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The Design of a Multicore Extension
of the SPIN Model Checker

Gerard J. Holzmann and Dragan Bo�sna�cki

Abstract—We describe an extension of the SPIN model checker for use on multicore shared-memory systems and report on its

performance. We show how, with proper load balancing, the time requirements of a verification run can, in some cases, be reduced

close to N-fold when N processing cores are used. We also analyze the types of verification problems for which multicore algorithms

cannot provide relief. The extensions discussed here require only relatively small changes in the SPIN source code and are compatible

with most existing verification modes such as partial order reduction, the verification of temporal logic formulas, bitstate hashing, and

hash-compact compression.

Index Terms—Software/program verification, model checking, models of computation, logics and meanings of programs, distributed

programming.

Ç

1 INTRODUCTION

LOGIC model checking can be used to verify the logical
correctness of distributed algorithms and asynchronous

system designs, both for hardware and software. Thanks to
a series of algorithmic improvements over the last few
decades and helped by the increasing power of mainstream
desktop CPU systems, the range of problems that can be
solved with model-checking tools continues to expand. The
best model checkers today can analyze models with
millions of reachable system states in seconds—which is
more than adequate to support the verification of abstract
design models of asynchronous software systems. As a
result of the progress made, model-checking tools have
become a fairly standard part of safety critical systems
development. The SPIN verifier [15], [20], first introduced in
1989, is a public-domain open source software tool that is
specialized to the verification of correctness properties of
asynchronous software systems. It is currently one of the
most widely used verification tools in this domain.1

The effectiveness of any verification method, be it
manual or mechanical, is ultimately limited by problem
complexity. Nevertheless, the larger the range of problems
we can analyze today, the stronger our desire to tackle still
larger problems tomorrow. Alas, the effect of Moore’s curve
[31] to drive a continuing increase in the performance of
CPUs is slowly disappearing. In mid-2002, for instance, the
fastest desktop PC one could buy ran at a clock-speed of

2.5 GHz. At the time of this writing, mid-2007, the fastest PC
available runs at 3.8 GHz, where a continuation of Moore’s
curve would have predicted machines almost twice that fast
(6.6 GHz). Instead of further increasing raw CPU speed,
chipmakers have changed direction to focus on the
development of multicore systems. Dual-core and quad-core
systems are already widely available, with larger numbers
of processing cores soon to follow. This means that, to
further increase the problem solving capabilities of logic
model-checking tools in the foreseeable future, we must
develop strategies that can exploit the capabilities of
multicore CPU systems.

Where the change from a 1 GHz system with 1 Gbyte of
memory to a 2 GHz system with 2 Gbytes of memory could
bring an automatic doubling of the raw problem solving
capability of any model checker, not requiring any change in
the tool itself, the change from single-core to multicore
systems does require algorithmic changes. In the past, there
has been significant interest in using model checkers on large
compute clusters. However, progress made in this area has
had only a limited impact on the mainstream use of model
checkers. Today, there are no broadly used extensions for the
most commonly used model checkers for cluster computers
that preserve their full range of capabilities.

Multicore systems differ in many aspects from compute
clusters. We will refer to compute clusters as multi-CPU
systems here. A multicore system can offer all CPU cores fast
access to a single shared memory arena, thus avoiding the
need for the relatively slow transfer of data from one CPU to
another across data links in a cluster arrangement. Another
change in CPU designs is significant in this context and that is
the change from a default word size of 32 bits to a word size of
64 bits. The default word size determines the maximum
amount of memory that can directly be addressed by a CPU.
On a 16-bit system, only 65,536 addresses (64K or 216) can
be referenced directly. On a 32-bit system, this range
increases to 4 Gbytes ð232 ¼ 4:109 bytesÞ, which is still
relatively small. On 64-bit systems, which are quickly
becoming the standard, the limit on main memory sizes
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has, for all practical purposes, disappeared. (It moves to
1018 bytes, a size that is unlikely to be matched by any real
hardware for a long time.)

The change from a sequential execution of a model-
checking algorithm to a distributed or parallel execution
may seem attractive for two separate reasons: increasing
speed and/or increasing the available amount of memory.
The speed improvement is realized if we can perform
different parts of the verification process in parallel. The
memory increase can result from pooling the memory
resources of different machines to create a larger address
space than available on a single machine. We will discuss
the relevance of each of these two potential motivating
factors for the development of a distributed model-checking
algorithm in Section 2. In Section 3, we discuss one of the
central problems in the development of multicore algo-
rithms: load balancing across CPUs. Section 4 discusses an
extension of a partial order reduction algorithm that can
help us retain the benefits of this technique in the extended
model-checking algorithm. Section 5 provides detailed
metrics on the performance of the new algorithm for both
dual-core and multicore systems and presents an analysis of
the structural model characteristics that can either enhance
or degrade the performance of multicore solutions. Section 6
discusses two supporting algorithms that we used in the
implementation: an algorithm to enforce mutually exclusive
access to shared data structures and an algorithm to
perform distributed termination detection. Both of these
algorithms can be proven correct with SPIN itself, which is
one of the rare examples where a verifier can be used to
prove the correctness of aspects of its own extension.
Section 7 presents a survey of earlier work in this area and
Section 8 concludes the paper.

2 INITIAL ANALYSIS

2.1 Memory

We first observe that, on a modern 64-bit CPU, the
addressable memory size can no longer be considered a
limiting factor. When the amount of available memory is
the primary consideration, it will be more attractive (and
more economical) to use a single CPU with a large amount
of memory, rather than to divide the same amount of
memory over multiple CPUs in a cluster arrangement, with
each CPU needing its own power supply, graphics card,
and network interfaces. This means that increasing avail-
able memory to store information during the model-
checking process by linking computers together is no longer
the main motivation for exploring distributed model-
checking algorithms. There is no practical limit to the
amount of memory that can be supported within a 64-bit
address space. Today, systems with up to 64 Gbytes of
RAM memory are already commercially available and the
trend of steadily increasing memory sizes on standard
desktop machines is likely to continue.

2.2 Speed

This leaves only the potential increase in speed as the longer
term motivation for distributed computation. Can it be a
performance advantage to use a physical separation
between different computers or does the overhead involved
in the inevitable data transfers between CPUs outweigh this

potential advantage? To put it as simply as possible: Can we
achieve greater performance in distributed model checking
by using two single-core systems, each with 4 Gbytes of
nonshared memory and communicating via a data link, or
one dual-core system with 8 Gbytes of shared memory and
communicating via shared memory? We consider this issue
first and come to a conclusion about the type of algorithms
that can be expected to have the best potential for realizing
long-term performance improvements in logic model
checking.

Table 1 shows the time we measured for copying
10,000 bytes of data from one location in RAM to another
with the standard memcpy routine, compared to the time
needed to write the same amount of data either to a hard
disk or to another machine via TCP/IP connection across a
standard network link.2

These measurements show a significant advantage for
local operations, even if those operations target a local disk,
and a serious penalty for inter-CPU communications. The
overhead of inter-CPU data transfer will have to be
regained in parallel operations if an overall gain of using
physically distributed computation is to be maintained. It
should be observed that the network transfer time shown in
the table is near the minimum value of 800 sec for a link
speed of 100 Mbps. The time increases when smaller
amounts of data are transferred (incurring more of the
packet framing overhead), but can also be reduced if faster
links are used.

