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ABSTRACT b

We have investigated the stability of a
periodic magnetic island structure using the ideal
MHD equations. An instability is found which
describes thé‘tendency toward coalescence of
parallel currents in the neighboring islands. It is
expecteé that this instability will'proceed at a
fast MHD rate as long as the forces driving the
instability can overcome the stabilizing forces due
to the compression of the magnetic field between the
islands. Beyond that phase, resistivity is expected
to dominate the tendency toward island coalescence.
Island acnalescence of this kind can explain why in
the observation of tearing mode instabilities in
tokamaks, only the modes with minimum values of

m and n are seen.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED;



I. INTRODUCTION

It is well-known that a current layer separating two regions
of oppositely directed magnetic fields in a resistive plasma is
unstable to the ‘tearing mode instability which produces two-
dimensional magnetic configurations, sometimes called magnetic
islands. The linear and nonlinear development of such configur-
ations have been of great interest in astrophysics and plasma
physics for more than a decade now‘.l’Z

Recent observations of large amplitude helical distortions
around rational magnetic surfaces 34 in tokamaks have led to
a gfeat deal of renewed interest in the properties of magnetic
islands. Magne£ic islands in tokamaks are basically two-dimen-
sional configurations with helical symmetry which confine the
plasma in localized r-6 domains in and around the original
rational magnetic.surface. In this paper we investigate the
stability of a periodic array of magnetic islands to those ideal
MHD perturbations which have a tendency to coalesce smaller
islands into larger ones. Such a coalescence tendency is‘known
to be energetically favorable and has been conjectured upon
previously.5

A particularly simple island configuration is the infinite
array in slab geometry shown in Fig. 1. This configuration is
especially suited to‘space plasma and astrophysicial applications
and is also a reasonable approximation to a very high m number

mode in a tokamak; the ignorable direction (z coordinate) is the

direction of helical symmetry. Also shown as inserts in Fig. 1



are plots of tﬁe plésma current jz glong the symmetry direction
as a function of the coordinate x of monotonic variation;and
the coordinate.y of per%odiC'variation. Note that a maghnetic
island structu;é can also be interpreted as an array of c¢urrent
filaments supefposed on a basic minimum current jzmi The O points
are the points With the peak current in the filament andithe X
points are the points with minimum current. The coalescénce
tendency is no&"easy to understand on physical grounds since it
simply mcans thét parallel currents (and hence the O points)
attract each other. Now it is well known that in ideal MID a
moving fluid cérries flux with it. Since the flux canndt move
through X points (where the resultant electric fields wdﬁld drive
infinite current in the zero-resistivity limit), the coalesc-
eénce tendency of two O points produces a piling up of flux on
both sides of the X point. This produces a stabilizing magnetic
pressure which 6pposes the coalescence tendency. The preéesent
investigation ié thus aimed at determining whether conditions
can be found infthe limit of linear MHD theory where the destab-
ilizing tendency due to current attraction can overcomc the
stabilization d;e to magnetic field buildup near X points.

We have used the energy principle 6 for studyingiéhe
stability of magnetic islands. We restrict ouxr attentiop to two-
dimensional perturbations. i.e., perturbations with the séme symmetry .

as the island itself. Furthermore, we consider only incompressikle

perturbations in the x-y plane. In space plasma applica?ions this

can be justified as a high B approximation whereas in the low B

ok
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tokamak plasma this is justified because of the large toroidal
magnetic field which cannot be compressed easily and therefore
prevents compression of the plasma in ideal MHD. This puts fur-
ther constraints on the choice of perturbations. Using the
results of an approximate normal mode analysis we choose the
trial function in such a manner thét the coalescence velocity
(i.e., the y velocity) is localized near the O points in the y
direction and also reverses sign in the neighborhood of the edge
of the island in the x direction. Our energy principle calculation’
shows that a coalescence instability can occur in an island
configuration with zeroth-order current fluctuation within the
island as small as a few percent. The calculations also indicate
that a threshold amplitude of the current fluctuation in the
island must be exceeded in order that the coalescence instability
may occur. In addition, to make the investigatién more realistic
for tokamaks, we have also done the calculations in cylindrical
geometry, Qith very similar results.

