and a first element. In particular, in this latter case, we have to

replace Axiom 2.4 by

(2.7) (3*) (y)Q(x, y) A (3x) (y)Q(y, x)

and to adjoin, besides P(x), an additional new relation P'(x), defined by the

axiom

(2.8) P'(*)- = -(y)Q(y,x).

Then the system K*, consisting of 1.1, 1.2, 2.1, 2.6, 2.7 and 2.8 (with the

atomic predicates E, Q, P and P'), is easily proved to be model-complete

(9) This will become apparent below.

(10) In ordinary language, P(x) means: "x is the first element of the set."

(") Note that this step of the proof would fail if we had not adjoined the relation P(x).

This is why it is impossible to prove the model-completeness of the original system K.
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and complete, whence the completeness of the system 1.1, 1.2, 2.1, 2.7 im-

mediately follows.

III. We now proceed to prove similar theorems for discretely ordered

sets. Such a set can be defined as a model of a system of axioms consisting

of Axioms 1.1 and 1.2, combined with

(2.9) (x){(y)Q(y, x) V (3y)[T(x, y) A ~ Q(y, *)]},

(2.10) (*){(y)Q(x, y) V (ay)[T(y, x) A ~ Q(x, y)}},

where the relation T(x, y) (read: "if x<y, then y is the successor of x") is

defined by the additional axiom(l2)(13):

(2.11) T(x, y) —-WfefA x) V Q(y, i)].

This system becomes complete if Axiom 2.2 or 2.4 is added:

2.12. Theorem. The system of axioms for a discretely ordered set with no

first and no last element in it (i.e., the system 1.1, 1.2, 2.9, 2.10, 2.11, 2.2) is

complete. So is also the system of axioms for a discretely ordered set with a first

but no last element in it (i.e. 1.1, 1.2, 2.9, 2.10, 2.11, 2.4).

Proof. Let K be the system mentioned in the first part of the theorem

(with the atomic predicates E, Q, T). Further, let M be a model of K, M' its

extension, and Y a primitive statement defined in M. Y means this time (see

1.4) that a particular system of conditions of the types

(2.12.1) a = 8, a * ft a < ft a < ft  T(a, B), ~T(a, B)

is satisfiable. Assuming that 2.12.1 is satisfiable in M', we shall prove the

same for M (this will establish the model-completeness of K). First we note

that every condition of the type ~ T(a, 8) can be represented as

(3z) [~Q(8, z) /\~Q(z,ce)] (see 2.11) and thus be replaced by two inequalities,

z<8 and a<z [where z is to be treated as a new "unknown" in the system

2.12.1]. Furthermore, we can eliminate from 2.12.1 all formulae of the types

ay^B, a<ft and a — B in the same way as in the proof of 2.3. After these

simplifications, 2.12.1 reduces to a finite number of conditions of the two

types

(2.12.2) a<ft        T(a,B)

only. Our task then reduces to proving that 2.12.2 is satisfiable in M, assum-

ing that it is satisfiable in M'.

We shall say that an w-tuple of elements, (xi, x2, • • • , xm), is a "chain"

if every Xi is the successor of #<_i, i.e. if ~Q(xi, xf-\) AT(xi-i, *»)> *=2,

(1J) It is more convenient to retain T as a new atomic predicate than to eliminate it (and

Axiom 2.11) by substituting the value of T from 2.11 in 2.9 and 2.10.

(ls) By "successor" we mean "immediate successor."
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■ ■ • , m. From the fact that the predicates Q and T are atomic and that M'

is an extension of M it then follows that any w-tuple of elements of ¥ is a

chain in M if, and only if, it is a chain in M' as well. It is also easily seen that,

if (xi, x2, • • • , xm) is a chain in M' and one of the xt belongs to M, then so do

all the elements xt- of the chain.