For an initial assessment, assume that we have a fixed
number of 100 CPUs available and we would like our
model-checking algorithm to explore one million distinct
reachable system states. Assume further that the relative
time to perform the key operations in the model-checking
process related to state creation and state storage is, as
shown in Table 2, for multi-CPU systems with physically
distributed memory and for multicore systems with shared
memory. The first two rows in Table 2 roughly capture the
performance of the SPIN model checker and the last two
rows relate these numbers to the data in Table 1. For inter-
CPU transfer times we assume proper caching of states to
reduce the overhead associated with the transfer of small
amounts of data.

The time to explore one million states sequentially on a
single CPU then is

ST : 1; 000; 000�ðT1þ T2Þ ¼ 1; 100; 000 units of time:
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2. The programs used to make these measurements, as well as the data
from all of the measurements reported in this paper, are available online at:
http://spinroot.com/spin/multicore/.

TABLE 1
Relative Performance of Operations in RAM, to Disk, and
to a 100 Mbps Data Link Connecting Two 3.4 GHz PCs
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The time needed by a distributed version of the model-
checking algorithm will depend on the amount of decou-
pling we can achieve in the computation. We can express
this as an Independence Ratio (IR) that measures how many
states, on average, can be generated and processed locally on
each CPU from a single state descriptor that starts a new
search effort before a handoff to another CPU is required.
Trivially, if IR ¼ 1 (the lowest it can be), then all successor
states that are generated must be handed off to another
CPU immediately and will incur the cost of inter-CPU
transmission. The larger the IR is, the better a distributed
model-checking algorithm should perform.

In the well-known Stern-Dill algorithm [37], each new
state is assigned effectively randomly to one of the active
CPUs, which means that, with 100 active CPUs, the
probability that a new state has to be handed off to another
CPU is 99 percent, which gives IR ¼ 1:01, that is, close to a
worst-case value.

With perfect load balancing, each of the 100 CPUs would
explore 1,000,000/100 reachable states and, on average,
1; 000; 000=IR of the states will have to be transmitted from
one CPU to another at the cost of T3 (Table 2). If the search
is performed in parallel on all CPUs, the total clock time can
be divided by 100 to give the overall time spend in the
parallel search (assuming perfect load balancing):

PT : ð1; 000; 000�ðT1þ T2ÞÞ þ ðð1; 000; 000=IRÞ�T3ÞÞ=100:

The speedup of the parallel search compared to the
sequential (single-core) search can then be expressed as
ST/PT.3 In the best case, this speedup will approach the
number of CPUs used, in our example 100, but we can
expect it to depend on the relative values of IR and T3.

The actual speedup that is realized can also be
influenced by the relative values of T1 and T2. If the values
in Table 2 are used, the speedup as a function of IR follows
the lower curve in Fig. 1 (marked optimized). If, however,
with a slower model checker, the time to generate and check
states is higher and gets closer to the time it takes to
transmit a state from one CPU to another, the speedup

function changes. In Fig. 1, this is plotted as the top curve
(marked unoptimized), which shows what happens if T1 is
set to 50, instead of 1. That is, the top curve shows what the
relative speedup will be if the time required to generate a
state increases to roughly 50 percent of the time needed to
transmit a state from one CPU to another. Curiously, this
means that, for an unoptimized model-checking system, the
effect of parallelization can be more impressive than for an
optimized system. We will return to this observation later in
the paper and confirm it in the practical application of the
algorithms we introduce here.

Fig. 2 repeats the calculation for multicore instead of
multi-CPU systems, where the time to transfer a state
descriptor from one compute node to another is much
smaller. The difference in speedup for unoptimized and
optimized performance shrinks and the advantage of
parallel computation can be predicted to become noticeable
for smaller IR ratios. For an IR value of 7, for instance, the
optimized multicore solution already shows 99.99 percent of
the maximal speedup. This same ratio is only achieved for
an IR value over 600 on a multi-CPU system (outside of the
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3. The improvement obtained with a distributed model-checking
algorithm over a sequential one can be expressed as a ratio in two different
ways: as a speedup ST/PT or as a reduction of time needed PT/ST.

TABLE 2
Relative Time to Generate, Check, Transmit,

and Record State Descriptors

Fig. 1. Effective speedup as a function of IR on a multi-CPU system,

using data from Table 2. The relative time to generate a new state is set

to 1 for an optimized system and to 50 for an unoptimized system.

Fig. 2. Effective speedup as a function of IR on a multicore system,

using data from Table 2. The relative time to generate a new state is set

to 1 for an optimized system and to 50 for an unoptimized system.
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graph in Fig. 1). Note that this level of decoupling requires
that, for every state transferred to a CPU, on average,
600 successor states must be explored locally within the
target CPU before a state is handed off again.

This initial analysis indicates that it is most attractive to
target distributed model-checking algorithms to shared-
memory multicore systems. We will therefore focus our
attention on that class of systems.

There are several factors that are not considered in this
first analysis that can also impact the performance of a
multicore solution, such as the effect of partial order
reduction techniques and the structure of the verification
model itself. We will measure the impact of these additional
factors in Section 5.2.

3 LOAD BALANCING

A distributed model-checking task works most efficiently if
we can divide the work evenly between CPUs. Since we
want to maximize the independence of the CPUs in the
system, little communication should be required between
the CPUs. This ideal is trivially realized if we can perform
separate parallel verification runs for independent properties,
for example, specified as a set of mutually independent LTL
formulas. This was the method used for achieving even
load balancing of hundreds of verification runs on a 16-CPU
compute cluster used in the Bell Labs FeaVer system [19]. In
general, though, this level of decoupling is difficult to
achieve.

One method is to define a state space partitioning
function that is evaluated on-the-fly by each CPU. This
partitioning function determines, for each newly generated
state, which CPU should explore it further. The partitioning
function should then have the property that, when a state s
is generated by CPU x, most of the immediate successors of
s will also be explored by CPU x. If the CPUs use a shared
data structure to store all states, we can avoid having
different CPUs perform redundant work by exploring the
same parts of the state graph. The price to pay for this
coordination is the enforcement of mutual exclusion locks
on access to the (relevant part) of the state tables.

To partition the state graph into disjoint subsets, each of
which is explored by a different CPU, we can make use of
the notion of an irreversible transition, which we define as
follows:

Definition. An irreversible state transition in the global state
graph is any transition with the property that its source state
is not reachable from its target state.

This means that there can be no path (a sequence of
transitions) that leads from the target state of an irreversible
transition back to its source state. Irreversible transitions
divide the state graph into disjoint subgraphs. Note,
however, that we do not require that the subgraphs be
strongly connected, cf., [29].

Irreversible state transitions can be identified at compile
time with a static analysis of the proctypes in a SPIN
model. Although any irreversible transition will divide the
set of global system states into disjoint subsets, these sets
are not necessarily of similar size. The identification of

irreversible transitions, therefore, is by itself not sufficient
for defining a good load-balancing strategy. In the SPIN
system, there is one exception, though, where we can

identify an irreversible transition that often divides the
global states space into two approximately equal and
disjoint subsets. This is the transition that separates the
first from the second depth-first search in SPIN’s nested
depth-first search algorithm [20]. Since the nested depth-
first search algorithm supports the verification of liveness

properties, this gives us an immediate candidate strategy
for a dual-core extension of the model-checking algorithm of
linear temporal logic formulas and, in general, for the larger
class of !-regular properties. This strategy does not scale to
the use of more than two CPU cores, but it has the
important property that it does not alter the fundamental
computational complexity of the algorithm used: The
complexity remains linear in the size of the number of
reachable system states, with the same constant factor as
applies to the standard nested depth-first search.

