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The 1926 Nobel Prize in physics was received by J. Perrin
for hie precise determination of Avogadro’s number, N. His
technigue was to compare the experimentally measured dif-
fusivity of spherieal granules in water with the Stokez-Ein-
stein expression for the diffusion coefficient of spherical
particles in an ideal fluid,
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where R is the universal gas constant, T iz the abaolute
temperature, p is the fluid viscosity, and d is the particie
“ameter.

At that time, Perrin’s instruments for determining I con-
sisted essentially of 2 microscope and a watch. By mEeasuring
the square of the particle displacement, r*, relative to the
origin as a function of time, ¢, he was able to calculate the
diffusicn coefficient using the following
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De o {2}
where the I denotes diffusion in the radial direction. Equat-
ing expressions 1 and 2 for known values of B, T, u, d, and D,
Perrin was thus successful in obtaining N to a high degree of
accuracy. !

It is well known that the best microscopes and watches
available then had resolutions that were orders of magnitude
lower than those used today. It is also understood that in
consequence of self similarity of Brownian motion Perrin’s
result would not differ should the experiments be carried on

meem—"today’s high-quality equipment. The objective here is

to demonstrate the case that is universally accepted, but to
my knowledge has not yet been explained in simple terms.
Moreover, in addition to providing the reader a basic under-
standing of the nature of self similarity that governs

processes, the presented hereafter may be em-
ployed in the treatment of problems with similar character.

Mozsurement of Brownlan Diffusion
Consider the actual path that a particle may underge
Brownian movement as denoted by path [ in Figure L. Asa

corsequence of equipartition of energy, the particle kinetic
energy is given by 3kT/2, and in association with egs 1 and 2
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Figure 1. Observing Brownian movemant in high (A4 and low (X) resolutions,
paths | and i, respactively.

one can obtain an estimate of the actual mean free peth, A,
and the time between collisions, r, of a spherical particle ina
fluid. Henee, for a 0.1-um particle with density equal to that
of water

A= 5 X 1 em (3
and
r=3%10"% (4

in water at room temperature.

Now assume that two observers are measuring [ and that
observer 1 is properly equipped to handle the length and
time scales given by eqs 3 and 4. His method would then be
to use the following
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Observer 2, however, being limited in optical and timing
resolutions, is capable of resolving length and time scales in
the order of X and t;, respectively, as indicated by path ITin
Figure 1. His measurements would thus lead to
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Figure 2. Simplitied case of the two paths,

Realizing that the total time,

TR (1)
is the same in both cases, T 7., A% must then be equal to 201,
X for the calculated values of D to be the same.

Consider the simple case, illustrated in Figure 2, where the
particle path consists of two actual paths, Ay and Ay, as
measured by observer 1, Being optically limited, observer 2
will see X; where

X R2 4 Ry = 2K, Agcos &)

For maximum accuracy a large number of observations must
be made and X,? must be averaged over all the observed

values of Ay, A, and 0. Analytically, this is achieved by intro-
ducing a probability function?, P(A;,Ax0), where
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gives the number of observations in which the particle is
displaced within the limits
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gives the average reading of observer 2 over all posaible
values of Ay, bz and 8.

Taking into account the random nature of Brownian mo-
tion, Ay, Ag and @ are therefore independent and the proba-
bilities of their cccurrence are uncoupled. This implies that

Pihhadl) = POV Pidg) PO (10)
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Subsequently, eq § becomes
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Assuming that P()) approaches zero much faster than 1/A
{in effect it does due to the Gaussian form of PO, Saen
Pix}Adx will therefore approach a finite rumber. Further-
more, due to randomness P(8) is uniform over 0 6 < 2=, and
since by definition

f " plojds =1 (12)
=0
P(6) will therefore be equal to Yz, This reduces eq 11 to
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where
J: PN =1 (14}
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Equation (13) is similar to that uzed by Einstein in his
statistical definition of D.3 By carrying on the analysis to
inelude numerous microscapic paths, it follows that

Xi= S aie {13)
22

indicating that both observers will arrive at the same conclu-
sion that
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independent of instrument resolution.

Concluding Discusslon

The results deduced from the preceding section can pro-
vide a simple explanation to the pature of m uestions
encountered by students, engineers, and scien ex-
ample, how certain low-grade, low-resolution instruments
can yield precise and accurate data with a high degree of
confidence, and why certain random or ergodic occurrences,
such as Brownian motion, exhibit self gimilarity at any
length (and/or time) scale, a behavior that is also evidenced
in fractals and percolation.®® Furthermore, the calculations
presented above may, to some extent, be related to sevaral
common statistical techniques of data reduction, namely the
method of least squares, to shed some light upon their ap-
parent effectiveness.
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