Now let (yi, y%, ■ ■ ■ , yn) be a solution of 2.12.2 in M', and let

ay (j= 1, 2, • • • , m) be the constants of M occurring in 2.12.2. As in the proof

of 2.3, we may assume that the fly and y,- are arranged in one ascending se-

quence, say 2.3.2; and it is our task to replace the y< by suitable elements of

M, so that the inequalities 2.3.2 remain preserved and also all relations of

type T(a, /3) remain valid as far as they are postulated in 2.12.2. As regards

the replacement of the y< which precede all the fly or follow them in 2.3.2, it

is easy to meet these requirements, because M has, by assumption, no first

and no last element. So we have only to consider the cases when some of the

yi lie between a, and ay+i, say

(2.12.3) ay < yk < yk+i < • ■ ■ < yk+m < Oj+i.

There are two possibilities:

(I) ay and ay+i are endpoints of a chain. Then, by what has been said

above, all elements of the chain (in particular, yk, yk+i, ■ ■ ■ , yk+m) must be-

long to M (for so do fly and fly+i), so that we need not replace the yt at all.

(II) ay and ay+i are connected by no chain. As is easily seen, this means that

between fly and fly+i there are infinitely many elements of M. But then there

is certainly no difficulty in selecting from the interval (fly, fly+i) any finite

number of elements of M, in replacement of the y, in 2.12.3. It is also easy

to select them in such a way that some of them are successors of others,

whenever such relations hold between the corresponding yit so that the re-

quired conditions of the type T(a, /3) will also be satisfied.

Thus we see that the system 2.12.2 is satisfiable in M whenever it is

satisfiable in M'. In other words, K is model-complete, by 1.6. On the other

hand, the system K has prime models (e.g. the ordered set of all integers).

Therefore K is also complete in the ordinary sense, and this completes the

proof of the first part of Theorem 2.12.

The second part of 2.12 differs from the first one in that the system of

axioms 1.1, 1.2, 2.9, 2.10, 2.11, 2.4 is not model-complete. It is, however,

easily shown that it becomes model-complete if, as in 2.5, the new atomic

predicate P and Axiom 2.6 are adjoined. The rest of the proof then runs on

the same lines as in the first part of the theorem.

The case of a discretely ordered set with a last but no first element is

treated in exactly the same way as above.

Finally, we take up the system of Axioms 1.1, 1.2, 2.9, 2.10, 2.11, 2.7, for

a discretely ordered set with both a last and a first element in it. This system

is incomplete for it does not state whether or not the set is finite. We shall
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show that it becomes complete if the following sequence of axioms (which

exclude the finite case) is added:

(3x!)(3x2) ■ ■ ■ (3Xn)[~E(xi, x2) A ~ E(xlt x3) A • • •

(2.13) A ~ E(xh xn) A E(x2, xs) A • • •  A~ E(x2, xn) A • • •

A ~ £(x„_i, xn)], n = 3, 4, 5, • • • .

2.14. Theorem. The system of axioms for an infinite discretely ordered set

with a first and a last element in it (i.e. the system 1.1, 1.2, 2.9, 2.10, 2.11, 2.7,

2.13) is complete.

Proof. This system (call it K) is transformed into a model-complete sys-

tem K* by adjoining the atomic predicates P and P', and the Axioms 2.6

and 2.8. This is proved in the same way as in 2.12, with the deviation that

the system 2.12.1 now contains also formulae of the types P(a), ~P(a),

P'(a) and ~P'(a). The completeness of K* then is derived from the existence

of prime models, e.g., the ordered set of all positive integers (in natural

order) followed by all negative integers in the reverse order:

1, 2, 3, • • • , n, ■ ■ ■ , - n, ■ ■ ■ , -3, -2, -1

(in other words, the prime model is an ordered set of type co+oj* where oj is

the order type of the natural series).

The results of this section can be summed up in one theorem as follows:

2.15. Theorem. Two densely ordered sets (and, similarly, two infinite dis-

cretely ordered sets) are elementarily equivalent if, and only if, each of them, or

none of them, has a first element, and each of them, or none of them, has a last

element.

