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Coalescence Instability of Magnetic Islands 

J. M. Finn and P. K. Kaw 

Plasma Physics Laboratory, P~inceton University 

Princeton, New Jersey b8540 

ABSTRACT 

Th" -NOTICE-----., 
spo~~:;r~ was pre~ared as an account of work 
the United y Stth~ Uruted States <?overnment. Neither 
Research and 0: es nor the Uruted States Energy 
their em lo ee velopment Administrat_ion, nor any of 
subcontra!to~ s, norh _any of theu contractors, 
wamnty ex ~essor '· eu . employees, makes any 
liabilit • P or lmptied, or as.sumes any legal 
or useful~re:sponsib~ty for t~e accuracy, completeness 
process dtscl ofdany mformatJon. appararu•. product or 

' infringe priva~!fy ~:,;:P,~:~.ts that its use wo~Jd not 

We have investigated the stability of a 

periodic magnetic island structure using the ideal 

MHD equations. An instability is found which 

describes the tendency toward coalescence of 

parallel currents in the neighboring islands. It is 

expected that this instability will proceed at a 

fast MHD rate as long as the forces driving the 

instability can overcome the stabilizing forces due 

to the compression of the magnetic field between the 

islands. Beyond that phase, resistivity is expected 

to dominate the tendency toward island coalescence. 

Islan~ ~nales~en~e of this kind can explain why in 

the observation of tearing mode instabilities in 

tokamaks, only the modes with minimum values of 

JASTER m and n are seen. 

tb 
DISTRIBUTION OF THIS DOCUMENT IS UNLIMlTEQ 
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I. INTRODUCTION 

It. is well-known that a current layer separating two regions 

of oppositely directed magnetic fields in a resistive plasma is 

unstable to the ·tearing mode instability which produces two-

dimensional magnetic configurations, sometimes called magnetic 

islands. The linear and nonlinea~ development of such configur-

ations have been of great interest in astrophysics and plasma 

physics for more than a decade now.1· 2 

Recent observations of large amplitude helical distortions 
3,4 

around rational magnetic surfaces in tokamaks have led to 

a great deal of renewed interest in the properties of magnetic 

islands. Magnetic islands in tokamaks are basically two-dimen-

sional configurations with helical symmetry which confine the 

plasma in localized r-8 domains in and around the original 

rational magnetic surface. In this paper we investigate the 

stability of a periodic array of magnetic islands to those ideal 

MHO perturbations which have a tendency to coalesce smaller 

islands into larger ones. Such a coalescence tendency is known 

to be energetically favorable and has been conjectured upon 
5 

previously. 

A particularly simple island configuration is the infinite 

array in slab geometry shown in Fig. l. This configuration is 

especially suited to space plasm~ and astrophysicial applications 

and is also a reasonable approximation to a very high m number 

mode in a tokamak; the ignorable direction (z coordinate) is the 

direction of helical symmetry. Also shown as inserts in Fig. l 
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are plots of the plasma current j along the symmetry direction z . 

as a function of the coordinate x of monotonic variation.and 

the coordinate:y of periodic·variation. Note that a magnetic 

island structure can also be in·terpreted as an array of current 

f-ilaments superposed on a basic minimum current J. . The_. 0 points · zm· 

are the points with the peak current in the filament and~.the X 

points are thec~oints with minimum current. The ~oal~s~~nce 

tendency is no~'easy to understand on physical grounds s~pce it 

simply means that parallel. currents (and hence the 0 poit1ts) 

attract each otper. Now it is well known that in i-:'l.?.al M.m; a 

moving fluid carries flux with it. Since the flux cannot move 

through X points (where the resultant electric fields wo-uld drive 

infinite current in· the zero-resistivity limit), the coalesc- ' 

ence tendency of two 0 points produces a piling up of flux on .. 
both sides of t~e X point. This produces a stubilizing magnetic 

pressure which opposes the coalescence tendency. The p~esent 

investiqation is thus aimed at determining whether conditions 

can be found in~the limit of linear MHD theory where the"destab-

ilizing tendency due to current attraction can overcome the 

stabilization due to magnetic field buildup near X points. 