When a state is transferred from one CPU to another,
data must be copied between the address spaces of the two
CPUs. The data includes the state descriptor, some
information from the current stack frame, and the data

structures that SPIN uses to interpret state descriptors
correctly (for example, given the offsets of process and
message channel data inside the global state vector). This
information can be appended to a work queue in shared
memory, but, in principle (at a performance penalty), it
could also be placed in a slower disk memory. Since the
shared work queues are accessed in first-in-first-out (and
not random) order, their contents may be read from the disk
without too much overhead. Standard disk caching meth-
ods can leverage the relatively slow disk access over larger
numbers of states that are read and cached simultaneously.
This method was implemented as an option in the multicore
implementation of SPIN, but note that, once the amount of
available shared memory is sufficiently large, the option
will no longer be needed. For the remainder of this paper,
therefore, we will focus on the used shared memory alone.

3.1 Liveness Properties

In the dual-core model checking for liveness properties, the
nested depth-first search adds each accepting state in
postorder to a shared work queue [18]. This work queue
is read by the second CPU, which performs only the nested
part of the search to determine, for each accepting state,
whether it is reachable from itself. The second CPU can
perform this part of the search while recording all new
states generated into a separate (nonshared) part of the state
space since we already know that there can be no overlap
between the states generated in the first and the second
depth-first search. In this case, no locking is needed on
access to the state tables. The basic complexity of the search
remains unchanged compared to a single-core algorithm.
Thus, for dual-core systems, the speedup for the verification

of liveness properties in the best case can be close to twofold
(cf., Section 5.1). As noted, an extension of this algorithm for
systems with more than two CPU cores is likely to be
nontrivial and is not explored here, cf., [36].
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3.2 Safety Properties

For safety properties, the state partitioning function should
achieve two separate objectives: a roughly equal distribution
of work on all CPUs and an IR greater than approximately 10
(cf. Fig. 2). In this paper, we explore the performance of a
relatively simple metric for load balancing that can achieve
these two objectives in many cases of practical interest. The
metric is based on a relatively simple stack-slicing algorithm.
To implement this algorithm, the CPUs in a multicore system
are connected in a logical ring. Each pair of neighboring CPUs
shares access to one single work queue, which is maintained
in shared memory. CPUs can hand off states to each other
only by sending them clockwise around the ring. This means
that access to the queues can be implemented with a lock-free
data structure since each queue has one unique writer and
one unique reader.

Let dd be the depth in the state graph at which a state is
generated. Each CPU core in the ring can decide to hand off
a newly generated successor state to its right neighbor when
the search depth dd exceeds a preset bound L within its local
stack. When a state is transferred, the target CPU will start
to explore that state as a local root for its search, that is, with
an empty local stack and with the search depth dd starting at
zero. This means that, with this metric, at every dd%L steps
from the original root of the global state graph, a state
sequence can be transferred to a neighboring CPU. The
Nth CPU in an N-core system hands off states back to the
first CPU, using modulo-N counting. To achieve sufficient
independence, the value of dd should be larger than 10 and
less than D/N, where D is the maximal depth of the depth-
first search tree. D is typically on the order of 104 to 106

steps for the larger applications that are of primary interest
for multicore verification. This strategy should be able to
achieve reasonably good load balancing for values of N (the
number of CPU cores) up to a 102 to 103. We will report on
the actual performance of this metric for the verification of
safety properties in Section 5.

Although the stacks are necessarily local (that is,
nonshared) in this search mode, we have a choice of
placing the state tables in either shared or nonshared
memory. Placing the states in the shared memory brings the
need for locking on access to the relevant part of the table
when new states are inserted, but it eliminates the chance
that duplicate work is done. The overhead of locking can be
reduced by using fine-grained locking techniques (that is,
locking only that part of the hash table that contains the
newly generated state), so this will, in almost all cases, be
the preferred method. Our implementation uses this
method as the default.

One of the goals for the design of the extension of SPIN is
to make only minimal changes in the existing code and to
preserve as much of the existing capabilities of the system
as possible (and the trust we can place in these). This level
of minimal intrusion can be achieved by carefully selecting
the points in the search where a state handoff can take
place. Fig. 3 illustrates the standard nested depth-first
search algorithm that is used in SPIN [20, p. 180] and
indicates two points in the search, where, in our current
implementation, a state can be handed off to another CPU
with minimal change to the existing algorithm for logic

model checking. These points are the natural recursion
points in the nested depth-first search.

The first point ([L] in Fig. 3) corresponds to the start of
the nested part of the search, which is the handoff point for
the verification of liveness properties. The second point
(marked [S]) is the handoff point for the verification of
safety properties, based on the depth metric we have
discussed above. The two points interfere only minimally
with the existing algorithm and preserve all other SPIN
options. The two metrics are never mixed since SPIN can
only do one type of search at a time (either for the
verification of safety properties or for the verification of
liveness properties). For liveness properties, only handoff
point [L] is used; for safety verification, only handoff point
[S] is used.

The handoff depth that is used in the verification for
safety properties defaults to a value of 20, based on
performance measurements with this algorithm (Section 5).
The default can be changed by the user with a command
line argument.

4 PARTIAL ORDER REDUCTION

The standard implementation of SPIN can achieve con-
siderable speedup from the use of the partial order
reduction method that was introduced in [17] and revised
in [18]. This algorithm reduces the number of successor
states that must be generated at each step during the search
if it can be guaranteed that any deferred transition will
eventually be explored from a later state. The partial order
method ensures that, when a transition is deferred for later
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Fig. 3. Handoff points for the dual-core nested depth-first search.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 15, 2009 at 05:16 from IEEE Xplore.  Restrictions apply. 



execution, its continued executability is guaranteed. A key
provision in the algorithm is the prevention of infinite
deferral of transitions along cyclic paths in the state graph.
This cyclic deferral is prevented in the standard SPIN
algorithm by making sure that none of the successor states
from a reduced set of transitions can appear on the depth-
first search stack, above the state being explored. If any
successor state appears on the stack, it could otherwise close
an infinite deferral cycle and lead to incompleteness of the
search process. In the partial order theory, this is known as
“the ignoring problem.”

In general, for the verification of liveness properties, if at
least one successor state appears on the depth-first search
stack, no reduction is performed from that state [17], [32].
This precondition on the application of partial order
reduction is known as the cycle proviso (or, in the case of
the depth-first search, sometimes also the stack proviso).

Two other versions of the cycle proviso are used in SPIN
for the verification of safety properties with either a depth-
first or a breadth-first search (BFS).4 Clearly, in the case of a
BFS, there is no depth-first stack and, thus, an alternative
method must be adopted to prevent the ignoring problem.

. Depth first. At least one successor state appears
outside the stack [16].

. Breadth first. At least one successor state is in the BFS
search queue [3], [5].

The latter condition is more conservative and indepen-
dent of stack contents, but, as a result, it achieves smaller
reductions of the state space size.

In a multicore search algorithm, like in a BFS, the full
depth-first search stack starting from the original root of the
state graph is not always available. This means that we
must use a different method for solving the ignoring
problem. One alternative method that is independent of the
stack is to force the full expansion of successor states
whenever at least one of the asynchronous processes in the
verification model traverses a transition that corresponds to
a backward edge in its local control structure (a precondi-
tion for a global cycle being created), cf., [28]. Such
transitions can easily be identified statically. An implemen-
tation of this method, though, is significantly outperformed
by an alternative method that we will describe next.

The method for solving the ignoring problem that we use
is to force a full exploration of successor states in two
additional places during the search (that is, in addition to
the case where successor states are found on the local stack
of the executing CPU).