In fact, the completeness of the systems of axioms analyzed above, obvi-

ously, implies that any two models of such a system must have all their ele-

mentary properties in common, as all such properties must be deducible from

the system of axioms in question.

If rj and co denote the order types of the set of all rationals and the set of

all positive integers respectively (both sets in their natural order), we may

also say that there are only four elementarily distinct types of densely ordered

sets, viz.

V,       i7+l,        1+1.        1 + V + 1,

and only four elementarily distinct types of infinite discretely ordered sets,

to wit:

CO, CO*, CO +  CO*, CO*  +  CO

(here w* denotes the order type reverse to co).
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In this way a complete classification of all densely ordered sets and all

infinite discretely ordered sets has been achieved.

Now we shall take up the study of ordered groups.

3. Some algebraic properties of abelian groups. We shall need several

concepts and propositions referring to ordered abelian groups:

3.1. Definition. Given an abelian group M and a positive integer p, we

define the pth congruence invariant of M (denoted by "|j>]M" or, briefly, by

" [p]") to be the maximum finite number of elements in M which are mutually

incongruent modulo p(li). If such a finite number does not exist, we put

[p]= oo, without distinguishing between infinities of different cardinalities.

The symbol °o will be treated as a positive number, with the usual conven-

tions as to the arithmetical operations and inequalities, [p] will be called a

prime invariant of M if p is a prime.

3.2. Definition. By a linear system we mean any finite system of equa-

tions, inequalities, congruences and (or) incongruences of the form

n

E 2ijXj = a,, (i = 1, 2, • • • , mi);
j-1

n

Eso'*; < ff»> (* = mi + 1, wi + 2, • • • , m2);
y-i

n

E?iy*y = a.- (mod r%), (i = m2 + 1, m2 + 2, • • ■ , md);
y-i

n

E qijXj j& at (mod r<), (i = w3 + 1, m% + 2, • • • , m4),
y-i

where the #;,- are given integers, the xy are unknowns, the rt are positive

integers, and the at- are given elements of an ordered abelian group M. The

a,- will be called the "constants" of the system.

3.3. Definition. An ordered abelian group M is said to be

(i) discretely ordered if it contains a smallest positive element (this ele-

ment is called the unit of M).

(ii) densely ordered if it has no unit.

(iii) regularly discrete if M is discretely ordered and such that [p]M = p

for every prime p.

(iv) regularly dense if, for any positive integer p and any elements

o, bEM (a<b), there is an element xEM (a<x<b) which is divisible by p.

(v) regularly ordered if M is regularly discrete or regularly dense.

(vi) archimedean if, for any positive elements x, yEM, there is a positive

integer n with nx>y.

(l4) As usual, we say that two elements x, y E M are congruent modulo p (p being a posi-

tive integer), and write x = y (mod p) if there exists an element zE M such that x = y-\-pz. In

particular, * = 0 (mod p) means that x is divisible by p.
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The following propositions can be proved (1B):

3.4. Theorem. Every discretely ordered archimedean group is regularly dis-

crete. Every densely ordered archimedean group is regularly dense(n).

3.5. Theorem. Let p\, p2, ■ • ■ , pn, ■ ■ ■ be the ascending sequence of all

primes, and m\, m2, • ■ • , mn, ■ ■ ■ an arbitrary sequence where each mn is

either a non-negative integer or oo. Then there always exists a densely ordered

archimedean group whose prime invariants, [pn], are given by

(3.5.1) [pn] = (£,)*",        « = 1, 2, 3, •••

3.6. Theorem. In every ordered abelian group the sequence of its prime in-

variants [pn] is as indicated in 3.5.1, i.e. every prime invariant is a (possibly

infinite) power of the corresponding prime.