Let us spéculate a little on the consequences of this instab-
ility. 1In ideal MHD, the X points are fixed relative to the fluid.
Thus the instability will result in a distortion on the current
prof;les in a fixed grid of X points, the distortion being such
as to bring the current maxima towards each other [Fig. 2al.
Inclusion of resistivity should permit the merging process of two
islands to proceed smoothly to completion with two O points and
one X point disappearing and a new O point emerging [Fig. 2b].

The whole merging process should proceed on some intermediate



time scale betwgencreSistive and MHD time scales and canjgkere—
fore be quite rabid. To speculate further, it is possible that
the merging rate would be governed by Petschek's mechaniém4,

and would therego;e approach the MHD rate. In toroidal |
Achfigurations,&phe consequence of this merging would be'éhat
thigh m, n modes continue to coalesce until the minimum values
“¢f m and n consistent with the helicity requirement of the part-
ticular rationalwsurface is reached. Observationally, thége is
“good evidence that'high m, n values are observed early in. tokamak
vidischarge and disappear later ‘leaving only low m, n values behjnd3.
“There is also definite computer simulation evidence for this kind
0T~ coalescence af magnetic islands 7. )

It is interesting to note that the instability requires
Té%—_Jz 7 0 within the island. Thus it appears that the saturated
“stal'c of the nonlinear tearing mode in some of the recent theories

“[8] may not be unstable to these poerturbations. However;' these
.processes could be taking place during the nonlinear growth phase

0J, 7 0 and the temporal growth is alygebraic ? and hence

Y

‘slow.

when

IT. EQUILIBRIA'AND BASIC EQUATIONS

We study the phenomenon of coalescence of the currents within
magnetic islands by considering perturbations on an exact MHD
equilibrium posgessing islands. Such an equilibrium is char-

acterized by al%iux function ¥ which satisfies the equation



2 _ 1
vwo—f(wo) (1)

for any arbitrary functional form f. The simplest choice for f

would be a linear function. However, the solutions to the linear
equation

2 2. _

Vi, + kTy =0

in slab geometry .,

wo = cos kx + € cos [a(l + az)-l/zkx] cos [(1 + az_l/zky] (2a)
and in cylindrical (i.e., helical) geometry [10].
vy = Jo(kr) + € Jm (kr) cos (mf kzz) ’ (2b)

are unacceptable because they lead to island chains either very
close to each other or to the walls. Fortunately, there is a well
known exact equilibrium in slab geometry [11], which can be readily
extended to the cylindrical case (as shown below) and does not

- suffer from these defects., It satisfies the equation

2 _ : _ _ .2 2 _
Vi, = 4n32(wz) = (1 £7) k” exp ( 2wo)
and gives
¥, = In (cosh kx + € cos ky) (3)

This is a generalization to two dimensions of the tanh profile

By ~ tanh x. Wc may thus write the equilibrium field as
?o - Bp Sz % vwo : . (4)

As already mentioned, we assume the perturbations to have the
same symmetry as the equilibrium. We can thus introduce a pert-

urbation flux function ¥, (x,y)-satisfying B, = e, X le



Furthermore, as discussed in the infroduction,we assume:incomp—
ressibility of the velocity pertubations in the x-y plaﬁe; hence
we may introduce the velocity potential ¢ (x,y) satisfying

vy = e, X V¢. “In a tokamak plasma, this is justified by the large
toroidal field"(BT >> Bp) in the z-direction. For spacéﬁplasma
-applications, incompressibility is justified by a high B approx-
“imation. (For B >> 1 all phenomena rcnnsidered arc co slow compaied
to sound wave time scales that density perturbations gef'washed
.out). In terms of the functions ¢ and P, the linearized ideal MHD