. The first additional expansion is made for so-called
“border states” (handoff states), that is, states whose
successors fall below the handoff depth of the
current CPU and, therefore, might have appeared
on the search stack. The most conservative approach
is to treat them as if they had appeared on the stack.

. The second case is for successor states that are
previously visited by another CPU. In a single-core
execution, these states may have appeared on the

search stack, but this is no longer verifiable by the
executing CPU since it has no access to the full
search stack anymore. Again, the most conservative
approach is to treat these states as if they appeared
on the stack.

The second case can be further optimized by restricting it
to cases where the previously visited state was generated by
a CPU with a higher pid number than the executing CPU [7].
This additional restriction makes sure that the full expan-
sion can occur in only one CPU, not in both.

Proof (Sketch).5 The proof is by induction. Consider a case
where CPU-i generates a successor state s that was
previously generated by CPU-0, with zero being the
lowest pid in the system and i > 0. When CPU-0
generated the state, the state was new and, hence,
CPU-0 must explore all states reachable from s,
guaranteeing that any deferred transitions are eventually
explored as well. Since CPU-0 has the lowest pid in the
system, it cannot defer any expansion for previously
visited states by any other CPU. CPU-0 provides the
induction hypothesis, which hinges on the fact that every
CPU can trust that the successors of previously visited
states generated by CPUs with lower pid numbers are
fully explored by at least one of those CPUs. tu

Because of the required full expansion of all border
states, this version of the partial order reduction method
can be expected to disfavor short handoff intervals. As the
data presented in Section 5 confirms though, this initial
effect quickly disappears.

5 MEASUREMENTS

5.1 Basic Performance

Table 3 shows a comparison of the runtime requirements of
verification runs with the extension of SPIN using one or
two CPU cores for the verification for six verification
models, most of which are taken from the SPIN distribution:
a leader election algorithm for a network of eight processes,
Peterson’s generalized mutual exclusion algorithm for four
processes, a sliding window protocol for a window size of
five messages, the dining philosophers problem with nine
processes, a model of a phone switch, and a reference model
that we will discuss in more detail shortly. For these
measurements,6 we performed verifications for both safety
and liveness properties without partial order reduction to
ensure that both the dual-core and single-core runs explore
precisely the same total number of reachable states. The
safety verifications achieve speedups that vary from the
near optimal factor of 1.98 for the reference model to 1.36
for Peterson’s algorithm.

To assess the performance of liveness verification, we
placed an accept label at a local cycle in each model and
checked for the presence of global acceptance cycles in the
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4. No efficient algorithm is known for the verification of liveness
properties with a BFS algorithm [20], so this combination is currently not
supported in SPIN.

5. A formal proof is presented in Appendix A.
6. All measurements were made on a system with two quad-core CPUs

for a total of eight CPU cores. The CPUs ran at 2.3 GHz, with 32 Gbytes of
shared memory, under a 64-bit operating system (Ubuntu version 7.0.4). All
compilations were done with gcc version 4.1.2. All data and models are
available online at http://spinroot.com/spin/multicore.
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state space with the nested depth-first search algorithm.

Performing the measurement in this way again preserves the

number of reachable states in all runs and allows us to

compare the performance of safety and liveness, both for

single and dual-core runs. Note that performing the same test

by adding a separate LTL property would increase the

number of reachable state by the addition of the never claim.
The speedup for liveness verifications in these tests

ranged from a high 1.83 to a low 1.23. We will study the

possible reasons for the lower values in more detail later.

5.1.1 Influence of Compiler Optimization

We have also compared the performance on the same

examples when compiler optimization is used. The results

are shown in Table 4. In all cases, when compiler

optimization is used (compiled with gcc option -O2), the

benefits of the multicore runs decrease, which is consistent

with our predictions in Figs. 1 and 2. It is also noteworthy

that merely enabling compiler optimization can achieve

speedups greater than unoptimized dual-core verification.

5.1.2 Influence of Handoff Depth

We measured the influence of the handoff depth heuristic

on the performance of dual-core verifications. A represen-

tative result of these measurements is shown in Fig. 4, in

this case for the verification of safety properties for the

model of a phone switch. The maximum depth of the search

tree is 292,086 steps in this case and the state vector size is

100 bytes. The graphs (the top curve measured with default

compilation and the bottom curve with compiler optimiza-

tion enabled) have a characteristic “bath-tub” shape when

the handoff depths are varied, with a mostly flat bottom,

where any handoff depth selected gives comparable

performance. The performance for the smallest and largest

handoff depth values is often poor since the IRs decrease for

these values. As before, in all of these measurements, partial

order reduction was disabled to ensure that all verification

runs we compare here explore precisely the same numbers

of states.
The right-hand sides of the curves in Fig. 4 show

performance degradation caused by approaching and

exceeding the maximum search depth of the state space.

Handoffs near and beyond this limit will trivially not be

able to achieve proper load balancing. If too few states are

transferred from one CPU to the other, the first CPU will be

forced to do most of the work and the performance

ultimately degrades to that of a single-core run and worse

if the overhead of the dual-core infrastructure becomes

noticeable. The effects are the same with or without

compiler optimization enabled, although the amount of

improvement when dual-core verification is used decreases,

as also predicted in our initial analysis.
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TABLE 3
Measurements for Small Verification Models

with Default Compilation

TABLE 4
Measurements for Small Verification Models

with Compiler Optimization (-O2)

Fig. 4. Measurement of the influence of the handoff depth in the dual

core verification of safety properties with (bottom) and without (top)

compile time optimization enabled. The horizontal lines give the

performance of single core runs with (bottom) and without (top) compile

time optimization. All runs are without partial order reduction.
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5.1.3 Influence of Partial Order Reduction

Fig. 5 gives a representative performance result for the
effect of enabling partial order reduction in a multicore
verification run for the same verification model as used in
Fig. 4, this time with compiler optimization enabled for all
runs. With partial order reduction, the maximum depth of
the search tree reduces from 292,086 to 73,789 steps and the
number of states explored reduces from 32.8 million to
4.7 million. As in Fig. 4, we varied the handoff depth from 1
to 60, in increments of one, with additional samples taken at
1 K, 10 K, 100 K, 200 K, and 300 K steps. For reference, the
two horizontal lines show the relative performance of single
core runs with partial order reduction enabled (dotted,
bottom) and without it (dashed, top).

Clearly, the addition of partial order reduction reduces
the relative benefit of multicore verification further. In some
cases, when partial order reduction is enabled, the
performance does not improve, improves only marginally,
or even degrades, especially for the smaller handoff depth
values. We can hypothesize that this is in part caused by the
changes that the partial order reduction algorithm makes in
the state graph structure, effectively reducing the average
number of successor nodes of a state. This effect is not
visible in all applications, but is clearly important. We
therefore investigate this phenomenon more fully in the
next section. The potential effect of state graph structure on
the behavior of model-checking algorithms was also
explored in [35].

5.2 A Reference Model

To verify how multicore verification depends on various
structural model characteristics, we construct a reference
model that allows us to vary each of a small number of
relevant model parameters over a range of possible values
that may be encountered in practice. The reference model
we use for this analysis is shown in Appendix B.

The reference model has three independently modifiable
structural parameters, allowing us to vary the number of
successor states per reachable system state (the out-degree

or branch factor of each state in the state graph), the size of a
state in bytes, and the time it takes to generate a successor
state, which is captured as the time it takes to execute a state
transition in the model. We use an embedded C code to
control this last parameter by the number of times we force
the code to execute a dummy computation in an idle loop.
The model generates a fixed number of 0.5 million reach-
able system states in each case, independent of the
remaining parameters settings—so that we can more easily
compare the relative runtimes across all runs.

