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1. Introduction

Let (K, | · |) be a valued field and V be a K-vector space. A vector space norm on V is
a function ||·|| : V × V → R such that

(1) ||v|| ≥ 0 for all v ∈ V , with equality if and only if v = 0.
(2) ||v + w|| ≤ ||v||+ ||w|| for all v and w in V ,
(3) ||cv|| = |c| ||v|| for all c ∈ K and v ∈ V .

A norm ||·|| on V defines a metric on V by d(v, w) = ||v − w||, from which we get open
subsets and closed subsets of V relative to ||·||. Different norms always define different
metrics since the norm can be recovered from the metric it defines (||v|| = d(v, 0)), but
different norms might define the same concept of open subset of V .

Example 1.1. On R2 let ||·|| be the usual Euclidean norm. Another norm on R2 is ||v||′ =
2 ||v||. The condition ||v − a||′ < r is the same as ||v − a|| < r/2, so open balls in R2 defined
by ||·|| and ||·|| are the same (even if the radii don’t match). Open subsets for a norm are
unions of open balls for that norm, so the open subsets of R2 for ||·|| and ||·||′ coincide.

Example 1.2. On R2 let ||·|| be the usual Euclidean norm and set ||(x, y)||′ = max(|x|, |y|).
It is left to the reader to check ||·||′ is a norm on R2. This is not a scalar multiple of the
Euclidean norm on R2: an open ball centered at the origin for ||·||′ is an open square (no
boundary) centered at the origin with sides parallel to the axes. See the figure below. More
generally, open balls for ||·||′ are open squares in R2 with sides parallel to the axes.

Unlike in Example 1.1, open balls for ||·|| and ||·||′ are not the same, but each is an open
subset for the other norm:

• In each open ball for ||·||′, which is an ordinary open square, every point is contained
in a Euclidean open ball that is inside the square.
• In a Euclidean open ball, each point is contained in an open square with sides

parallel to the axes that is inside the Euclidean ball.

The picture below illustrates these two scenarios.
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Thus the open subsets (not open balls!) of R2 for ||·|| and ||·||′ coincide.

Definition 1.3. Two norms on a K-vector space V are called equivalent if they define the
same open subsets of V .

Our goal is two-fold: (i) describe equivalence of norms by a criterion analogous to the
formula | · |′ = | · |t for t > 0 linking equivalent absolute values | · | and | · |′ on a field,
and (ii) show all norms on a finite-dimensional vector space over a complete valued field
are equivalent. The analogue of | · |′ = | · |t will not be a sharp equation, but a pair of
inequalities.

2. Equivalent norms

Theorem 2.1. Let (K, | · |) be a nontrivially valued field and V be a K-vector space. Two
norms ||·|| and ||·||′ on V are equivalent if and only if there are constants A > 0 and B > 0
such that A ||v||′ ≤ ||v|| ≤ B ||v||′ for all v ∈ V .

We can rewrite the inequalities in other ways:

• (1/B) ||v|| ≤ ||v||′ ≤ (1/A) ||v|| for all v ∈ V (this exchanges ||·|| and ||·||′)
• ||v||′ ≤ C ||v|| (for C = 1/A) and ||v|| ≤ C ′ ||v||′ (for C ′ = B) for all v ∈ V .

Proof. The theorem is obvious if V = {0}, so assume V is not {0}.
(⇐=) First assume there are positive A and B such that A ||v||′ ≤ ||v|| ≤ B ||v||′ for all

v ∈ V . Then for each open set U ⊂ V with respect to ||·|| and v ∈ U , there is an ε > 0 such
that the open ε-ball with respect to ||·|| around v is contained in U :

{w ∈ V : ||w − v|| < ε} ⊂ U.

Since

||w − v||′ < ε

B
=⇒ ||w − v|| < ε,

each open ||·||-ball around v contains an open ||·||′-ball around v, so U is open with respect
to ||·||′. The proof that each open subset of V with respect to ||·||′ is open with respect to ||·||
is similar, using ||v||′ ≤ (1/A) ||v|| in place of ||v|| ≤ B ||v||′.