We have us~d the energy principle 
6 

for studying 'the 

stability of magnetic islands. We restrict our attention to two-

dimensional perturbations. i.e., perturbations with the s~me symmetry • 

as the island itself. Furthermore, we consider only incdmpressible 

perturbations ~R the x-y plane. In space plasma applica~ions this 

can be justified as a high ~ approximation wh~reas in the low B 
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tokamak plasma this is justified because of the large toroid~l 

magnetic field which cannot be compre~sed easily and therefore 

prevents compression of the plasma in ideal MHD. This puts fur­

ther constraints on the choice of perturbations. Using the 

results of an approximate normal mode analysis we choose the 

trial function in such a manner that the coalescence velocity 

(i.e., they velocity) is lo6alized near the 0 points i.n they 

direction and also reverses sign in the neighborhood ofthe edge 

of the island in the x direction. Our energy principle calculation 

shows that a coalescence instability can occur in an island 

configuration with zeroth-order current fluctuation within the 

island as small as a few percent. The calculations also indicate 

that a threshold amplitude of the current fluctuation in the 

island must be exceeded in order that the coalescence instability 

may occur. In addition, to make the investigation more realistic 

for tokamaks, WQ have also done the calculations in cylindrical 

geometry, with very similar results. 

Let us sp~culate a little on the consequences of this instab­

ility. In ideal MHD, the X points are fi~ed relative to the fluid. 

Thus the instabiLity will result in a distortion on the current 

profiles in a fixed qrid of X points, the distortion being such 

as. to bring the current maxima towards each other [Fig. 2a] . 

Inclusion of resistivity should permit the merging process of two 

islands to proceed smoothly to completion with two 0 points and 

one X point disappearing and a new 0 point emerging [Fig. 2b]. 

The whole merging process should proceed on some intermediate 
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time scale between~resistive and MHO time scales and can .there-

fore be quite rapid. To speculate further, it is possible that 
.. ) 

the merging rate would be gqverned by Petschek's mechanism·, 

and would therefore approach the MHO rate. In tor·oidal 

~c9nfigurations, the consequence of this merging would be that 
' . ~ 

:?.high m, n modes continue to coalesce until the minimum values 

,~df m and n consistent with the helitity requirement of the pa~t-

~icular rational surface is reached. Observationally, the~e is 

;.·good evidence that ·high m, n values are observed early in. tokamak 

:i:thscharge and d'.:j.:sappear later 'leaving only low m, n valu~s behjnd 3 • 

q·•There is also definite computer simulation evidence for this kind 

<of·.· coalescence of magnetic islands 7 • 

It is inte.r:esting to note that the instability requires 

. ··.~-.J =I 0 within the island. Thus it appears that the saturated 
·:3;.\jJ .. z 

-st~lo of the no~linear tearing mode in some of the recen~ theories 

"fB= I '""Y not be unstable to thesP. pc rturbations. However';· these 

,:processes could_ ~e takinq place during thP nonlinear growth phase 

when oJz t 0 and the teinporal growlh i::; algebraic 9 and hence 
3\ji 

·slow. 

II. EQUILIBRIA AND BASIC EQUATIONS 

We study the phenomenon of coalescencP. of the currents within 

magnetic islands by considering per~urbations on an exaci MHO 

equilibrium possessing islands. Such an equilibrium is char-

acteriz~d by a flux function \jJ
0 

whi~h satisfies the equation 

• 

• 
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( 1) 

for any arbitrary functional form f. The simplest choice for f 

would be a linear function. However, the solutions to the linear 

equation 

in slab geometry , 

t/J
0 

= cos kx + E cos [a (1 + a 2 ) -l/2kx] cos [ (1 + a 2-l/2ky] (2a) 

and 1n cylindrical (i.e., helical) geqmetry [10] · 

"· = J (kr) + E J (kr) cos (mB k
2

z) 
'~'o o rn 

( 2b) 

are unacceptable because they lead to island chains either very 

close to each other or to the walls. Fortunately, there is a well 

known exact equilibrium in slab geometry [llj, which can be readily 

extended to the cylindrical case (as shown below) and does not 

suffer frnm the.sP. defects, It satisfies the equation 

2 2 4nj (l/J ) = (1 - ~:. ) k exp ( - 21/J ) z z 0 

and gives 

l/1
0 

= ln (cosh kx + E cos ky) 