The first measurement we perform is meant to establish
how the performance of a dual-core verification run depends
on transition delay. Fig. 6 shows, in the top-left graph, how
the ratio of the dual-core runtime versus the single-core
runtime for the reference model, for a small state size
(10 bytes) and transition delays that are varied from 21 time
units to 218 time units, increasing by powers of 2. Three curves
are plotted, the top curve (dotted) is for a branch factor of 1
(that is, a purely deterministic model where every state
reached has at most one successor), the middle curve
(dashed) corresponds to a branch factor of 2, and the bottom
curve (solid) corresponds to a branch factor of 8.

These measurements show that, for models with small
transition delays and/or small branch factors, a dual-core
run may take up to 2 1/2 times as long as a single-core run.
For models with an average out-degree of 8, though, the
dual-core runs are never slower than the single-core runs,
not even for the minimal transition delays we measured.
The same effect is observed for larger transition delays
(corresponding to more costly state transitions) and branch
factors above 1. Partial order reduction tends to reduce the
out-degree of states in the global system graph, so the
observed slowdown of dual-core verification runs can now
be understood.

The graph on the upper right in Fig. 6 repeats the same
measurements for a larger state size of 200 bytes. We see
fundamentally the same effects, but, for branch-factors
above unity, the performance degradation effect disappears
and optimal performance is quickly reached.

The graph on the lower left side in Fig. 6 separately
shows how performance varies with state size for a fixed
transition delay of 23 time units and the graph on the lower
right repeats this experiment for a larger transition delay of
213 time units. Note that, in the latter case, performance
becomes almost completely independent of state size, likely
because it is now dominated by the transition delay itself.

A few observations can be made about these results.
First, the performance of multicore algorithms should be
expected to be smaller when partial order reduction is used
than when it is not used, although the effect can be
mitigated by a number of other factors. The advantage of
partial order reduction, though, is important and it is not a
real option to disable it in multicore verifications. There are
cases, though, where, for unrelated reasons, partial order
reduction is not an available verification option, for
instance, when an LTL property is not stutter invariant
[20]. In those cases, multicore algorithms can prove
especially valuable to reduce the complexity of verification.
In the remaining cases, the use of multicore methods will
provide benefits in all but the relatively rare cases where the
verification model defines a near deterministic sequential
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Fig. 5. Dual-core and single-core with (bottom) and without (top) partial

order reduction enabled for varying handoff depths. All runs were

compiled with compiler optimization. The performance of the single-core

verification runs is indicated by the horizontal lines. Without partial order

reduction, there are 32.8 million reachable states; with partial order

reduction enabled, the number is 4.7 million states.
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computation after partial order reduction is applied. Note

that, in a purely deterministic setting (that is, a branch

factor near one), no multicore state partitioning method is

likely to be effective. In these cases, one CPU will always be

waiting for the other CPUs to complete their work before it

can resume its part of the computation. This effect is clearly

visible in the graphs in Fig. 6.
Another observation is that the multicore algorithm for

safety properties can be expected to perform best for

models with large state sizes and/or large transition delays.

This matches an important application domain of verifica-

tion models with large amounts of embedded software and

the use of model-driven verification techniques, where the

model checker must control and track potentially large

amounts of implementation level data [21]. The importance

of this type of extension should therefore be expected to

increase over time as we start tackling larger and larger

problem sizes with logic model checkers and as larger

numbers of CPU cores become available to perform the

verifications. Alas, it also means that multicore systems

cannot easily show their full potential on small classroom

size examples, so some tutorial value of this new class of

algorithms may be lost.

5.3 Small Verification Models

The results of the performance for safety and liveness
verifications for six relatively small verification models
were shown in Table 3, where we used default compilations
to generate the verifiers, and in Table 4, when we added an
optimization phase to all compilations. Partial order
reduction was disabled in all of these runs to make sure
that both single-core and dual-core runs explore the same
number of reachable states and give directly comparable
results. For meaningful comparisons, all searches are run to
completion and not stopped at errors. (Partial order
reduction would also reduce the runtimes for small
examples too much to still allow for meaningful measure-
ments with the multicore algorithms.) The best performance
in both tables is indicated in bold. Also indicated is the ratio
Single/Dual (earlier referred to as the “speedup” factor).

For all verifications, we see effective speedups with dual-
core verifications, both with and without compiler optimiza-
tion. The amount of performance improvement (or degrada-
tion for that matter) that is observed in practice can depend on
the specifics of a property being checked. If, for instance, we
perform a check for the absence of nonprogress cycles
without defining any progress labels (creating a near worst-
case scenario for dual-core verification where all global
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Fig. 6. Measurements on a reference model to study the effect of structural model properties on the performance of multicore verification algorithms.
Varied are the out-degree of states (the branch factor), the state size, and the transition delay. The dotted, dashed, and solid lines correspond to
branch factors of 1 (that is, a deterministic), 2, and 8, respectively. The horizontal dash-dot line at 1.0 in each graph indicates the value for which the
dual-core runtime equals the single-core runtime (that is, there is no speedup or slowdown). The handoff depth for all measurements was 1,000,
giving a perfect load balance for this model. The graphs plot the relative runtimes as the ratio of a dual-core runtime divided by the single-core
runtime, that is, numbers below 1.0 represent effective speedup and numbers above 1.0 represent performance degradation.
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states will trigger the start of a nested search and all
global cycles constitute nonprogress cycles), performance
can be expected to be poor.

5.4 Larger Verification Models

Next, we consider the result of applying the new algorithms
to the safety verification of larger verification models,
where, based on the experiments with the reference model,
we should be able to achieve the best results. Here, we want
to verify the applications in the most realistic setting:
matching the way one performs large verifications in
practice. This means that, in all of the runs reported in this
section, we enable partial order reduction and we compile
the verifiers with optimization. As we have seen, these two
measures reduce the benefit of multicore verification, but,
for larger applications, they should be considered essential.

We consider six large applications. The first (DS1) is a
verification of a large model with embedded C code taken
from NASA’s Deep Space 1 mission, as described in [13].
The second application (DEOS) is a verification model of the
DEOS Operating System kernel developed at Honeywell
Laboratories, a variant of which is also discussed in [33].
The third application is a verification model of the
autonomous planning software used on NASA’s EO1
mission [10]. The next application is a verification model
of an ad hoc network structure with five nodes, created by a
SPIN user. The fifth application is a verification model of
flash file system software developed at the Jet Propulsion
Laboratory (JPL), using a large amount of embedded C code
[26]. The last verification model is a call processing
application, mechanically extracted from C source code
with a model-extraction technique [19]. Some relevant
parameters on the size of each model are shown in Table 5.

Even with partial order reduction, the applications listed
here generate state spaces that are, in most cases, too large
to explore exhaustively. Only strong compression techni-
ques allow us to perform approximate verifications in these
cases. In practice, such verifications normally suffice to
identify correctness violations if they exist (they usually do).
The numbers of reachable states listed in Table 5 are
explored in verification runs with hash-compact compres-
sion for the DEOS and Gurdag models and with bitstate
hashing for the remaining models. To be able to complete
large numbers of tests, we sized the hash table for the
bitstate runs such that the single-core verifications could be

completed in under 30 minutes of runtime for all models.
As one example, the verification for the EO1 model explores
10,059,569 reachable states in 699 sec on one CPU core and
10,056,715 reachable states in 89 sec on eight CPU cores,
resulting in a speedup of 7.85. The bitstate verifications can
also be done with larger hash arrays and can explore larger
numbers of reachable states, but the speedup factors when
moving from single-core to multicore remain largely
unaffected in such tests. For the EO1 model, for instance,
we can set up the bitstate run to explore 2.55 109 states in
about eight hours, using eight CPU cores, or in 2.6 days on a
single core.