'
k]

equations for perturbations around the island equilibrium,read

30,
Tl AN A P e, (v x vy ), 1
v2y = 4n3 /B :‘ (5)
: 12/ p’ ;
2 g2y = B -Vj . + B, V]
5t 207921 7 21720

Bp§z.(vwo X ijﬂ * Bp?z.(vwlx vjzo),

In the third eguation we have assumed that the density ¢’

is constant. This is consistent with the assumption that
most of the motion occurs near the islands, which are

assumed to be narrow. Assuming that ¢ and ¢ vary in time

as exp(yt), and expressing the equations in terms of Poisson

brackets defined by [f,g] = %é-%% - %; %% , we find

Y ll)l = [WOI¢]I

' (6)
4mpYg2y - - 2, . _ d g2
B = g ] - gy (V) [Wor¥q] -

?'V



Our slab model assumes that the plasma extends to infinity.
Thus the‘energy principle for this equilibrium involves no bound-

ary terms, and can be expressed in the form
_ 2 2 d 2 7
SW —./}vwll + ¥y aﬁg Vi, (7)

where the integral extends over the total plasma volume. Since
we are concerned with incompressible perturbations, we also have

the constraint
/-d"- v, =0, (8)
[Vugl | |

where the integral is along'a flux surface of WO' The first term

N,

in (7), which is stabilizing, is due to the term j; x B in the
equation of motion [and thus the first term on the right hand

side of 6a)], and is associated with the force encountered in ‘.
trying to squeeze the flux surfaces up against the X points. The
second term, which is destabilizing in our example, is due to the
term jO x By in the equation of motion [and hence the second

term on the right hand side of (6a)], and represents the attract-

ion of the current filaments in adjacent islands.

So far we have discussed the slab model. For a tokamak
plasma this is a good approximation to the actual situation only
for largg m. For smaller m, geometrical effects can play a fole
ana so it is more pertinent to use a cylindrical (i.e.,
helical) model. One can readily extend the exact slab equilibrium
given by Eq. (3) to the cylindrical case. By making the sub-

stitution x = 1n(r/r0) we note that the function



wo Infkcosh mx + € cos (md + kz)] + x
or |

m+1

i

Nl 1 m-1 :
L 1n[§(r/r0) + 7(YQ/Y) + € (r/ro) cos(me‘j kz-zq (9)
KSatisfies theﬁequation

2 - 5 . _ 2, 2 —2ll)
Vzwo 25;Bz+4nmjz(wp) =m (1 - €%) e 0.

‘"The operator

v2 = .]_' i iy ,;_a_. + E‘i .8.2 ‘
2 ¥ 9r = 9r 2 .2 T
. r- 9T : :
‘with 7 = m6 +'kz z is the usual Léplacian in cylindricai geo-

‘metry with hei}cal symmetry and incorporates the large éspect
wratio approxiﬁ;tion ki r2 << mz. ‘Eg. (9) defines the fiux
ifunction for our cylindrical equilibrium.

Egs. (6) :for the perturbafiong retain the same forﬁ as
before provideé we use the fact that in terms of the variables
(r,t) the Pois'son bracket becomes

_179Ff 3g _ 1 9f 3g ,
>
2

As far as the energy principle calculation goes, in the

and also substitute the operator V., for operator Vz.

cylindrical moaél we would like té apply the boundary condition
of a conducting'wall at the plasma edge. However, the equilib-
rium (9) has no surface r = constant where B, is zero. Never-
theless, we mayvrequire the displacement to be zero on some
surface r = b. Ws then expect the integral over the volume

r < b to be nearly independent of b if b is large enough; The

€ e
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expression for 6W in the helical case is, except for an unimp-

ortant overall factor of m-2, identical to (5) if we replace
2 ' 2
IVW1| by |V2wl| , where
2 2
2 _ [23f m of
|V E(e,t) |7 = (55) + = (5?)

and, as before, replace V2 by Vg. The same is true of the con-

2

straints (8).

