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Abstract

We review the arguments in favor of using so�called �strong primes� in the RSA

public�key cryptosystem� There are two types of such arguments� those that say

that strong primes are needed to protect against factoring attacks� and those that say

that strong primes are needed to protect against �cycling� attacks �based on repeated

encryption��

We argue that� contrary to common belief� it is unnecessary to use strong primes

in the RSA cryptosystem� That is� by using strong primes one gains a negligible

increase in security over what is obtained merely by using �random� primes of the
same size� There are two parts to this argument� First� the use of strong primes

provides no additional protection against factoring attacks� because Lenstra	s method

of factoring based on elliptic curves �ECM� circumvents any protection that might have

been o
ered by using strong primes� The methods that 	strong	 primes are intended

to guard against� as well as ECM� are probabalistic in nature� but ECM succeeds with

higher probability� For RSA key sizes being proposed now� the probability of success

of these methods is very low� Additionally� the newer Number Field Sieve algorithm

can factor RSA keys with virtual certainty in less time than these methods�

Second� a simple group�theoretic argument shows that cycling attacks are extremely

unlikely to be e
ective� as long as the primes used are large� Indeed� even probabalistic

factoring attacks will succeed much more quickly and with higher probability than
cycling attacks�

� Introduction

The RSA public�key cryptosystem ���� has received widespread acceptance in the commercial
marketplace� in part because it has received intense scrutiny by academic cryptographers�
The purpose of this paper is to extend this scrutiny by carefully examining the common
recommendation that one should use �strong primes	 when constructing keys for an RSA
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cryptosystem� We 
nd that for practical purposes using large �random	 primes o�ers security
equivalent to that obtained by using �strong	 primes� Current requirements for �strong	
primes do not make them any more secure than randomly chosen primes of the same size�
Indeed� these requirements can lead a general audience to believe that if a prime is �strong	
that it is secure and that if it isn�t �strong	 then it must be �weak	 and hence insecure�
This simply is not true�

We begin in Section 
 with a general discussion of the notion of �weak keys	�

Section � then provides a review of the essentials of the RSA public�key cryptosystem�
mostly as a means of establishing notation�

In Section � we continue with a de
nition of a �strong prime�	 �Actually� we provide
several de
nitions� corresponding to the various criteria that have been proposed in the
literature�� In order to assure ourselves that strong primes are a practical possibility� we
review two algorithms for 
nding strong primes in Section ��

A quick survey of the history of the recommendation to use strong primes is given in
Section �� �Here the 
rst author confesses to having played a part in this history of this
recommendation�� We see that the recommendations are based on two basic concerns� a
concern about the di�culty of factoring� and a concern about �cycling	 attacks�

Section � discusses the requirement for �strong	 keys� rather than just �strong	 primes�
Certain factoring attacks can exploit the relationship between the two primes that make up
the key as opposed to exploiting the structure of the individual primes� The requirement for
�strong	 primes ignores these attacks completely� We shall show that suitably large random
primes guard against these attacks�

In Section � we consider factoring attacks on the modulus� We see that before ���� it
appeared sensible to recommend using strong primes as a protection against certain factoring
attacks� known as the �p � �	 attacks� Indeed� key sizes being proposed at that time were
amenable to attack by these methods� The development of Lenstra�s �elliptic curve method	
�
�� of factoring in ���� is seen� however� to remove the motivation for using strong primes
as a protection against the p � � factoring attacks� We shall present tables which give the
probability of success for p� � and ECM attacks for a given level of e�ort�

In Section � we address the second concern� cycling attacks� Here we present a new
theorem that shows that as long as the primes used are large� the cycling attacks are unlikely
to succeed�

Finally� Section �� closes with some recommendations�

We assume that the reader is familiar with elementary number theory� such as presented
by Niven and Zuckerman ����� LeVeque ����� or Chapter �� of Cormen et al� ���� For surveys
of factoring and number�theoretic algorithms� see Bach �
�� Bressoud ���� Buell ���� Dixon �����
Guy ����� Knuth �

�� Lenstra and Lenstra �
��� Montgomery ���� Pomerance ����� and Riesel
����� We assume that the reader is familiar with the elementary notions of cryptography
�encryption� decryption� keys� etc��� as given� for example� in Davies and Price ���� An
understanding of cryptography is not essential� except as motivation for this paper� For
discussions of the relationship between number theory and cryptography� see Kranakis �
���
Pomerance ����� and Rivest �����






� Weak keys

In this section we review the notion of a �weak key�	 and attempt to characterize this notion
more formally�

When a cryptographer selects a cryptographic key� he is creating an instance of a problem
that his adversary would like to solve� Suppose the key selected is k� and that the set of all
possible keys is denoted K� The adversary would like to determine k from some available
data �messages encrypted with key k� etc���

The adversary may employ either �general�purpose	 or �special�purpose	 methods in his
attempt to determine k� Here we understand a general�purpose method as one that is always
e�ective� no matter what k was chosen� An example of a general�purpose method is �brute�
force search	� trying each possible k in turn until the correct one is found� On the other
hand� a special�purpose method is de
ned by the requirement that k be of a special form� if
k is not of this form then the method will completely fail to 
nd k� For this attack method�
keys of the special form may be considered as �weak keys�	 For example� a particular attack
method may only work against keys that terminate in �� zeros� such keys would be �weak
keys	 for this attack method�

The notion of a �weak key	 has appeared before in the literature� Speci
cally� the notion
of a weak key has been de
ned for DES �the Data Encryption Standard�� Davies and Price
��� Section ���� discuss the characteristics of weak �and semi�weak� DES keys and recommend
that the DES user avoid using these keys in certain situations� We give this merely as an
example� and do not pursue the issue of DES weak keys further in this paper�

When an adversary utilizes a special�purpose attack method� he is taking a gamble� He is
betting that the cryptographer has been so careless �or unlucky� as to have chosen a weak key
�that is� one vulnerable to his special�purpose method�� If the cryptographer didn�t choose
a weak key� then the adversary gains nothing by his use of a special�purpose method�the
e�ort will cost time and money and he would have been better o� using a general�purpose
method� On the other hand� the adversary may be lucky� the cryptographer may have chosen
a weak key� and the adversary may be able to 
nd k using his special�purpose method much
more e�ciently than he would using a general�purpose method� When is it worthwhile for
the adversary to take such a gamble�

To answer this question� we adopt the following �
gure of merit	 for an attack method�
the expected amount of e�ort required for the adversary to �nd his �rst solution� Such
measures have appeared in the literature before� for example� see Luby�s monograph �����
�Luby calls the measure the �time�success ratio�	 and de
nes it as the ratio of the running
time of the special�purpose method to its probability of success�� We imagine that the
adversary is given a sequence of problem instances to solve� each corresponding to a di�erent
cryptographic key� where the keys have been chosen independently according to the standard
key�generation procedure for the cryptosystem� The attacker applies his special�purpose
method to each instance in turn� His method may fail to solve many of the instances �those
instances not based on weak keys�� He keeps trying new instances until he has his 
rst
success� The expected total amount of e�ort he has expended up until his 
rst success is the
desired �
gure of merit�	 We call this measure the time�to��rst�solution�

We can make this notion more precise as follows� Let S denote the special�purpose
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method under consideration� and let KS �a subset of K� denote the set of �weak� keys for
which S is able to 
nd a solution� Let pS denote the probability that the cryptographer
has chosen a weak key� For example� this probability is jKSj � jKj if the keys are chosen
uniformly at random from K� pS may be larger or smaller than jKSj � jKj if the standard
key�generation algorithm generates keys non�uniformly�

The expected number of instances the adversary has to consider before he solves one is
��pS� Suppose that method S runs for time tS when it succeeds� and for time t

�
S when it

fails� Then the expected value of S�s time�to�
rst�solution is

T �S� � pS � tS � ��� pS� � �t�S � T �S��

� tS � �
�

pS
� ��t�S �

The �time�to�
rst�solution	 is a robust notion that can be applied to general�purpose
methods as well as special�purpose methods� In this case� the notion is equivalent to that of
the expected running time of the algorithm �since a general�purpose method always succeeds
on the 
rst instance��

We suggest that a special�purpose method is of interest to an adversary only if its expected
time�to�
rst�solution is less than that of other methods available� such as that of general�
purpose methods� We call this the �Time�To�First�Solution Principle�	