Note that, with the use of partial order reduction, the
number of states reached during a verification run can vary
and will not necessarily be the same when the number of
CPU cores is changed. The number will generally also
depend on the precise interleaving of the different threads
of computation that are now used in the model checker,
which means that the number of reachable states reported
can also vary from one run to the next. To compare the
performance of the multicore algorithms for the different
runs, we therefore use a metric that is independent of the
size of the state space that is explored and that shows how
performance scales with additional CPU cores. The perfor-
mance metric we use is the number of states that are
explored (and stored) per second of runtime, rather than the
runtime itself (which depends on the total number of states
explored). We should expect the processing rate to increase
with the number of CPU cores used. To compare how
performance scales with increasing numbers of cores, we
use the ratio M:S, where S is the processing rate for a single
core verification run (measured in states per second) and M
is the processing rate for a multicore run. For N cores, the
optimal M:S ratio is N.

Safety. The processing rate depends on the size of the
state descriptors, as can easily be seen by correlating the
data shown in Table 6 with that in Table 5. Fig. 7 shows how
the performance scales with increasing the number of CPU
cores for the verification of safety properties for these six
large models. For each model, the processing rates differs
(being related to the numbers given in Table 6), but the
scaling behavior can still be compared. Performance for
safety verification can be seen to increase with increasing
numbers of CPU cores for each model, but in varying
degrees. For the two applications with the largest state
descriptor sizes (DS1 and EO1), the scaling is close to
optimal: achieving a near N-fold speedup on N cores (7.3
for DS1 and 7.8 for EO1 on eight cores). For three
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applications with medium size state descriptors (CP,
Gurdag, and NVDS), the speedup is between 5 and 3 on
eight cores and, for the remaining application (DEOS), a
speedup of 1.7 is measured when eight cores are used.
Perhaps not by coincidence, the applications that turn out to
scale best are the ones with the largest state descriptors,
which is consistent with the predictions we made based on
the reference model. For the CP application, the speedup
compared to a single core run is 7.7, but the single core run
appears to be suboptimal in this case—possibly due to the
extremely deep search tree of over 30 million steps. This
results in an apparent superlinear speedup when compared
directly to runs with larger numbers of CPU cores (where,
due to the sliced stack algorithm, the search stack remains
small). For this application, we therefore use the dual-core
performance as the point of reference for the scaling chart in
Fig. 7—reducing the calculated speedup on eight CPU cores
from 7.7 to 4.9.

Liveness. Performance results for the verification of
liveness properties are shown in Table 7, where we used the
same method as before: We checked for the existence of
acceptance cycles after adding one or more accept-state
labels to each model. Liveness properties could not be
verified for the DS1 model within the available amount of
memory. All results are again obtained with partial order
reduction enabled and with compiler optimization. Visible
in the table is that the number of visited states can increase
slightly from a single-core to a dual-core run, most likely
due to the somewhat weaker partial order reduction rules.
Despite searching slightly more states, in four out of five
cases, we measured a speedup for the dual-core runs with
the liveness algorithm ranging from 1.5 to 1.3. In one case,
the call processing application, we measured an increase in
runtime. We will return to this effect briefly in Section 8.

In Section 6, we will briefly review some supporting
algorithms that were used in the implementation of the
dual-core algorithms in SPIN, which, in some cases, has led
to surprising conclusions about the usability of some well-
known algorithms for mutual exclusion, and favorite
examples of distributed model-checking capabilities.

6 SUPPORTING ALGORITHMS

6.1 Mutual Exclusion

The SPIN source code is designed to be platform indepen-
dent, with the benefit that the standard distribution of the
tool can be compiled without changes on any system that
supports an ISO/ANSI compatible C compiler. The exten-
sion to multicore systems requires a provision for mutually
exclusive access to shared data structures. In some cases, for
instance, when there is just a single writer and a single
reader of a shared data queue, locking can be avoided by
adopting standard lock-free data access methods, but this is
not always the case. Access to the linked lists in the hash
table in SPIN, for instance, must be done under mutual
exclusion locks, minimally on that part of the data structure
that is accessed.

The simplest method to enforce mutual exclusion locks is
to take advantage of machine-specific atomic test-and-set or
compare-and-swap instructions. However, these instruc-
tions are not platform independent. An alternative is to use
one of the well-known algorithms for enforcing mutual
exclusion that require only the indivisibility of individual
read and write operations. One of the simplest algorithms
of this type is Peterson’s algorithm, which was first
described in [34]. The algorithm can be modeled in SPIN
and proven correct (the example is part of the standard
SPIN distribution). There are many independent correct-
ness proofs for this and similar types of algorithms and they
are used as standard examples of model-checking techni-
ques. An implementation of this algorithm in C is also
readily built. The shared variables flag[0], flag[1], and turn
must be declared “volatile” to make sure that the compiler
knows that their value can be changed by processes other
than the executing process, suppressing certain types of
compiler optimization. Curiously, though, when compiled
for a modern CPU, like the Intel Pentium D or Xeon chips,
the platform independent implementation of Peterson’s
algorithm turns out to allow violations of the mutual
exclusion property with low probability.

The culprit in this case is the use of out-of-order
execution optimizations by the CPU, which is used to
optimize memory access sequences. This is a known
problem that is also reported in the Wikipedia entry for
Peterson’s algorithm.7 The solution is to include so-called
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TABLE 7
Liveness Checks for Large Models

7. http://en.wikipedia.org/wiki/Peterson’s_algorithm.

Fig. 7. Scaling with increasing numbers of CPU cores for six large

verification models on an 8-core machine (verifying safety properties). In

two cases, near optimal scaling is seen.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 15, 2009 at 05:16 from IEEE Xplore.  Restrictions apply. 



memory barriers in the code that force memory loads and
stores to happen at known points in the code. The irony is
that these memory barrier instructions are again machine
dependent, which turns Peterson’s platform independent
algorithm back into a machine dependent one—losing the
advantage over the much simpler machine dependent test-
and-set alternative. The SPIN extension, therefore, reluc-
tantly uses the faster test-and-set instruction—with differ-
ent variants compiled in for some commonly used types of
CPUs (such as Intel, AMD, Sparc64, PowerPC, and so forth).

An additional observation on this issue may be of
interest. The potential loss, with low probability, of mutual
exclusion on access to the hash table is actually less harmful
than it would appear at first sight. The code can be written
in such a way that the effect of a collision on access to the
linked lists in the hash table can result in either the loss of
states from the hash table or the duplicate entry of a small
number of states into the hash table. Interestingly, neither
effect can affect the logical soundness or completeness of a
verification run. Duplicate states can cause higher memory
consumption than necessary and lost states can cause
redundant work to be done (if the same states are revisited
later in the search), but neither can cause an error. Errors
could be caused if corruption of states in the hash table
would be possible, but this is easily prevented in a dual-
core implementation. Similar changes in the contents of
depth-first stack information would be fatal, but, since the
stack information is always maintained in nonshared
memory, no such effect can occur. This means that, for
platforms without test-and-set support, we could, in
principle, fall back on Peterson’s algorithm, where we
would have to accept possible inaccuracies in the reporting
of state counts at the end of a verification run yet remain
secure in the accuracy of the verification itself.