Since the mode we envision is driven by the zeroth order
current fluctuations, which are largest inside and near the
islands, we expect it to be localized near the rational surface
However, the localization cannot be too great if the mode is
to be unstable, since Ilelz is stabilizing. 1In particular, the
rafional surface cannot be too near the conducting wall (in the
cylindrical case). Also, if the equilibrium model has»more than
one set of islands, we must require that they be sufficiently
far apart. This is because we do not want the interaction of
two distinct chains of islands to interfere with our study of
interactions within one chain. It is for precisely these
reasons that we must reject the equilibria (2a) and (2b).

We expect the pertwbations to cause two neighboring islands
to approach each other. Fig. 2a shows the expected mode
structure superimposed upon the equikibrium flux surfaces tor
the case of slab geometry. The y-component of velocity should
vanish at the X-points (y = 0, 2w, ...) and therefore the

velocity potential ¢ should be of the form

[o0]

6 (x,y) =;£:$£(x)sin(2£ - 1)ky/2 . (10)
=] .

The functions ¢£(x) are odd in x and localized near the island,

i.e., near |kx|< el/2
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IITI. NORMAL MODE EQUATIONS FOR SLAB MODEL

! We now prggeed to. study the normal mode equations k6}
using the equilibrium (3). We shall assume € << 1. Furthermore,
we approximateﬁihe velocity potential ¢ in Eq. (10) by \
¢~ ¢l(x)sin %% .. This is obviously a crude approximation
because the equilibrium couples all the harmonics ¢£ witﬁ
each other. Iéﬁfact, our calculation will show that in ghis
approximation;‘the normal mode Pqua£ionc~do not exhibit 
any instabilitj. The .coupling to higher harmonics is
therefore essen;ial for an instability calculation. Ho@éver,
the normal modewénalysis with the inclusion of one or more
harmonics becoﬁes completely intractable. That is why WQ
have to resort.fo an energy principle calculation in theénext
zection. The calculations of the present section should:
therefore be pr%marily treated as a guide for the choiceéof
trial functionséin the 8W calculation.

Substitutiﬁg (6a) into (6b), thereby eliminating wl,

we find
2 2
. [Ty 3 Y
AV¢=[w,lw,v¢l] +<zw,< -

2: 0 0 3x2 8y2

: , . |

] 3 2 , :

- 2 [y, sad (a 5 - 621’)' | (11)

A 0’ 9x3dy 3x2 3y ’ -

where A2 = 4wpy%Bp—z. It is interesting to note that the

term i .

d/dwo('vzw&[wo, Wy, o
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exactly cancels. Now, if we approximate ¢ by %-(x)sinjr Y,
(at this point we express x and y in terms of the dimensionless

variables kx and ky), Eq. (11) reduces, after some algebra, to

2 :|||| l _ l . 2 _ €
A (pl 7 ¢) 16 (tanh X coshx )¢l

sinhx !
-3 %
2cosh™x
1( 2 > 2€ >
- = [tanh“x - : - ¢
4 coshx cosh3x 1
2 . (NN 2 ter s
- £€7sinhx ¢ + __E b . (12)
3 1 - 2 1
cosh™x 2cosh™x

{(Primes denote derivatives with respect to x.)