This is a generalization to two dimensions of the tanh profile 

By ·· tanh x. We may thus write the P.qnilibrium field as 

~0 = B 
p 

e 
-Z 

X 'ill/J 
0 

( 3) 

( 4) 

As already mentioned, we assume the perturbations to have the 

same symmetry as the equilibrium. We can thus introduce a pert-

urbation flux function t~J 1 (x,y}·satisfying B = e x 'ill/J 
-1 -Z l. 

;.•,, 
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Furthermore, as discussed in the introduction,we assume incomp-
.. . . 

ressibility of.the velocity pertubations in the x-y plane; hence 

we may introduce the velocity potential ¢(x,y) satisfying 

v.l. = e x v<P . ..-In a tokamak plasma, this is justified by the large 
-Z 

toroidal field (BT >> Bp) in the z-direction. For spac~ plasma 

-applications, incompressibility is just~fied by a high B approx-

;imation. (For B >> 1 all phenomenR rnnqi~er~d arc co alow eompd~e~ 

to sound wave time scales that density perturbations gei· washed 

:out). In terms of the functions <P and ~' the linearized ideal MHD 
·., 

equations for perturbations around the island equilibrium, read 
, .. 

a~l 
= - v~v~ = - e • ( 'il<f> X \7~0), at . 0 -z 

\72~ = 4nj /B , ('5) 
z p 

a \72¢ !.lo·'iljzl + ~l·'iljzo D (lt ·-

·-.. 
'ilj z ]) + B c ·('il~ X Vjzo L = B e • ( v~ X 

p-z o P-Z 1 

In -the third equation we have assumed that the density P 

is constant. This is consistent with the assumption that 

most of the motion occurs near the islands, which are 

assumed to be n:arrow. Assuming that ¢ and ~ vary in. time 

as exp(yt), and expressing the equations in terms of Pof~son 

d f . d. b [f ) -- Clf Clg Clf Clg we f1'nd brackets e 1ne y ,g - --dx ay ay ·ax- ' 

• 
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our slab model assumes that the plasma extends to infinity. 

Thus the energy principle for .this equilibrium involves no bound­

ary terms, and can be expre~sed in the form 

( 7) 

where the integral extends over the total plasma volume. Since 

we are concerned with incompressible perturbations, we also have 

the constraint 

( 8) 

where the integral is along
1
a flux surface of ~ 0 . The first term 

'\ ' 
in (7}, which is stabilizing~ is due to the term j 1 x B~ in the 

- -0 

equation of motio~[and thus the first term on the right hand 

side of 6a)), and is associated with the force encountered in 

trying to squeeze the flux surfaces up against the X points. The 

second term, which is destabilizing in our exampl~, is due to the 

term j 0 x ~l in the equation of motion [and hence the second 

term on the right hand side of (6a)], and represents the attract-

ion of the current filaments in adjacent islands. 

So far we have discussed the slab model. For a tokamak 

plasma this is a good approximation to the actual situation only 

for large m. For smaller m, geometrical effects can play a role 

and so it is more pertinent to use a cylindrical (i.e., 

helical) model. One can readily extend the exact slab equilibrium 

given by Eq. (3) to the cylindrical case. By making .the sub-

stitution x = ln(r/r
0

) we note that the function 
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1jJ 0 = ln f:c.osh mx + E: cos (m8 + kz) ] + x 

or 

satisfies the· equation 

2'k B +4nmJ· (1)J
0

) . z z z 
2, -21JJo - E: e . 

.. 
-.The operator 

92 1 a ::1 
2 ·2 

= m a ar' r ar + 2 ~ 2 r ' r a·T 

·with T ~ m8 + kz z is the usual Laplacian in cylindrical geo­

:metry with he],_ical symmetry and incorporates the large -~spec.t 

t . . ' . k2 2 2 d . :.ra 10 approx1.mat1on r < < m . 'Eq. ( 9) ef .tnes the flux z 

:"ffunction for our cylindrical equil.ibrium. 