6.2 Distributed Termination Detection

When a CPU’s work queue is empty, the computation is not
necessarily complete. It could be that another CPU will
generate more states, some of which will eventually be
handed off to the now idle CPU. We need a reliable
distributed termination detection algorithm to conclude a
distributed run of the model checker. Fortunately, this
problem is well understood and several solutions are
available. Our version of the algorithm is based on
Dijkstra’s presentation of Safra’s solution [11]. The verifica-
tion model for this algorithm (as it has been implemented in
the extended version of SPIN) is available as part of the
standard SPIN distribution.

7 OVERVIEW OF EARLIER WORK

Most work in distributed model checking to date has been
focused on algorithms for cluster computers, instead of
shared memory architectures. Much of this earlier work
was also focused on the verification of safety instead of
liveness properties. The first contribution of this type was
the Stern-Dill algorithm [37]. This algorithm uses a hash
function as the criterion for assigning states to nodes in a
compute cluster. With a sufficiently good hash-function,
this method should achieve near-optimal load balancing,
but it suffers from the overhead of frequent state transfers.

As noted earlier, with N CPUs, the probability that a state
generated on a given node can be further explored on that
node is only 1=N . The original objective of the Stern-Dill
algorithm, though, was in part to increase the amount of
memory available to store states, not to reduce the overall
runtime requirements of verification.

A different algorithm was published in [30], this time
targeting the SPIN model checker, but also restricted to
safety properties. The objective of this algorithm was to
improve the IR by using a partitioning method that exploits
the structure of a SPIN model. The algorithm places an
upper bound on the number of transitions that start at one
CPU node and end at another. In a later algorithm [4], load-
balancing decisions for state generation are treated sepa-
rately from load balancing of state storage. Both the hash
function in [37] and the partitioning method in [30] are used
to achieve these load balancing decisions. The issue of load
balancing was also addressed in [27].

7.1 Liveness Verification

The search algorithm that SPIN uses for the verification of
liveness properties is based on a nested search, in postorder,
from all accepting states reached in an initial depth-first
search. The postorder discipline ensures that the verifica-
tion consumes no more than twice the amount of time of a
single (nonnested) search for safety properties. The order of
expansion of the accepting states is therefore an important
characteristic of the nested depth-first search [18].

An algorithm for distributed model checking of liveness
properties on machines without shared memory was
described in [2]. This algorithm maintains a separate
dependency structure on a central CPU. The dependency
structure enforces the required search order by ensuring
that accepting states are expanded in the correct order. The
memory requirements for the dependency structure can be
significant though. Another algorithm [29] was designed to
partition the state space in such a way over CPU nodes that
accepting cycles always appear within the same CPU node.
Load balancing is difficult to generalize with this algorithm,
for instance, if the state graph consists of a single strongly
connected component that spans all reachable states. In [6],
[9], a different algorithm is studied that appears to incur
quadratic complexity in the number of accepting states,
defeating the benefit of the nested depth-first search. Other
studies [8] have focused on determining search orders for
the independent expansion of accepting states, though, so
far, mostly without success.

7.2 Shared Memory Algorithms

A model-checking algorithm for shared memory systems
was described in [25], restricted to safety properties and
based on the use of disk storage. A different disk-based
algorithm is proposed in [12] for the verification of liveness
properties. The algorithm stores a copy of an accepting state
inside the state vector and stops with a counterexample if
that copy can be revisited. The seed state of the nested
search is duplicated into every new state encountered
during the second search, which can dramatically increase
the memory requirements. In the worst case, the memory
requirements are multiplied by the number of accepting
states in the global state graph, which, in the worst case,
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equals the number of reachable states. The states, though,
are self-contained and can be transferred to any CPU node
for expansion, thus simplifying the load balancing.

In [23], [24], a model-checking algorithm for shared
memory systems is described for the logic CTL� (which
includes LTL, the logic used in SPIN). The algorithm uses
both a shared and a nonshared work queue for each CPU
node, plus a globally shared queue for all CPUs. Visited
states are recorded in a shared state table. In this algorithm,
each CPU retrieves the states found in its nonshared work
queue first; next, it retrieves work from the globally shared
queue, and, last, it can retrieve states from the shared
queues of other CPUs. Newly generated states are inserted
into either the private work queue of the CPU, its shared-
work queue, or, if both queues are full, into the global
queue. The process continues until all queues are empty, at
which point, a distributed termination detection algorithm
is initiated. The extension of the algorithm for CTL� is given
in terms of hesitant alternating automata and game theory,
which makes it harder to compare it with the treatment of
liveness properties in SPIN. Inggs and Barringer [24]
include results for safety and liveness verification of several
models, including a sliding window protocol, in a cluster
system with up to 16 CPUs. There appears to be consider-
able variance in the runtimes reported in this study. In
several cases, the performance was observed to degrade
instead of improve when more CPUs were added. In at least
one case, the reported performance for two CPUs was
reported to be six times better than the reported perfor-
mance for a single CPU ([24, Fig. 8, lower left]); a
phenomenon that cannot be easily explained without more
detailed information about the way the measurements were
made. Possibly, the verification runs were stopped on the
generation of a first counterexample, which would make it
impossible to judge the overall performance of the algo-
rithm for different numbers of CPUs used.

8 CONCLUSION

This paper describes the design of an extension of the SPIN
model checker for multicore, shared memory systems. The
extension supports the verification of both safety and
liveness properties with a relatively small change in the
SPIN source code itself. We have provided evidence to
show that the effect of both compiler optimization
techniques and search optimization techniques such as
partial order reduction diminish the benefits of multicore
processing. For applications of interest though, that is, large
applications with embedded C code and relatively costly
transition functions or large embedded data structures, the
benefits, especially for the verification of safety properties,
can be significant [19], [21], [22].

Our extension of SPIN deliberately preserves most of the
existing verification modes of the tool, including a basic
capability for the verification of liveness properties, but also
the use of search optimization techniques such as partial
order reduction, hash-compact state storage, or bitstate
storage (the supertrace algorithm [15]). The capability of
generating counterexamples with the multicore version of
the model-checking algorithm is also preserved. In a single
core version, counterexamples can be read from the search

stack. In the new algorithm, this is not readily possible since
only part of the stack is available to each CPU. To solve this,
an optional tree-like data structure with backward pointers
can be maintained so that error trails can also be generated
when the trail spans states explored by different CPUs, at
the cost of a small memory overhead for the storage of the
additional data.

The sliced stack algorithm has several other initially
unanticipated benefits, as also discussed in [22]. The
multicore search algorithm in this mode combines proper-
ties of both breadth-first and depth-first searches. Note, for
instance, that the first layer of the stack can explore all states
at a depth of maximally dd from the initial system state,
without waiting for all subtrees of handoff states at level dd
to be fully explored first. The sliced stack algorithm can
therefore find short counterexamples faster than a regular
depth-first search while still retaining many of its benefits.
Shorter stacks (of size dd) can also have the benefit of
reducing memory requirements for model-checking runs
with large amounts of embedded source code. One example
is the DS1 application that we used for some of our
benchmark measurements. The stack requirements of this
application make it impossible to perform a full verification
run in a single core mode, but the verification succeeds in
multicore mode.

The sliced stack algorithm should be applicable to any
explicit state logic model-checking tool based on depth-first
search. An adaptation to symbolic instead of explicit state
model checking would likely be less straightforward. For
safety properties, the algorithm scales well with increasing
numbers of CPU cores in some cases nearly linearly (Fig. 7).