We have assumed £ <+<]1, and have neglected higher harmonics

. ) 3 5
(sin, cos of 5Y TTY‘)

For the purpose of solving (12), the plane splits naturally

into two regions, the inner region(|x| << 51/2)-and the outer
region(|x| >> 61/2). If A2 is ordered to he ~g, the outer region
effectively has E,A2 = 0 and hence (12) reduces to
" 2 v l _
tanhx ¢, + ——— ¢ - = tanhx ¢. = 0.
1 2 1 4 1
cosh™x :

The two linearly independent solutions of this equation

are ¢+(x) and ¢_(x), defined by

=e“‘/2‘( 1 2). (13

¢, (%) tanhx +
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Since ¢l must be odd "in x, and must vanish as x > % o,

the outer solution is ¢_(x) for x > 81/2.
In the inner solution we expect d/dx to scale as 5-1/2,
and so we define § = 21/4€fl/2x. Using € << 1 and
> ,
remembering A ~ ¢, .(12) reduces to the fourth order
egquation
4 2
d ¢, 1 ,2\9 % 1 9% 14
—T‘(“+?r‘=“2"z'cﬁg"° (14)
dE R dg ’
_1/2(2 ' . . . :
where a = 2 A®/e - 3/4)- Expressing this equation

in.- terms of W = d¢l/dE and integrating once, we find that

W satisfies the inhomogeneous Weber equation

--d-—vzi ‘(a+;11~é§‘)w=1<, (15)
ag

where K is, at present, an arbitrary constant. Upon
Fourier transforming with respect to the variable k',

(15) becomes

=7 — 4 (k'z + a) W = 8TKS$ (k't) . o (16)

The solution which is even in k' and vanishes as k"+ ® is

f(k') = 27KU' (a,0) Y Ua,2]k' ), - (17)

where U is the parabolic cylinder function which vanishes
as k' - ». [12] The constant K is-determined by matching

W(E) as & » = with (13) as x - 0. The result is

4

1y
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1 ® .
W(g) = U(a,2k') cos k'¢ dg&! (18)
23/481/2U'(a,0L/;
To obtain an eigenvalue condition we now match
awl/ax between the inner and outer regions. Equation (6a)
shows that, if we again ignore higher harmonics, wl takes the

form wl(x) cos % y, where

¥y =.(2y)-l[tanhx¢l(x) + eéi(x)/coshx] . (19)

Also, (6b) shows

4T0Y 4 W _ £ vir 1y L w1
52 %1 ooonx (¥ 7 V1) -3tanhx W) - 3y . (20)
p
In the inner.region, these become
by = (2y) ta7l/4 (172 (€6, + 21/2d¢1/ds) | ' (21)
'
and
2 2
- -p d%¢ 3 av
SS5/4 =1/2 o =2 1 1/2 4'¥ a ¥
27 % ampyB © ——e = 2% 2 1 - 2 (22)
P gt ag3 ag

Substituting (21) in the first term on the right of (22),
dividing by & and integrating, we find

(0] (=) = w3 (==)]

; ' *® 24 w 4
-23/2 (p2/¢ - 3/4)/ Qg d 21 +/ égé 49 (23)

Atz [op(my 1L

0,

| ag ag® .

[

———
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Therefore, usihg (18) we find

: 21/4,'" L Lo .
A = T 'k-'+—ki '

To complete the matching, (6a) and (13) show that Wl inthe

outer region is.given by

)

-1 =X/
This lcads to
=2 | . (25)

The eigenvalue condition is given by (24) and (25). An ﬂﬁstability
exXists if there:is a solution with4a>'ac = —3X21/2/4. However,
it'*can be shown?fhat the right-hand side of (24) is negative for
a5ag:[in fact b;th the integral and the denominator U'(a;O) van-
ish™at a = - 1/51 and therefore no instability occurs.