3.7. Theorem. Let M and M'(MQM') be two regularly discrete groups

having one and the same unit [see 3.3 (i) ] and such that M is a serving subgroup

of Af'(17). Then every linear system [see 3.2] which has a solution in M' can

also be solved in M, provided only that its constants a,- all are elements of M.

The same theorem holds also for any two regularly dense groups, M and

M', with the modification that, instead of having the same unit, the two

groups must have the same prime invariants, i.e. [/>]M = [^]M', for every

prime p.

3.8. Theorem. Let A and B be two countable disjoint regularly dense groups

having the same prime invariants. Then there exists a regularly dense group M

such that: (a) A and B are serving subgroups of M; (b) M has the same prime

invariants as A and B(ls).

Remark. It is useful to note that any formula of the form 3.5.1 is ele-

mentary. In fact, the formula [p] = g, where p, q are positive integers, can be

(16) These propositions will be formulated here without proof, in the form of an announce-

ment only. The proofs will be given in a separate article [ll] to be published by one of the

present authors, so as not to overload this paper (which is primarily metamathematical) with

purely algebraic arguments.

(16) The converse statements are not true as can be easily proved by examples. For in-

stance, the additive group of all complex numbers, ordered lexicographically, is regularly

ordered but not archimedean. Thus the class of all regularly ordered groups is larger than that

of all archimedean groups.

(") "Serving subgroup" in the sense of Prufer's "Servanzuntergruppe" [6], or Kurosh's

"serving subgroup" [4]. Kaplansky [3] and Braconnier [l] use instead the term "pure sub-

group. " Note that the subgroup of an ordered group is supposed to be ordered in the same way

as the containing group.

(Is) The zero-elements of A and B must, of course, be "identified" when they are embedded

in M. In our terminology, however, it suffices that their zeros become "equivalent" in the sense

of our axioms 1.1. As the relation E need not coincide with logical identity, the groups A and B

may still be considered as fully disjoint (the zero-elements of A and B are "equivalent" in M,

but not logically identical).
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written as the conjunction of the following two formulae (in which all the

congruences and incongruences are modulo p)(19):

(3.9) (3x0(3^2) • • • (3xq)(y)[y =• Xi V y = x2 V   • • • Vy ■» *,],

( 3Xi) • • ■ (3x,)[xi ^ x2 A Xi ^ x3 A • • • A Xi ^ xq A ■ ■ ■

A   *<,-l    ̂     Xg] .

On the other hand, every congruence, say y=x (mod n) is an elementary

formula, for it can be rendered as

(3.10) (3z)[Dn(z) AS(z,y,x)\

where Dn is defined as in 1.5. Thus it suffices to replace in 3.9 and 3.9° every

formula of the form "y = x<" or uy^x" by its explicit expression in order to

obtain the elementary representation of " [p] =q," with a finite q. If, however,

a— <», we replace 3.9 and 3.9° by an infinite sequence of elementary formulas,

viz.:

ID ^^ " ' ' (Xm)(3y)[y ^ xi Ay ^ x2 A • ■ ■ Ay f^ xm\,

m = 1, 2, 3, • • • ,

where again each congruence and incongruence is to be expressed in terms of

the atomic predicates, as shown above. The sequence of formulae 3.5.1,

which specifies the prime invariants of a given group, can then always be

written as a countable collection of elementary formulae, in terms of the

predicates E, Q and 5. Together with our basic axioms, 1.1, 1.2 and 1.3, such

a sequence of formulae can be treated as a system of axioms, which we shall

call a system of axioms for an ordered abelian group with specified prime in-

variants^0). Theorems 3.5 and 3.6 can now be interpreted as a statement of

sufficient and necessary conditions for such a system to be consistent, and

can be reformulated as follows:

3.12. Theorem. A system of axioms for an ordered abelian group with

specified prime invariants is consistent if, and only if, in all axioms of the form

3.9 and 3.9° contained in the system, the positive integer q is a power of the cor-

responding prime p (the exponent of the power being a non-negative integer) (21).