Eqs. ( 6) :for the perturbation.s retain the same form as 

!b:e-fore provided we use the fact that in terms of the variables 

i(r, T) the Pois'son bracket becomes 
i ;". ~ . 

[ f g 1 = ~---: a r a g 
I r. Or aT 

and also substitute the operator 9~ for operator 9 2 

As far a~ the energy principle calculation goes, i~'the 

cylindrical mo~el we would like to apply the boundary condition 

of a conducting wall at the plasma edge. However, the equilib-

rium (9) has no surface r = constant where Br is zero. Never­

theless, we may require the disp1acement to be zero o~ -~orne 

surface r = b . W.= then expect the integral over the vo·lume 

r < b to be nea~ly independent of b if b is large enou~h; ~he 

., 

• 
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expression for oW in the helical case is, except for an unimp­

ortant overall factor of m- 2 , identical to (5) if we replace 

19~ 1 1 2 by 19 2 ~ 1 1 2 , where 

IV2 f!r,tl 1
2 ~ (~~)

2 

+ ~ (~~/ 
and, as· before, replace 9 2 by 9~. The same is true of the con­

straints ( 8) . 

Since the mode we envision is driven by the zeroth order 

current fluctuations, which are largest inside and near the 

islands, we expect it to be localized near the rational surface 

However, the localization cannot be too great if the mode is 

to be unstable, since 19~ 1 1 2 is stabilizing. In particular, the 

rational surfqce cannot be too near the conducting wall (in the 

cylindrical case). Also, if the equilibrium model has more than 

one set of islands, we must require that fhey· be sufficiently 

far apart. This is because we do not want the interaction of 

two distinct chains of islands to interfere with our study of 

interactions within orie chain. It is for precisely these 

reasons that we must reject the equilibria (2a) and (2b) . 

We expect the perturbations to cause two neighboring islands 

to approach each other. Fig. ·2a shows the expected mode 

structure superimposed upon the equilibrium flux surfaces tor 

the case of slab geometry. The y-component of velocity should 

vanish at the X-points (y = 0, 2n, ... ) and therefore the 

velocity potential ~ should be of the form · 
()() 

~(x,y) =f=~~,e(x)sin(2t- l)ky/2. (10) 

The functions ~t(x) are odd in x and localized near the island, 

. lk I 1/2 1.e., near x ~ £ • 
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III. NORMAL MODE EQUATIONS FOR SLAB MODEL 

We now pr6ceed to. study the normal mode equations (6) 

using the equilibrium (3). We shall assume £ << l, Furthermore, 

we approximate.~he velocity potential ~ in Eq. (10) by 

'· This is obviously a crude approximation 

because the equilibrium couples all the harmonics ~l with 

each other. J~ fact, our calculation will show that in this 

<?-pproxima tion, the normal monP PIJl..lationc ··do not t:!.x.llll.Ji t 

any instability. The-coupling to higher harmonics is 

therefore essential for an instability calculation. However, 

the normal mode.analysis with the inclusion of one or more 

harmonics becomes completely intractable. That is why we 

have to resort to an energy principle calculation in th~\next 

section. The calculations of the present section should 

~h~refore be pr~marily treated as a guide for the choice of • 
t~ial functions~in the 8W calculation. 
-·· ::. 

Substitutihg (6a) into (6b), thereby eliminating ~l' 

WG find 
• 

a 2 ~, 0) ~l]:· · 
a 2 axav. 

y -

:))] ( ll) 

It is interesting to note that the 

term ~ I ... 
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Now, if we approximate ¢ by ¢ (x)sin~ y, 
1 

(at this point we express x and y in terms of the dimensionless 

v3riables kx and ky), Eq. (11) reduces, after some algebra, to 

2(' 1111 i ¢) 
1 ( 2 £ 

)¢1 A .p - = I6 tanh X - coshx 1 

sinhx 
¢1 3 2cosh x 

~ (tanh
2

x 
£ 2£ ) II 

coshx 3 ¢1 
cosh x 

2 . h I I I. ') I I I I 
t. Sl.n X 

¢1 + 
E:"" 

¢1 (12) 
3 ') 2 cosh x ... cosh x 

(Primes denote derivatives with respect to x.) 