The liveness verification algorithm we have described is
limited to the use of just two CPU cores. It has the property
that, when most accepting states in the global state space
are discovered early, then the nested part of the search can
proceed largely in parallel with the nonnested part,
resulting in a potential speedup. If, however, most accept-
ing states are discovered late in the search, the benefit of
parallelization is lost and performance can degrade to that
of a single-core run with the added overhead of copying
state descriptors. This means that the performance of the
liveness algorithm depends on the property being verified,
which makes its performance less predictable. Finding a
liveness verification algorithm that retains the low complex-
ity of the nested depth-first search method used in SPIN yet
can scale with increasing numbers of CPU cores is as yet an
open problem.

APPENDIX A

The set of all transitions that are enabled in a given state s is
denoted enabledðsÞ. The reduced set of transitions (a subset
of enabledðsÞ) for which successor states are generated when
partial order reduction is applied is denoted as rðsÞ. The
successor state of s when enabled transition t is applied is
denoted as tðsÞ. We will also use the notation fs; t; s0g to
denote an execution step that starts in source state s and
leads to destination state s0 after the application of
transition t such that s0 ¼ tðsÞ. Two enabled transitions t1
and t2 are independent at state s if 1) they do not disable one
another when executed, that is, t1; t2 2 enabledðsÞ implies
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that t1 2 enabledðt2ðsÞÞ and t1 2 enabledðt2ðsÞÞ, and 2) they
commute, that is, t2ðt1ðsÞÞ ¼ t1ðt2ðsÞÞ [17].

We say that a CPU “owns” a state if it has generated the
state and will generate its successors (that is, the state is not

a handoff state that is either sent from or to the CPU

considered) [7].
We denote the full, unreduced, state space of a system by

S and the reduced state space by Sr. The variant of partial

order reduction we consider here satisfies the following two

conditions:

C1. (persistence). For any state s 2 S and execution
sequence fs; t0; s1g; fs1; t1; s2g; . . . ; fsn�1; tn�1; sng; 8i,
0 � i < n, ti 62 rðsÞ implies that, at sn�1, transition
tn�1 is independent of all transitions in rðsÞ.

C2. (cycle proviso). For any state s 2 Sr owned by CPU k,
if rðsÞ 6¼ enabledðsÞ, then there exists at least one
transition t 2 rðsÞ such that tðsÞ 2 Sr is not

1. on the DFS stack of CPU k,
2. previously generated by another CPU l with

l > k, or
3. a handoff state.

The ignoring problem occurs when the application of an

enabled transition t at some state s can be postponed

indefinitely, that is, t is never included in some rðs0Þ such
that there is an execution sequence in the reduced state

space graph from s to s0. The following theorem states that

this is impossible if conditions C1 and C2 are enforced,
which also entails having all safety properties preserved by

the POR algorithm [1], [38].

Theorem. If the partial order reduction conforms to C1 and C2,

then no enabled transition is ignored in any state s of Sr.

Proof. Assume that we have P CPUs. We partition the

states in Sr into P disjoint subsets S0
rr ; S

1
rr ; . . . ; SP�1

rr in such

a way that state s is in Skrr if it is generated by CPU k.
The proof is in two parts, each by induction. In the

first part, we prove that no transition can be ignored in
any state s 2 S0

rr by induction on the order in which states
are removed from the depth-first stack of the search
performed by CPU 0. In the second part, we prove that
no transition can be ignored in any state s 2 Skrr provided
that no transition is ignored in any state s 2 Slrr with l < k.
In this part, we use combined induction on the CPU rank
and the order in which states are removed from the
depth-first stack of the search performed by CPU k.

We first deal with S0
rr , which establishes the base case

of the first induction. Let s be the first state that is
removed from the stack of CPU 0. When s is removed
from the stack, each of its successors is either on the stack
of CPU 0 previously generated by another CPU or is a
handoff state. This is the negation of condition C2 for
rðsÞ 6¼ enabledðsÞ. Hence, no enabled transition can be
ignored for this state s.

Now, consider the nth state s that is removed from the
stack of CPU 0. Assume as an induction hypothesis for the
states in S0

rr that no transition is ignored in any state that
was removed from the stack before s. Assume further, that
rðsÞ 6¼ enabledðsÞ—or else we are done—and consider
transition t0 62 rðsÞ. By the cycle proviso C2, there exists

another transition t 2 rðsÞ such that tðsÞ 2 S0
rr , that is, it

was either added to the state space earlier by CPU 0 or it
is a new state. By the properties of the depth-first search,
in both cases, tðsÞ is removed from the stack before s.
Because of C1, t0 remains enabled in tðsÞ, that is,
t0 2 rðtðsÞÞ. By the induction hypothesis, t0 cannot be
ignored in tðsÞ. So, there exists an execution sequence �
in Srr starting at tðsÞ and ending in some state s0 such that
t0 2 rðs0Þ. Adding the transition from s to tðsÞ to �
produces an execution sequence that witnesses that t0 is
not ignored in s. In this way, we proved that no
transition can be ignored in any state of S0

rr .
Next, consider a state s 2 Skrr , with 0 < k < P . By

assuming that no transition is ignored in (any state of)
S0
rr ; S

1
rr ; . . . ; Sk�1

rr , we show that no transition is ignored in
s. Analogously to the proof for S0

rr , we use induction on
the order in which states are removed from the depth-
first search stack of CPU k. Consider state s, which is
removed first from the CPU k stack. Each of its
successors tðsÞ, t 2 rðsÞ, is either on the stack, a handoff
state, or has been added to the state space by another
CPU. The only difference with S0

rr is in the last case: tðsÞ
could now have been added to the state space by a CPU
whose rank is lower than k. As in S0

rr , in all other cases, C2
implies that s is fully explored. So, suppose that tðsÞ has
been generated by CPU l with l < k and rðsÞ 6¼ enabledðsÞ
(or else we are done). In this case, tðsÞ 2 Slrr and,
therefore, by the induction hypothesis, no transition is
ignored in tðsÞ. So, as shown above, we conclude that, for
each t0 62 rðsÞ, there exists an execution sequence � from
tðsÞ to some state s0 and t0 2 enabledðs0Þ. By appending
the transition from s to tðsÞ to �, we obtain a witness
sequence.

Next, consider the nth state s that is removed from the
stack of CPU k and assume that no transition is ignored in
any state that is removed from the stack before s. We
discuss only the nontrivial case when rðsÞ 6¼ enabledðsÞ.
The only difference from the analogous case for S0

rr is that
there could exist a transition t 2 rðsÞ such that tðsÞ 2 Slrr for
some l < k. However, in this case, we can use the same
arguments as that above for the first removed state by CPU
k to conclude that no transition can be ignored in s. tu

The validity of the theorem is also preserved with the

versions of C1 proposed in [14], [38]. The latter imply that

no transition t0 62 rðsÞ is disabled by a transition in t 2 rðsÞ,
which is the only property entailed by C1 that is needed in

the proof.

APPENDIX B

The reference model that was used for measuring the

influence of three separate structural model parameters

on the performance of multicore verification algorithms

(Tables 3 and 4) is defined as follows:

#define BranchSize 8 /* successors per state */

#define StateSize 500 /* bytes in statevector */

#define TransTime 9 /* time to perform step */

#define NStates 500000 /* nr reachable states */
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int count;
byte filler[StateSize];

active [BranchSize] proctype ref()

{

end:

do

:: d_step { /* one transition */

count < NStates ->
c_code {

int xi;

for ðxi ¼ 0; xi < ð1� TransTimeÞ; xi++)

{ now:filler½xi%StateSize�þ ¼ xi%256;

/* make sure filler is not eliminated */

}

/* avoid creating extra states */

memset(now.filler, 0, StateSize);
}; /* end of c_code */

count++

} /* end of d_step */

od

} /* end of proctype */
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