4. Classification of regularly ordered groups. We are now able to tackle

our main problem. Our starting point will be the system of Axioms 1.1, 1.2,

1.3 which we shall briefly call "1.1-1.3." We shall also consider the (counta-

(ls) Formula 3.9 expresses the fact that there are not more than q elements incongruent

modulo p, while 3.9° states that there are at least q such elements. Combined, they state that

[p]=o.

(20) Of course, there are infinitely many such systems, depending on the choice of the prime

invariants.

(") No restriction is necessary with regard to axioms of the form 3.11.
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ble) system arising from 1.1-1.3 through the adjunction of the relations

Dn(x) and the Axioms 1.5, for n = 2, 3, 4, • • • . In this extended system, the

atomic predicates are E, Q, S and all the Dn; it will be referred to as "1.1-

1.5."(22).

I. First we shall analyze discretely ordered groups. Such a group can be

regarded as a model of a system of axioms consisting of 1.1-1.3 (or 1.1-1.5)

and the following two additional axioms introducing a new atomic predi-

cate <7(23):

(4.1) (3x)U(x).

(4.2) U(x) • = ■ (3y) {S(y, y,y)A~ Q(x, y) A (z)[Q(z, y) V Q(x, z)]}.

In order to obtain the system of axioms for a regularly discrete group [see

3.3 (iii)], we have to add a sequence of axioms stating that

(4.3) [p] = P,       for every prime p.

This system of axioms is elementary (for the axioms 4.3 can be expressed

in elementary form, as was shown in the final Remark to §3). It is also con-

sistent, as it has models (e.g., the ordered additive group of all integers). We

shall now prove the following:

4.4. Theorem. The system of axioms for a regularly discrete group (con-

sisting of Axioms 1.1-1.3, 4.1, 4.2 and 4.3) is complete.

Proof. Let K be the system of axioms in question, and let K* be the sys-

tem arising from it through the adjunction of the relations Dn(x) and axioms

1.5;ri.e., K* consists of 1.1-1.5, 4.1,f4.2, 4.3; and its atomic predicates are

E, Q, S, U and all the Dn. We shall show that K* is model-complete. Let then
M be*a model of 7£*,*M'{its extension, and Y a primitive statement defined

in M in terms of the atomic predicates E, Q, S, U and Dn. In ordinary nota-

tion, Y states that a finite system of conditions of the types

a = ft     a + 8 = y,    a < ft U(a),    a = 0 (mod n),
(4.4.1)

a t^ ft     a + B ^ 7,    a < ft     '~f/(a),    a ^ 0 (mod )n,

is satisfiable. Here the formulae of the type U(a) and ^U(a) can be re-

placed by a = l and a^l respectively, where 1 denotes the unit of M(2i).

(") Noteworthy is the change caused by the adjunction of the relations D„(x), with re-

spect to model extensions (see §1). The statement that M is a model of 1.1-1.3, and M' its

extension, simply means that M is a subgroup of an ordered abelian group M'. If, however,

1.1-1.3 is replaced by 1.1-1.5, the same statement means that M is a serving subgroup of the

ordered abelian group M'. [For now all the formulae Dn(x) are atomic; so whenever D„(x)

holds in M', it must also hold in M, and vice versa. ]

(M) The predicate U and Axiom 4.2 could be eliminated by substituting the value of

U(x) from 4.2 in 4.1. It is, however, convenient to retain J7as an atomic predicate. In ordinary

language, U(x) means: "x is the unit of the group."