We have assumed E •<l, and have neglected higher harmonics 

3 5 (sin, cos of ~y, ~y.) 

For the purpose of solving (12), the plane splits naturally 

into two regions, the inner region(jxj << £112 ) ·and the outer 

region(jxj >> £1 / 2 ). If A2 is ordered to he-£, the outer region 

effectively has E:,A 2 = 0 and hence (12) reduces to 

tanhx + 
2 I 

--=-2- ¢1 
cosh x 

1 
4 tanhx ¢ 1 

0 . 

The two li~early independent solutions of this equation 

are ¢+(x) and ¢_(x), defined by 

± "'2 = e "Y ( 13) 
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Since ¢
1 

must_be odd'in x, and must vanish as x + ± oo, 

1/2 the outer solution is ¢~(x) for x > E . 

-1/2 In the· i~ner solution we expect d/dx to scale as E , 

and so we define ~ = 2 1/ 4 E~l/ 2 x. Using E << 1 and 
I 

remembering A~ - E, . ( 12) reduces t'o the fourth order 

equation 

' + 1 \ "1 ';f 
- 0 

Where a = 2_.l/ 2 ( A 
2 Jc - 3/4 ) : E ' th' ' 11 ~ ,xpress1ng 1s equat1on 

(14) 

in·terms of W ~ d¢ 1/d~ and integrating once, we find that 

W' satisfies the inhomogeneous Weber equation 

(15) 

where K is, a~ present, an arbitrary constant. Unon 

Fourier transforming with respect. to the variable k 1 

(15) becomes 

d 2w -
dk •z - 4 ( k I 

2 + a ) w = 8 TI K 0 ( k I ) .. (16) 

The solution which is even in k 1 and vanishes as k 1 + oo is 

W ( k 1 
) = 2 TI K U 1 (a , 0 ) -l U (a , 2·1 k 1 I ') , (17) 

where U is the parabolic cylinder function which vanishes 

as k 1 
+ oo [12] The constant K is·determined by matching 

W(~) as ~ + oo with (13) as x + 0. The result is 

• 
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1 !00 

W(~) = - 314 1; 2 , U(a,2k') cos .k'~ dE' 
2 E u (a, 0) 

0 

(18) 

To obtain an eigenvalue condition we now match 

ai}J 1;ax between the inner and outer regions. Equation (6a) 

shows that, if .. we again ignore higher harmonics, 1}J 1 takes the 
1 . 

form 1}J 1 (x) cos 7 y, where 

. -1 
1}J 1 = (2y) [tanhx.1 (x) + E¢i(x)/coshx] . 

Also, (6b) shows 

4rrpy ¢ 11 = £ (ljJ', • _ _! ,1, 1
) _ ! tanhx ('Jo 11 · - ], 1jJ ) 7 1 2coshx 4 '~'1 2 '~'1 4 1 

p 

In the inner region, these become 

and 

2 
d I}Jl 

~ 7 
Substituting (21) in the first term on the right of (22), 

dividing by ~ and integrating, we find 

(\I = 

(19) 

( 2 0) 

( 21) 

(22) 

( 2 3) 
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Therefore, usihg· (18) we find 

(24) 

To complete th~. matching, (6a) and (13) show that \jll in the 
.. 

outer region is_given by 

(1+2t~nnx) . 