(=⇒) Assume ||·|| and ||·||′ are equivalent. Then the open unit ball around the origin in V
relative to ||·|| is open relative to ||·||′ and the open unit ball around the origin in V relative
to ||·||′ is open relative to ||·||, so there are r > 0 and s > 0 such that

(2.1) {v ∈ V : ||v||′ < r} ⊂ {v ∈ V : ||v|| < 1}, {v ∈ V : ||v|| < s} ⊂ {v ∈ V : ||v||′ < 1}.

Since | · | is nontrivial on K, there is γ ∈ K such that |γ| > 1. Then |γ|n →∞ as n→∞
and |γ|n → 0 as n → −∞, so every positive real number is between two successive powers
of |γ| or equal to one of these powers. Therefore for each nonzero v ∈ V there is an integer
n such that

(2.2) |γ|n ≤ 1

s
||v|| < |γ|n+1.
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Then ∣∣∣∣∣∣∣∣ 1

γn+1
v

∣∣∣∣∣∣∣∣ =
1

|γ|n+1
||v|| < s,

so
∣∣∣∣v/γn+1

∣∣∣∣′ < 1 by (2.1). Thus ||v||′ < |γ|n+1 = |γ||γ|n ≤ (|γ|/s) ||v||. Setting B = |γ|/s we

have ||v||′ < B ||v|| for all nonzero v ∈ V , so ||v||′ ≤ B ||v|| for all v, including v = 0.
In a similar way, switching the roles of ||·|| and ||·||′ and using r in place of s, we get

||v|| ≤ (|γ|/r) ||v||′ for all v ∈ V , so A ||v|| ≤ ||v||′ where A = r/|γ|. �

Theorem 2.1 is about norms on a vector space over a nontrivially valued field. Could the
theorem have a counterexample when K is equipped with the trivial absolute value? Not
if dimK(V ) is finite (see Theorem 3.2, which is true for trivially valued fields since they are
complete), but here is a counterexample for an infinite-dimensional vector space.

Example 2.2. Let K be a field with the trivial absolute value and V = {(c0, c1, c2, . . .) :
ci ∈ K} be the K-vector space of all sequences in K. For 0 < ε < 1, define the ε-norm on
V as follows:

||(c0, c1, c2, . . .)||ε =

{
0, if all ci = 0,

εn, if cn 6= 0, ci = 0 for i < n.

It is left to the reader to check this is a K-vector space norm on V .1 (That K is trivially
valued is relevant because by definition ||cv||ε = ||v||ε for all c ∈ K× and v ∈ V , and
|c| ||v||ε = ||v||ε when c ∈ K× and K is trivially valued.)

The topology put on V by ||·||ε does not depend on ε: if ε and δ are both in (0, 1),

then δ = εt for some t > 0 and a short calculation shows ||v||δ = ||v||tε for all v ∈ V , so

||v||δ < r ⇔ ||v||ε < r1/t. Thus open balls around 0 in one norm are open balls around 0 in
the other norm, and by translation the same is true for open balls around each point in V .

For distinct ε and δ in (0, 1), the norms ||·||ε and ||·||δ define the same topology on V ,
so they are equivalent norms in the sense of Definition 1.3, but it is not true that there
are A,B > 0 such that A ||v||ε ≤ ||v||δ ≤ B ||v||ε for all v ∈ V . Indeed, suppose there were
such A and B. For n ≥ 0 let vn = (0, 0, . . . , 0, 1, 0, . . .) have 1 in component n and 0
in all other components, so when v = vn the inequalities A ||v||ε ≤ ||v||δ ≤ B ||v||ε imply
Aεn ≤ δn ≤ Bεn. Therefore A ≤ (δ/ε)n ≤ B, and this holds for all n ≥ 0. Thus the powers
(δ/ε)n are bounded away from both 0 and ∞, which is false: if δ < ε then (δ/ε)n → 0 as
n→∞, while if δ > ε then (δ/ε)n →∞ as n→∞.

3. Norms on finite-dimensional spaces

We want to look at general norms on finite-dimensional spaces over complete fields, but
first we will look at a particular construction of a norm using a choice of basis.