(J4) The same element 1 is the unit of M' as well. This follows easily from the fact that

(7(1) is an atomic formula, and that M' is an extension of M.
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Furthermore, as in the proof of 2.3, we can simplify the system 4.4.1 by

eliminating all inequalities of the type ct^Q, a</3 and a+p^y. After these

simplifications we shall be left with a system containing only linear equations,

congruences, incongruences and inequalities of the type ct<P; which is a

special case of what we have defined as a linear system (see 3.2), with its con-

stants in M(2b). By 1.6, we have to show that this system has a solution in M

assuming that it is satisfiable in M'. But this fact immediately follows from

Theorem 3.7 if we take into account that Mand M', being models of K*, are

regularly discrete groups, have the same unit (see footnote) and, furthermore,

M is a serving subgroup of M' [this is a consequence of the adjunction of the

relations D„(x); see footnote 22]. This completes the proof of the model-

completeness of K*. On the other hand, as is easily seen, the ordered additive

group of all integers is a prime model of K* [for in every regularly discrete

group there is a serving subgroup isomorphic to the group of integers, to wit:

the subgroup of all integral multiples of the unit]. Hence, by 1.7, K* is also

complete in the ordinary sense, which implies the completeness of K as well.

Thus the theorem is proved.

II. Next we shall consider regularly dense groups. The class of these

groups can be characterized by an elementary system of axioms consisting

of 1.1-1.5 (with the atomic predicates E, Q, S and Dn), and the following

sequence of axioms:

(4 5) (*)(y) {Q(y, *) V (32) [~Q(g, x) A ~ Q(y, z) ADn(z)}},

n = 2, 3, 4, • • • .

If, in addition, the prime invariants are specified by adjoining still another

sequence of axioms, of the form 3.5.1 (translated into formal language as

shown in formulae 3.9, 3.9° and 3.11), then a new elementary system of

axioms (with the same atomic predicates) is obtained which we shall call a

system of axioms for a regularly dense group with specified prime invariants (26).

Such a system is consistent if, and only if, it satisfies the requirements of

Theorem 3.12. We shall now prove that, if consistent, it is also complete.

4.6. Theorem. Let K be a consistent system of axioms for a regularly dense

group with specified prime invariants. Then K is complete.

Proof. Exactly as in 4.4 we show that K is model-complete (the proof is

even simpler due to the absence of the predicate U). As regards the complete-

ness of K, we apply in this case not 1.7 but 1.8 and 3.8. Theorem 3.8, when

translated into our formal terminology, states that any two disjoint countable

models of K can be embedded in a joint extension. On the other hand, K is

obviously a countable system of axioms with no constants, and with infinite

models only. Hence, by 1.8, the completeness of K follows, and our theorem

is proved.

(") The constants belong to M, for Y has been supposed to be defined in M (see §1).

(M) Footnote 20 applies to this system too. The predicates Dn and Axioms 1.5 could, of

course, be eliminated, but it is more convenient to leave them in the system.
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Theorems 4.4 and 4.6 can be summed up as follows:

4.7. Theorem. All regularly discrete groups are elementarily equivalent.

Two regularly dense groups, A and B, are elementarily equivalent if, and only

if, they have the same prime invariants, i.e. if [p]A = [p]B for every prime p.

This theorem leads to a complete classification of all regularly ordered

groups and, among them, all archimedean groups (see 3.4). In this classifica-

tion all regularly discrete groups form one separate subclass. The class of all

regularly dense groups is divided into subclasses each of which consists of

groups having the same prime invariants. Thus every specification of the

prime invariants by means of a sequence of the form 3.5.1 generates exactly

one subclass of regularly dense groups. These subclasses are not empty as

each of them contains, by 3.5, at least one archimedean group. There are as

many subclasses as there are sequences of the form 3.5.1, i.e. they form a

family of continuum power. The subclasses are clearly disjoint.

Inside each subclass, the groups belonging to it are elementarily equiva-

lent, i.e. they cannot be distinguished from each other by any properties

formalizable in the lower predicate calculus. As each subclass contains at

least one archimedean group, it follows that every regularly ordered group is

elementarily equivalent to some archimedean group. Thus we may say that the

concept of a regularly ordered group is the elementary counterpart to that

of an archimedean group(27). This throws a new light on the significance of

that concept. A more detailed study of regularly ordered groups will be left

for a separate paper [11 ].
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