This leads to 

6' .., 3/2 ( 2 5) 

The eigenvalue'condition is given by (24) and (25). An iJP.stability 

e~ists if there'is a solution with a~ac = -3x2 11 2;4. However, 
.. 

i t~""can be shown ·that the right-hand. side of ( 24) is negative for 

a=>ac;· [in fact both the integral and the. denominator U' (a.,.O) van-

i~h~at a = - 1/2] and th~refore no instability occurs. __ 

There is an·obvious case for the extension of above normal 

mod~ calculation to a situation where higher harmonics in (10) 
·: 

are retained.. However, as mentioned above, the calculations turn 

out to be intra6table. The basic difficulty is that in the inner 

region all the harmonics couple to each other very strongly. The 

inner region eq~~tions are thus an infinite chain of coupled 
.• . 

second order differential equations with no obvious small .para-

meter. Since t~e normal mode· calculation turned out to· be so 

difficult, this motivated us to look at the stability using the· 
~ . 

energy principle. This is discus.sed -in the ·next section;~:·- Results .. ; 
r· 

(13). and (18) derived above are used to construct appropriate 

ttial. functions ,for the 8W calculat~on in the next sectiqp. 
;-1 

;} 
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IV. ENERGY PRINCIPLE 

In this section we present the results of numercial integ-

ration of Eq. (7), both for slab and helical geometry. We intro­

-1 
duce a displacement potential n = y ¢ so that the perturbed 

flux is expressed in the form 

where ~ 0 is given by (3) and (9)· The constraint (8) is automatic­

ally satisfied if we express ~l in this form. 

We first treat the slab model. For a trial function we use 

the properties of ¢ (and hence of n> derived in the previou~· 

section. We approximate (10) by 

( ) = ( )(. 1 + . 3 + Q • 5 + ) n x,y n 0 x s1n2 y . a s1n~ y ~ s1n 2 y ... ( 2 7) 

and use (18) to see that n 0 (x)-x/c for lxl << c 112 , and that 

h . - -1/2 - 1/2 n 0 reac es a max·1mum n
0

m -£ for x -£ • (n is, of course, 
0 

assumed to be an odd function of x.) And from (13) we see that 

n 
0 

( x ) ~ e- "'1 2 ( 2 + ··1 ) 
tanhx 

for x >> 
-1/2 

£ • As a model we pick 

2 ( 1/2 ) e-x;'2 (? + 1 ) no(x) =tanh A€- X 
- tanhx ' 

so that there are three adjustabl~ parameters, A, a and s. 

(28) 

( 2 9) 
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We perform the integration over y from 0 to 2TI (i.e., 

over the length of one island) by Gauss-Legendre quadrature. 

The integration over x from 0 to co is split. into the inner 

and outer regions. We use a Gauss-Legendre quadrature in the 

inner region 0 < x < 2£ 112and a Gauss-Laguerre scheme in the 

. . 2 1/2 outer reg1on £ < x < co. 

The results are that if a= S = 0, i.e., if no higher 

harmonics are present, oW can be made negative only for 

£ > .85, (This does not contradict the results of the previous 

section, where we assumed£ << 1.) With a and S nonzero, oW is 

minimized at A ~ 1, a= -.32, S = .1 and the instability occurs 

for a much smaller value of £ namely £ > .06. (Incidentally, 

for £ > • 0 6 the island full width divided by its lengtr. is 0. 15.) 

Actually, A, a and S vary slightly with £. These are typical 

values. Also, whereas the parameter a plays a crucial role in 

lowering E, the parameter S has little effect. 

The fact that instability arises only when £ > £c and 

the fact that £ is rather insensitive to S indicates to us c 

that the lnstability has a threshold. This is far from a 

positive proof since, after all, (27) is certainly not an 

accurate quantitative description of the normal mode. However, 

our belief that a threshold exists ·for the instability ~,s further 

strengthened by the following qualitative argum.ent. The. normal 

mode calculation of last section indicates that the mode. local­

ization is such that the stabilizing term IV~ 1 1 2 in (7) should 

scale as £-l compared to the destabilizing term.· Thus the 

'· . 
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stabilizing term should always dominate as E + 0. 

The conclusion a = -.32 is interesting physically. Figure 

·3 is a sketch of the displacement ~· = an/ax as a function of y 
y 

for x = 0. The displacement is very peaked around the 0 points 

and goes to zero rapidly near the X points. (In fact, for 

a = -1/3 and 8 = 0, both ~ and a~ ;ay are zero at the X points). y y 

This displacement is the one which minimizes the magnetic 

pressure near the X points without adversely affecting the 

attraction of the current filaments. 