Lemma 3.1. Let V be a finite-dimensional vector space over a valued field (K, | · |). For a
basis {e1, . . . , en} of V over K, set

(3.1)

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

ciei

∣∣∣∣∣
∣∣∣∣∣
∞

= max
1≤i≤n

|ci|

where ci ∈ K. This is a norm on V , and if K is complete with respect to | · | then V is
complete with respect to ||·||∞.

1If we identify the formal power series ring K[[X]] with V by
∑

n≥0 cnX
n ↔ (c0, c1, c2, . . .), then the

ε-norm on V corresponds to the X-adic norm on K[[X]] where |X| = ε.
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Proof. The axioms of a vector space norm are easy to verify for ||·||∞, e.g., the triangle
inequality for ||·||∞ follows from the triangle inequality for | · | on basis coefficients.

Suppose K is complete with respect to | · |. To prove V is complete with respect to ||·||∞,
let {vm} be a Cauchy sequence in V with respect to ||·||∞: for each ε > 0 there is an M ≥ 1
such that `,m ≥M =⇒ ||v` − vm||∞ < ε. Writing vm in terms of the basis as

vm = c1me1 + c2me2 + · · ·+ cnmen

the definition of the norm ||·||∞ tells us

`,m ≥M =⇒ |ci` − cim| < ε

for each i from 1 to n, so each sequence {cim}m≥1 in K is Cauchy with respect to | · |. Since
K is complete with respect to | · |, there is a limit: limm→∞ cim = ci in (K, | · |). Then
v =

∑
ciei is a limit for the vm’s in V :

||v − vm||∞ = max
1≤i≤n

|ci − cim| → 0 as m→∞.

�

Here is the most important property of norms on finite-dimensional spaces.

Theorem 3.2. All norms on a finite-dimensional vector space over a complete valued field
are equivalent.

Proof. Let (K, | · |) be a complete valued field and V be a K-vector space. To prove all
norms on V are equivalent, we use induction on dimK V . The case V = {0} is trivial, so
we can assume dimK V ≥ 1. If dimK V = 1 and v0 is nonzero in V then V = Kv0 and
||cv0|| = |c| ||v0|| for c ∈ K. So two norms ||·|| and ||·||′ on V must be scalar multiples of each
other: ||v||′ = (||v0||′ / ||v0||) ||v|| for all v ∈ V .

Assume n ≥ 2 and the theorem is proved for all K-vector spaces of dimension n− 1. Let
V have dimension n. Pick a K-basis {e1, . . . , en} and define a norm ||·||∞ from this basis by
(3.1). For an arbitrary norm ||·|| on V , we will show there are constants A > 0 and B > 0
such that A ||v||∞ ≤ ||v|| ≤ B ||v||∞ for all v ∈ V ; thus every norm on V is equivalent to ||·||∞,
so all norms on V are equivalent to each other. The existence of B will be very easy, but
the existence of A will be proved indirectly by contradiction.

For each v ∈ V write v = c1e1 + · · ·+ cnen with ci ∈ K. Then

||v|| ≤
n∑
i=1

||ciei|| =
n∑
i=1

|ci| ||ei|| ≤ Bmax |ci|,

where B =
∑
||ei|| > 0, so ||v|| ≤ B ||v||∞ for all v ∈ V .

To show there is an A > 0 such that A ||v||∞ ≤ ||v|| for all v ∈ V , assume no A > 0 fits
that inequality for all v. Taking A = 1/k for k = 1, 2, 3, . . ., that none of these can work
would mean for each k ≥ 1 there is vk ∈ V such that ||vk|| < (1/k) ||vk||∞. We are going to
pass to a subsequence and normalize these vectors in order to reach a contradiction.

By the definition of ||·||∞ in terms of the basis {e1, . . . , en}, each ||vk||∞ is the absolute
value of some ei-coefficient of vk. Since the list {vk} is infinite (even if there are repetitions)
and there are finitely many ei, there is an index i from 1 to n such that infinitely many vk’s
have ||vk||∞ equal to its ei-coefficient. Without loss of generality, i = n. Scaling vk by an
element of K× does not affect the inequality ||vk|| < (1/k) ||vk||∞ since both sides change in
the same way, so after passing to a subsequence {vkj} where

∣∣∣∣vkj ∣∣∣∣∞ is the absolute value
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of the en-coefficient of vkj and then dividing vkj by its en-coefficient, we have a sequence
v′kj in V for j = 1, 2, 3, . . . such that

(1)
∣∣∣∣∣∣v′kj ∣∣∣∣∣∣∞ = 1,

(2) the en-coefficient of v′kj is 1,

(3)
∣∣∣∣∣∣v′kj ∣∣∣∣∣∣ < (1/kj)

∣∣∣∣∣∣v′kj ∣∣∣∣∣∣∞ = 1/kj .