There is aélobvious case for the extension of above normal
mode calculatiog'tO'a situation where higher harmonics in (10)
are retained.. ﬁowever, as mentioned above, the calculat%sns turn
out to be intraétable. The basic difficulty is that in the inner
region all the ﬁarmonics couple to each other very strongly. The
inner region quations are ‘thus an infinite chain of coupled’
second order differential equations with no obvious small .para-
meter. Since the normal mode calculation turned out to be so
difficult, this;motivated us to lOOk at the stability using the -
enerqgy principlé. This is discussed in the next section.. Results

(13). and (18) dérived above are used to construct appropriate

trial. functions :for the 6W calculation in the next section.
B
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IV. ENERGY PRINCIPLE

In this section we present the results of numercial integ-
ration of Eq. (7), both for slab and helical geometry. We intro-
duce a displacement potentialvn = y_l¢ so that the perturbed

flux is expressed in the form

Yy = [by.nl (26)

where wo is given by (3) and (9)- The constraint (8) is automatic-
ally satisfied if we expressllpl in this form.

We first treat the slab model. Fora trial function we use
the properties of ¢ (and hence of n) derived in the previousx

section. We apprdximate (10) by
n(x,y) = n,(x) (sinL Yy + a sin3 y + B éin E} y + ) (27)
! 0 2 - 2 2 Tt

1/2

-and use (18) to see that no(x)~x/e for |x| << g , and that

:e-LQfor X 381/2.

reaches a maximum i
i nom (nQ is, of course,

assumed to be an odd function of x.) And from (13) we see that

-%/2 1

no(X)z e (2 + E?HHQ) (28)
for x >> €—1/2' As a model we pick
_ 2(y_-1/2 -%/2 1
n.(x) = tanh?()e 2 —— ‘ (29)
0 ( F X) < , 0 + tanhx)’

so that the;e are three adjustable parameters, A, a and B.
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We perform the integration over y from 0 to 2w (i.e.,
over the length of one island) by Gauss-Legendre quadrature.
The integration over x from 0 to » is split into the inner

and outer regions. We use a Gauss-Legendre guadrature in the

inner region 0 < x < 281/2

outer region 281/25 X < @,

and a Gauss-Laguerre scheme in the

The results are that if a = 8 = 0, i.e., if no higher
harmonics are present, 8W can be made negative only for
e > .85, (This does not contradict the resﬁlts of the previous
section, wherg we assumed € << 1l.) With a and B nonzero, &W is
minimized at A =1, a=-.32, B = .1 and the instability occurs
for a much smaller value of ¢ namely € > .06. (Incidenf%lly,
for € > .06 the island full width divided by its length is 0.15.)
Actually, A, a and B vary slightly with €. These are typical
values. Also, whereas the parameter o plays a crucial ;ole in
lowering &, the parameter B hasvlittle effect. |

The fact that instability arises only when ¢ > € énd
the fact that € 1s rather insensitive to B indicates to us
that the instability has a threshold. This is far from a
positive proof;since, after all, (27) is certainly not an
accurate quantitative description of the normal mode. However,
our belief that a threshold exists for the instability is further
strengthened bf the following qualitative argument. The. normal
mode calculation of last section indicates that the mode, local-
ization is such that the stabilizing term |le|2 in (7) should

scale as E_l cbmpared to the destabilizing term.‘' Thus the
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stabilizing term should always dominate as € - 0.

The conclusion a = -.32 is interesting physically. Figure

3 is a sketch of the displacement gy = 3n/3x as a function of y

for x = 0. The displacement is very peaked around the O points
and goes to zero rapidly near the X points. (In fact, for

o = -1/3 énd B = 0, both gy and aéy/ay are zero at the X points).
This displacement is the one which minimizes the magnetic
pressure near the X points without adversely affecting the
attraction of the current filaments.

For the helical case, we concentrate on islands with m=4,
n=2, (i.e., kz = -2/R.)} This structure is pictured‘as coalesc-—
ing to a m=2, n=1 equilibrium which also has islands on the g=2
surface. As before, the normal mode equation in the outer

2

region is obtained by setting € = A" = 0. Then the outer region

is obtained (with ry set equal to unity)

1 4 _ 4t m? _ — —
Pt i Z___ C+ 8m2(l—82) (rm+l+ rl m) 2 =0 (30)
r )
ay
_ 1 0
where ¢ (r) = T3 %1 (r)

For r << 1 or r >> 1 the third term is negligible and we obtain

¢l(f) = Ar + Br
) 1

The rational surface is located at r = rs =[(l—m)/(l+m)]§a
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.....