For the helical case, we concentrate on islands with m=4, 

n=2, (i.e.,k =-2/R.) z This structure is pictured as coalesc-
' 

ing to a m=2, n=l equilibrium which also has islands on the q=2 

surface. As before, the normal mode equation in the outer 

region is obtained by setting E = A2 
= 0. Then the outer region 

is obtained (with r 0 set equal to unity) 

(30) 

where ~;;(r) 
1 di/Jo 

= r dr cpl (r) 



Near r = r , we find s . 
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(m _ l)-l+3/2m(m +l)-l-3/2m(r _ r )-l~(r) 
s s 

·using these relations we again construct a trial displacement 

potential function 

with n0 given by 

(sin !1 + a sin 
2 

3 5 
21 + Ssin 21 + ... ) 

2[ -l/2 r
4 

= .tanh lis (r-rs) ] 4 
A 

[r -r 
s r s 

A 
[r -r 

s 
_A_+ B(r4 
r -b. s s 

(This equation has been specialized to m=4 for simplicity.) 

(31) 

r<r s 

r>r s 

By numerical integration of (30) we determined that A= .0689. 

The quantities b, the radius of the conducting shell, and B 

were also determined, but we decided to treat them, as well 

as II, a and B~ as adjustable parameters. 

This time· the numerical integration was performed.~y 

Gauss-Legendre quadrature in both r and 1. The results show 

that an instability develops for s> .12, with A = 1.8, 

a = -.2. (This value of s corresponding to islands whose 

ratio of leng~h to width is .11.) 

The results show the same qualitative behavior as in the 

slab case. Therefore, for m=4 we conclude that geometric 
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factors play a minor role. For large m values this is certainly 

true. We have not conside~ed values of m < 4 because the 

m=2, n=2 case seems of less inher·ent interest; this is because 

the strong m=l instability itself would preclude any observation 

of the coalescence we are describing. 

V. DISCUSSION AND CONCLUSIONS 

By an energy principle calculation we have shown that a 

chain of magnetic islands is unstable to ideal MHD perturbations 

which correspond to a tendency towards coalescence of neighbor-

ing islands. This coalescence can proceed to completion only 

by relaxing the ideal MHD constraints near the X points by 

inclusion of resistivity or perhaps ergodicity of lines of 

force. 

It is quite likely that this coalescence instability 

explains the absence of high m,n helical modes at later times 

in tokamak discharges 3 (Alternatively, the absence of high 

n-number modes may be due to their reduced linear growth rate 

as the current channel peaks.) We should mention one defect 

of the equilibrium chosen by us, as far as application to tokamaks 

is concerned. Our equilibrium has a current profile which mono-

tonically decreases on either side of the rational surface. In 

an actual experiment, ot course, the rational surfaces are so 

placed that the current increases on one side and decreases on 

the other. We believe, however, that introduction of such an 

equilibrium will not significantly change any of our results 

because most of the dynamics of the instability is governed by 
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processes highly localized around the rational surface (cf. our 

trial functions which disappear rapidly for large x). 

Some recent observations on the magnetic field structure 

in the night side of the earth~s magnetosphere are consistent 

with the generation of a single large island (bubble) by the 

tearing mode instability 13 It is quite likely that ·any 

multi-island structures that may be generate~ hy thP li~PRr 

tearing instability would ultimately go over into the single 

island state by the coalescence instability discussed above. 

14 Biskamp et al. have considered the stability 6£ a 

two-dimensional configuration with neutral points. They find 

an instability due to finite electron-Larmor radius effects, 

related to particle orbits near the X points. We believe that 

the ideal MHD instability discussed by us above will have a much 

faster growth rate under most conditions. 
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Fig. 1. Equilibrium flux sur·faces and current distributions 
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Fig. 2(a). ~ Perturbed flux surfaces with zero resistivity. 

{b) . Conjectur~d merging of neighbo~ing islands with finite re­
sis±ivity at times t 1 , t 2 > t 1 . 
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Fig. 3. The displacement ~ which minimizes oW. 
points are marked on the y axis.Y 
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