Since kj → ∞ as j → ∞, by (3) we have
∣∣∣∣∣∣v′kj ∣∣∣∣∣∣ → 0 as j → ∞. Set wj = v′kj − en, so wj

belongs to the subspace W :=
∑n−1

i=1 Kei and (3) tells us

(3.2) ||wj + en|| =
∣∣∣∣∣∣v′kj ∣∣∣∣∣∣→ 0

as j →∞. We can remove en from here by taking differences:

(3.3)
∣∣∣∣wj − wj′∣∣∣∣ =

∣∣∣∣(wj + en)− (wj′ + en)
∣∣∣∣ ≤ ||wj + en||+

∣∣∣∣wj′ + en
∣∣∣∣→ 0

as j, j′ →∞. Thus {wj} is a Cauchy sequence in W with respect to the norm ||·|| restricted
to W .

Since W has dimension n− 1, all norms on W are equivalent by induction. Therefore ||·||
and ||·||∞ restricted to W are equivalent norms, so ||·||∞ ≤ C ||·|| on W for some C > 0 and
||·|| ≤ C ′ ||·||∞ on W for some C ′ > 0. From the first bound we get∣∣∣∣wj − wj′∣∣∣∣∞ ≤ C ∣∣∣∣wj − wj′∣∣∣∣→ 0

as j, j′ →∞ by (3.3), so {wj} is Cauchy in W with respect to ||·||∞ restricted to W . Since
(K, | · |) is complete, (W, ||·||∞) is complete by Lemma 3.1, so there is a limit w for the wj in
W with respect to ||·||∞: ||w − wj ||∞ → 0 as j → ∞. Then ||w − wj || ≤ C ′ ||w − wj ||∞ → 0,
so ||w − wj || → 0. Combining this with (3.2), as j →∞

||w + en|| = ||(w − wj) + (wj + en)|| ≤ ||w − wj ||+ ||wj + en|| → 0 + 0 = 0,

so w = −en, but w ∈W and −en is not in W . We have a contradiction. �

This theorem did not rely on the harder direction of Theorem 2.1: it directly shows the
two norms are bounded by constant multiples of each other, and hence are equivalent by the
easier direction of Theorem 2.1. In particular, the proof even works for a trivially valued
field, which is always complete.

Remark 3.3. Theorem 3.2 is false for infinite-dimensional spaces. For example, let K = R
and V = C([0, 1]) be the vector space of continuous functions f : [0, 1] → R. Define two
norms on C([0, 1]):

||f || = max
0≤x≤1

|f(x)|, ||f ||1 =

∫ 1

0
|f(x)| dx.

Clearly ||f ||1 ≤ ||f ||, but there is no C > 0 such that ||f || ≤ C ||f ||1 for all f . Indeed, let f
be a function that is 0 outside of [0, 1/n] and have a triangular shape over [0, 1/n] with a
peak at height 1, as in the picture below. Then ||f || = 1 and ||f ||1 = 1/(2n). No C > 0 can
satisfy 1 ≤ C/(2n) for all n ≥ 1.
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y = fn(x)

Corollary 3.4. Let (K, | · |) be a nontrivial complete valued field and (V, ||·||) be a finite-
dimensional normed K-vector space. Every subspace of V is closed with respect to ||·||.

Proof. Let W be a subspace of V . To say W is closed with respect to ||·|| is unchanged if ||·||
is replaced by an equivalent norm on V (this won’t change the meaning of an open subset
of V , so by passing to complements it won’t change the meaning of a closed subset of V ).
By Theorem 3.2, all norms on V are equivalent, so it suffices to prove the theorem using a
norm on V that is adapted to the choice of W .