Near r = Lo we find
N -1 -1
¢l(r) (r dwo/dr) C(rs)
~ (m - l)—l+3/2m(m +l)--l—3/2m(r _ rs)—lg(rs)

Using these relations we again construct a trial displacement

potential function

n(r,t) = ngy(r) (sin %_T + asin %T + Bsin gr t .. 6D

with g given by

2 -1/2 r A A 4
r) = tanh[2Ae - —_— —— - — + r<r
ng (r) [ (r-r )] 7 [r — = r.]
r s s .
s
4 4
= tanhZ[Ae l/Z(r—r )] r -b [ A__ _A + B(r4 - b)] rrr
s r -r -b. s
rs—b s S

(This eguation has been specialized to m=4 for simplicity.)
By numerical integration of (30) we determined that A = .0689.
The quantities b, the radius of the conducting shell, and B
were also detefmined, but we decided to treat them, as'well
as A, a and B, as adjustable parameters.

This time-the numerical integration was performed. by
Gauss-Legendre quadrature in both r and t. The results show
that an instability develops for e> .12, with A = 1.8,

o = —-.2. (This value of ¢ corresponding to islands whose
ratio of lengeh to width is .11.)
The results show the same qualitative behavior as. in the

slab case. Therefore, for m=4 we conclude that geometric

v
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factors play a minor role. For large m values this is certainly
true. We have not considered values of m < 4 because the

m=2, n=2 case seems of less inherent interest; this is because
the strong m=1 instability itself would preclude any observation

of the coalescence we are describing.

V. DISCUSSION AND CONCLUSIONS

By an energy principle calculation we have shown tha£ a
chain of magnetic islands is unstable to ideal MHD perturbations
which correspond to a tendency towards coalescence of neighbor-
ing islands. This coalescence can proceed to completion only .
by relaxing the ideal MHD constraints near the X points by
inclusion of resistivity or perhaps ergodicity of lines of
force. |

It is quite likely that this coalescence instability

explains the absence of high m,n helical modes at later times

3

in tokamak discharges (Alternatively, the absence of high
n-number modes may be due to their reduced linear growth rate

as the current channel peaks.) We should mention one defect

of the equilibrium chosen by us, as far as application to tokamaks

is concerned. Our equilibrium has a current profile which mono-
tonically decreases on either side of the rational surface. 1In
an actual experiment, ot course, the rational surfaces are so
placed that the current increases on one side and decreases on

the other. We believe, however, that introduction of such an

equilibrium will not significantly change any of our results

because most of the dynamics of the instability is geverned by



-20-

processes highly localized around the rational surface (cf. our
trial functions which disappear rapidly for large Xx).

Some recent observations on the magnetic field structure
in the night side of the earth's magnetosphere are consistent
with the generétion of a single large island (bubble) by the
tearing mode instability 13, It is quite likely that ‘any
multi-island structures that mav be generated hy the linear
tearing instability would ultimately go over into the éfhg]e
island state by the coalescence instability discussed above.

14 have considered the stability of a

Biskamp et al.
two—dimensionai configuration with neutral points. They find
an instability due to finite electron-Larmor radius effects,
related to particle orbits near the X points. We believe that

the ideal MHD instability discussed by us above will have a much

faster growth rate under most conditions, .
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Fig. 1. Equilibrium flux surfaces and current distributions
in slab geometry.
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Fig. 2(a).; Perturbed flux surfaces with zero resistivity.
(b). Conjectured merging of neighboring islands with finite re-

sistivity at times tl' t2 > tl'



Fig. 3. The displacement £ which minimizes &W.
points are marked on the y axis.
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