Let n = dimK V and d = dimKW . The result is obvious if d = 0, since then W = {0}
and a one-point subset of a normed vector space — or of a metric space – is closed (the
complement is open). The result is also obvious if d = n, since then W = V and V is a
closed subset of V . We can now suppose n ≥ 2 and 1 ≤ d ≤ n− 1.

Pick a basis {e1, . . . , ed} of W and extend it to a basis {e1, . . . , ed, ed+1, . . . , en} of V . Let
||·||∞ be the norm on V defined from this basis by (3.1). Then ||·|| is equivalent to ||·||∞ by
Theorem 3.2 and

W =

{
n∑
i=1

ciei : cd+1 = · · · = cn = 0

}
.

Let’s show W is closed with respect to ||·||∞. If {wm} ⊂W and wm → v in (V, ||·||∞), write
v = a1e1 + · · · + anen with ai ∈ K. Since the ei-coefficient of wm is 0 for i > d, by the
definition of ||·||∞ we have

|ai| = |0− ai| ≤ ||wm − v||∞
for i = d + 1, . . . , n. Since ||wm − v||∞ → 0 as m → ∞ we get |ai| = 0 so ai = 0 when
i ≥ d+ 1. Thus v ∈W . �

Appendix A. Equivalence in terms of convergence

We defined equivalence of two norms on a vector space V in terms of them defining the
same open subsets of V . Equivalence of norms can also be characterized in terms of having
the same convergent sequences and limits.

Theorem A.1. Let (K, | · |) be a valued field. The following properties of norms ||·|| and
||·||′ on a K-vector space V are equivalent to each other.

(1) The open subsets of V defined by ||·|| and ||·||′ are the same.
(2) The convergent sequences and their limits in V defined by ||·|| and ||·||′ are the same.

A more general result applies to two metrics on a set, not just two norms on a vector
space.
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Theorem A.2. The following properties of metrics d and d′ on a set X are equivalent to
each other.

(1) The open subsets of X defined by d and d′ are the same.
(2) The convergent sequences and their limits in X defined by d and d′ are the same.

When X = V is a vector space and the two chosen metrics on V are induced by norms
on V , then Theorem A.2 becomes Theorem A.1.

Proof. (1) =⇒ (2): Convergence in X relative to a metric can be described in terms of open
subsets of X for that metric: to say d(xn, x) → 0 as n → ∞ means for every open subset
U ⊂ X relative to d such that x ∈ U , there is an N ≥ 1 such that n ≥ N =⇒ xn ∈ U . By
(1), a subset of X that is open relative to d′ is also dopen relative to d, so for every open
subset U ⊂ X relative to d′ such that x ∈ U , there is an N ≥ 1 such that n ≥ N =⇒ xn ∈ U .
Thus xn → x relative to the topology defined by d′, which means d′(xn, x) → 0. Since (1)
is symmetric for d and d′, a similar argument shows each convergent sequence in X relative
to d′ is convergent relative to d with the same limit.

(2) =⇒ (1): Since open subsets are complements of closed subsets, proving (1) is equiv-
alent to proving the closed subsets of X defined by d and d′ are the same. Let C ⊂ X
be closed relative to d. To show C is closed relative to d′, let {xn} be a sequence in C
that converges to some x ∈ X relative to d′: d′(xn, x) → 0. By hypothesis, d(xn, x) → 0,
so x ∈ C since C is closed relative to d. Hence every sequence in C that converges in X
relative to d′ has its d′-limit in C, so C is closed relative to d′.

The proof that every closed subset of X relative to d′ is closed relative to d is the same,
with the roles of d and d′ exchanged. �

Theorem A.2 does not generalize directly to topological spaces: two different topologies
(even Hausdorff) could have the same convergent sequences (with the same limits). See
https://math.stackexchange.com/questions/76691. The issue is that sequences may
not be enough to capture everything about a topology. But if we use nets, which are a
generalization of sequences, then we can say a topology is determined by its convergent
nets (and their limits). See https://mathoverflow.net/questions/19285.

https://math.stackexchange.com/questions/76691
https://mathoverflow.net/questions/19285
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