We say a special�purpose method is competitive if its time�to�
rst�solution is smaller
than that for the available general�purpose methods� Only if a special�purpose method S is
competitive should its domain KS be considered as comprising �weak	 keys� In this case�
the cryptographer should consider modifying his key�selection procedure so as to avoid the
set KS of weak keys�

As an example� consider a �partial brute�force search	 method� which merely searches
directly for k in a set KS� Assume that the standard key�generation procedure is to pick a
key uniformly at random from K� so that pS � jKSj � jKj� We have also that tS � jKSj �

and t�S � jKSj� so that the time�to�
rst�solution of this method is just

T �S� � tS � �
�

pS
� ��t�S

� jKSj �
 � � jKjjKSj � �� jKSj
� jKj � jKSj �


which is worse than the expected running time jKj �
 of ordinary brute�force search since
KS �� K� Therefore partial brute�force search is not competitive�

Although we assume the Time�To�First�Solution Principle in what follows� we note that
it is not susceptible to proof� An approach based on utility theory may yield a di�erent
measure in some circumstances� By way of example� consider the case where the key being
attacked is only used during a calendar year� and then it is replaced by a new key� In this
example the attacker really cares about his chances of 
nding the secret key during the
current calendar year� while the key would still be of use to him� Here the cryptographer
may reasonably chose keys in such a way so as to minimize the chance that the attacker
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will succeed during the current year� rather than maximizing the time�to�
rst�success of the
attacker� Other similar examples could be created where the value of the key found varies in
other ways over time� or where the attacker has other 
xed bounds �such as CPU time� on
his attack� Also� if the motivation for trying to break a key is economic� then one would try
to conduct a special�purpose attack only if the expected return on investment was positive�
An attack requires computer resources and an investment in time which in turn costs money�
The table in section ��� shows that unless a key is being used to protect transactions involving
very large sums of money� then the expected return will almost certainly make a special�
purpose attack not worthwhile� While we acknowledge the plausibility of such alternative
scenarios and their corresponding variations in which 
gure of merit one might use� other
than the time�to�
rst�solution� we have not found any such alternative scenarios that would
cause a revision in the conclusions of this paper� Thus� we stick with our choice of time�to�

rst�solution as an appropriate measure to base our discussion on� and our de
nition of a
�competitive	 special�purpose attack method as a way of de
ning what constitutes a set of
�weak keys�	

In the following sections we thus try to determine if there are any competitive special�
purpose methods for attacking RSA� so that certain RSA keys should be deemed as �weak	
and avoided�

We note here that truly weak keys can be constructed by anyone wanting to do so� One
reason for doing so would be to allow repudiation of a message� If one deliberately generates
a weak key �not using the standard algorithm�� one could later claim that the key was weak�
that someone else broke it and sent a forged message� To guard against this� it should be a
requirement that the random number seed� along with a speci
cation of the exact procedure
for generating primes� be stored by the user� In this way� a dishonest user will not be able to
convince an impartial judge that his key was properly generated� This scenario might also
be dealt with via statute� Users of public�key systems might be prohibited from repudiating
transactions as a matter of law� It is our opinion that this issue has not been adequately
addressed by the cryptographic community�

Silverman and Wagsta� Jr� ��
� analyze in detail the probability of success for ECM
given the size of the prime and level of e�ort willing to be expended� Some of those results
are summarized below in Section �� In addition� they give estimates of the amount of time
one should spend with ECM before changing to the Number Field Sieve in order to minimize
the expected total time before one succeeds� The time�to��rst�solution for special purpose
methods is not competitive with what can be achieved with the Number Field Sieve�

� The RSA public�key cryptosystem

We review the essentials of the RSA public�key cryptosystem� primarily as a means of intro�
ducing notation� See Rivest et al� ���� for a more complete description�

A user �say� Alice� of the RSA public�key cryptosystem secretly selects two large primes
p and q� and computes their product n� known as her public modulus� She also selects an
integer e � 
 such that

gcd�e� �p� ���q � ��� � � � ���
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This e is known as her encryption exponent� Alice publishes the pair �e� n� as her public key�
She then computes d such that

de � � �mod ��n�� � �
�

where ��n� is Euler�s totient function�

��n� � jfa � � � a � n and gcd�a� n� � �gj ���

which for n � pq is ��n� � �p� ���q� ��� The value d is her decryption exponent� Actually�
equation �
� can be improved slightly to

de � � �mod ��n�� � ���

where
��n� � lcm�p� �� q � �� � ���

Solving for d using equation ��� instead of equation �
� is slightly preferable because it can
result in a smaller value for d� She retains the pair �d� n� as her private key�

Another user �say� Bob� can send Alice an encrypted message M � where � �M � n� by
sending her the ciphertext

C �M e �mod n�

computed using Alice�s public key �e� n�� When Alice receives C she can decrypt it using
the equation

M � Cd �mod n�

computed using her private key �d� n�� Since no one but Alice possesses d� no one but Alice
should be able to compute M from C�

The RSA system can also be used to sign messages� For reasons of e�ciency the signing
procedure typically uses a 
xed public auxiliary message digest function H �also known as a
one�way function or a cryptographic hash function�� An example of such a function is given
by Rivest ����� The function H is fast to evaluate but computationally infeasible to invert�
Alice computes her signature S for the message M using the equation

S � H�M�d �mod n� �

The pair �M�S� form a �message� signature� pair that can be veri
ed by anyone as having
been signed by Alice� To do so� one uses Alice�s public key and checks that the equation

H�M� � Se �mod n�

holds� If �and only if� the equation holds does one accept the signature as being a signature
really produced by Alice� Since no one but Alice possesses d� no one but Alice can easily
compute S from M � although anyone can easily verify the pair �M�S� as shown above�

In practice there arise many extensions and applications of the basic RSA scheme� such
as the use of certi
cates and hybrid systems involving RSA and a conventional cryptosystem�
Because our concern is with the security of the basic scheme� however� we do not discuss
these issues here�
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The security of RSA depends critically on the inability of an adversary to compute d from
the public key �e� n�� The problem of computing d from �e� n� is equivalent to the problem
of factoring n into its prime factors p and q� as is proven by Bach et al� ���� Therefore it
is important for the RSA user to select primes p and q in such a way that the problem
of factoring n � pq is computationally infeasible for an adversary� Choosing p and q as
�strong	 primes has been recommended as a way of maximizing the di�culty of factoring n�
In Section � we review the arguments in favor of using strong primes as a protection against
factoring attacks�

The security of RSA also depends on the inability of a cryptanalyst to invert the basic
RSA function even without knowing d� Some attacks along these lines� known as �cycling	
attacks� have been proposed in the literature� In Section � we shall consider such attacks in
detail�

� What is a strong prime�

This section gives a de
nition of �strong prime	 that includes all of the various conditions
that have previously been proposed in the literature� We also provide terminology for some
variant de
nitions�

We let jpj denote the length of p in binary� The following de
nition uses English words
such as �large prime	 that are clari
ed with speci
c recommendations on sizes� �These are
only nominal values� in practice one might wish to use even larger values��

A prime p is considered to be a �strong prime	 if it satis
es the following conditions�

� p is a large prime� �Say� jpj � 
����
� The largest prime factor of p� �� say p�� is large� �Say� jp�j � ����� That is�

p � a�p� � � ���

for some integer a� and large prime p��

� The largest prime factor of p� � �� say p��� is large� �Say� jp��j � �����

p� � a��p�� � � ���

for some integer a�� and large prime p���

� The largest prime factor of p� �� say p�� is large� �Say� jp�j � ����� That is�

p � a�p� � � ���

for some integer a� and large prime p��

We denote the corresponding values for the prime q as q�� q��� q�� b�� b��� and b��

Sometimes a prime is called strong if it satis
es only a subset of these conditions� To
make our terminology precise� we say that a prime is

�



p��strong if p� is large�

p���strong if p�� is large�

p��strong if p� is large�

�p�� p���strong if both p� and p� are large�

�p�� p��� p���strong� or just strong� if all of p�� p��� and p� are large�

Sometimes a more stringent requirement is recommended �e�g�� by Williams and Schmid
������ specifying that we must have a� � 
 �or a�� � 
� or a� � 
� etc��� We call such primes
p��superstrong �or p���superstrong� p��superstrong� etc�� Hellman and Bach ���� have also
recommended that p� � � contain a large prime factor �which we would call p����

� Finding Strong Primes

Strong primes are somewhat rare� In practice� however� one can 
nd strong primes without
undue di�culty�

The original RSA paper ���� suggested the use of p���strong primes� which can be easily
found as follows�

�� Find a large random prime p�� by testing large randomly chosen integers for primality
until a prime is found�


� Compute p� as the least prime of the form

p� � a��p�� � � ���

for some integer a��� This can be accomplished by trying a�� � 
� �� �� � � � until a
prime p� is found� A probabilistic test for primality� such as the Miller�Rabin test
��
� ���� can be used to test each candidate p� for primality�

�� Compute p as the least prime of the form

p � a�p� � � ����

for some integer a�� in a similar manner�

The time required to 
nd p in this manner is only about three times the time required to

nd a random prime of the same size�

Clearly� a prime p computed using the above procedure is p���strong� It may not be p��
strong� however� and so Williams and Schmid ���� and Gordon ��
� have suggested algorithms
for 
nding primes that are p��strong as well �i�e�� strong primes�� We now give the algorithms
for 
nding strong primes proposed by Williams and Schmid� and by Gordon�
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��� The Williams�Schmid algorithm for �nding strong primes

In ����� Williams and Schmid proposed the following algorithm for 
nding strong primes�

�� Find p�� and p� as large random primes �say� ��� bits in length each��


� Compute
r � ��p����� mod p� � ����

Here � � r � p�� The inverse of p�� modulo p� can be computed using the extended
form of Euclid�s algorithm �see� for example� Cormen et al� ��� Section �������

�� Find the least a such that both

p� � 
ap��p� � 
rp�� � � � and ��
�

p � �ap��p� � �rp�� � �

� 
p� � � ����

are prime�

It is easy to verify that p� is a factor of p � �� Note also that p is p��superstrong� since
a� � 
� The lengths of p and p� are about twice the lengths of p�� and p� with this
procedure�

This procedure is noticeably less e�cient than 
nding a random prime� since 
nding an a
that simultaneously makes both p� and p prime in equations ��
������ is much more di�cult
than� say� 
nding an a� to make p prime in equation ����� �In general� one would expect
that 
nding p��superstrong primes would be much more di�cult than merely 
nding large
primes�� Nonetheless� this procedure is quite usable and e�ective for 
nding strong primes�

��� Gordon�s algorithm for �nding strong primes

In ���� John Gordon ��
� ��� proposed another procedure for 
nding strong primes� �It is
not clear whether Gordon was aware of the previously published algorithm of Williams and
Schmid�� Gordon argues that 
nding strong primes is only slightly harder than 
nding large
random primes of the same size� His algorithm is more e�cient than the Williams�Schmid
algorithm because it does not create a p��superstrong prime� the value of a� will typically
be considerably larger than 
 with Gordon�s procedure� Gordon�s algorithm is as follows�

�� Find p�� and p� as large random primes �say ��� bits in length each��


� Compute p� as the least prime of the form p� � a��p�� � �� for some integer a���

�� Let
p� �

�
�p��p

��� � �p��p���
�
mod �p�p�� �

�For the correctness of Gordon�s algorithm� note that Fermat�s theorem implies that
p� � � �mod p�� and p� � �� �mod p����
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�� Compute p as the least prime of the form

p � p� � ap�p�

for some integer a�

By controlling the sizes of the initial primes p�� and p�� one can have reasonable control
over the size of the prime p� Gordon explains how even greater control on the 
nal size of p
can be obtained by starting the searches based on a�� and a at larger starting values �e�g�
starting a�� at 
���� Note that the length of p� and p� in bits will be approximately half
the length of p� and that the length of p�� will be slightly less than that of p�� In a typical
application� one might have p�� of length ��� bits� p� and p� of length �

 bits� and p of
length 
�� bits�

Gordon estimates the running time of his algorithm as follows� Let T �k� denote the time
to test a k�bit number for primality� we can assume that T �k� �  �k��� Roughly k such
k�bit numbers need to be tested for primality before a prime is found� by the prime number
theorem� The naive algorithm for 
nding a k�bit prime by testing random k�bit numbers for
primality thus requires time  �kT �k��� Gordon�s algorithm requires 
nding one k�bit prime
after 
nding three k�
�bit primes� taking a total time of

kT �k� � ��k�
�T �k�
� � ������ �kT �k�� �

This justi
es Gordon�s claim that 
nding strong primes requires only ��! more work than
the naive algorithm for 
nding random primes�

� History of Strong Prime Recommendations

In this section we present� in chronological order� the various recommendations that have
been made for the use of strong primes in the RSA cryptosystem�

In their original RSA paper� Rivest� Shamir� and Adleman ���� suggest 
nding primes
p and q that are p��strong �to gain protection against sophisticated factoring algorithms�	
and suggest the procedure given in the previous section for 
nding p���strong primes� At
the time these suggestions were made� p � � was the state of the art in factoring algo�
rithms� Furthermore� the size of keys being suggested at that time was such that the p� �
methods actually did give a non�negligible chance of succeeding within a reasonable time�
Improvements in algorithms and increases in key sizes have made this obsolete�

In ���� Simmons and Norris ���� discussed the following �cycling	 or �superencryption	
attack on the RSA cryptosystem� given a ciphertext C� consider decrypting it by repeatedly
encrypting it with the same public key used to produce it in the 
rst place� until the message
appears� Thus� one looks for a 
xed point of the transformation of the plaintext under
modular exponentiation� Since the encryption operation e�ects a permutation of Zn �
f�� �� � � � � n��g� the message can eventually be obtained in this manner� Rivest ���� responds
to their concern by �a� showing that the odds of success are minuscule if the n is the product
of two p���strong primes� and �b� arguing that this attack is really a factoring algorithm in
disguise� and should be compared with other factoring attacks�
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In ���� Herlestam ���� proposed a generalization of Simmons and Norris�s attack� which
can be viewed as a search for a multiple of the order of M � modulo n� using a trinomial
equation to generate possible exponents� Rivest ���� argued that the generalization is no
more e�ective than the original attack� when p and q are both p��strong�

In ����� Blakley and Borosh ��� consider the number of messages M that are left unen�
crypted by RSA� That is� they consider messages that satisfy the equation

M e �M �mod n� �

For any modulus n there are at least � such messages ��� �� and n� � are examples�� They
prove that these � messages are the only such messages if the following condition holds in
addition to equation ����

gcd�e� �� lcm�p� �� q � ��� � 
 � ����

This condition is trivially satis
ed if e � �� If e is large and e� � is divisible by some power

k of 
 for k � �� then one might want to choose either p or q to be p��superstrong so
that equation ���� holds� �This is possibly relevant for those who suggest standardizing the
encryption exponent as e � F� � 


�� � ���

In ����� Williams and Schmid ���� review the state of the art in factoring and cycling
attacks� and generalize the Simmons�Norris attack to detect cycles modulo p� instead of
cycles modulo n� They also propose a procedure �described above� for generating strong
primes as a defense against such attacks�

In ����� Knuth �

� page ���� argued that p and q should both be p��strong� to avoid
Pollard�s p � � attack �described below in Section ����� and suggests checking to ensure
that neither p � � nor q � � has only small prime factors� Knuth also describes a slight
improvement to Pollard�s p� � method in exercise ���������
In ���
 Berkovits ��� apparently rediscovered the generalization of the Simmons�Norris

attack given by Williams and Schmid� �He was apparently unaware of the Williams�Schmid
paper� since he didn�t reference it�� He concludes that if n is the product of two p���
superstrong� p��superstong primes� then the attack is unlikely to succeed� He asserts that
while the attack �is not much worse than guessing factors of n� it is not much better either�	

In ���
 Hoogendoorn ���� recounted and summarized the above arguments and recom�
mendations�

In ���� Williams ���� suggested that n should be the product of two p��strong� p��strong
primes p and q� to prevent n from being factored easily by a p�� or a p�� method� Williams
notes� however� that �if p and q are large enough and selected at random� we should expect
�this property� would automatically hold�	

In ���� Hellman and Bach ���� recommended that p� � � contain a large prime factor
�which we would call p���� They do not� however� give a justi
cation for this recommenda�
tion�

Jamnig �
�� studies the Berkovits ��� attack� and recommends that a� be small �on the
order of log�p�� and that b� �the cofactor of q� in q��� be similarly small� On the basis of his
analysis he concludes that Gordon�s procedure is likely to yield keys that are vulnerable to a
cycling attack since it produces a large value for a�� �We disagree with his conclusion�the
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most he can say is that his proof technique is insu�cient to prove Gordon�s method secure�
not that his proof technique demonstrates that Gordon�s method is insecure�� Jamnig also
disagrees with the referee�s suggestion that Lenstra�s elliptic curve method makes using
strong primes irrelevant as a means of protecting against factoring attacks� �The 
rst author
supposes he should admit that he was the referee� this paper "eshes out his earlier suggestion
to Jamnig��

Most recently� the X���� standards committee has published a draft standard ���� rec�
ommending the use of strong primes� Their motivation for this recommendation is Gordon�s
article ��
�� which references Knuth �

� and Rivest et al� ���� as justi
cation� We remark
that both of these references have been made obsolete by more recent factoring algorithms�

	 Strong Keys

In addition to requirements for �strong	 primes in the literature� there have also appeared
requirements for constructing �strong	 keys� Two of the older factoring methods� one dating
back to Fermat� and the other to ���� by R� Sherman Lehman� attempt to factor a number
by representing it as the �perhaps weighted� di�erence of two squares� These attacks succeed
any time the di�erence between the two primes comprising the key is very small� or when
their ratio is very close to the ratio of two small integers�

If the ratio of the two primes p�q is very near a�b where a and b are small integers�
then the amount of work needed to factor pq is approximately aq � bp � 
pabpq� Even
if p and q are very nearly identical �say their ��� most signi
cant bits are identical�� the
amount of work needed is in excess of 
��� 	 ���� computer operations� It would take ��	�
�����MIPS computers about ������� years to do this computation� The probability that
randomly chosen p and q match to the 
rst k bits is 
k��� �since the 
rst bit is always ���
Di�erent values of a and b give similar results�


 Strong primes as a protection against factoring

The 
rst attack that a cryptanalyst might attempt to mount against an instance of the
RSA cryptosystem is a factoring attack� To factor a natural number n is to produce a
complete list of its prime factors� To split a natural number n is to produce two natural
numbers� neither of which is � or n� whose product is n� When n is the product of exactly
two primes� the notions of factoring n and splitting n are equivalent� Strictly speaking� most
�factoring	 algorithms are really �splitting	 algorithms� but a splitting algorithm can be
applied recursively to yield a factoring algorithm�

It useful to introduce the notion of �smoothness	� We say that x is a prime�power factor
of n if x divides n and x � pk for some prime p and integer k� We say that n is B�smooth if
all of its prime�power factors are less than the factor�bound B�

There are many factoring algorithms available for an enemy cryptanalyst to use in an
attempt to factor a public modulus n� The e�ciency of these algorithms can depend on
many things� Broadly speaking� we can classify algorithms into three categories according
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to what the running time of the algorithm depends upon� We assume that the number to
be factored is n � pq� where p and q are prime�

�� Algorithms whose running time depends mainly on the size of n� The most notable
algorithms in this class are the quadratic sieve algorithm ��
� and the general number

eld sieve �
���


� Algorithms whose running time depends on the size of p and the size of q� These
algorithms are particularly good at factoring numbers when one of p or q is small� The
naive heuristic of trial division and Pollard�s �rho	 heuristic ���� are members of this
class� Lenstra�s elliptic curve method �
�� is the most notable algorithm in this class�

�� Algorithms whose running time depends on the size of p�� p��� or p� �or of q�� q���
or q��� The p � � and p � � methods of factoring are the most notable members of
this class�

�� Algorithms whose running time depends on the �closeness	 of p and q� Fermat�s method
�

� and Lehman�s method �
�� fall into this category�

At the moment� for factoring large numbers the most e�ective algorithms seem to be
Lenstra�s elliptic curve method �
��� ��
�� which is especially good if the number has small
prime factors� Pomerance�s quadratic sieve method� and the number 
eld sieve� ��
�� �
���
While the number 
eld sieve is asymptotically faster than the quadratic sieve� when it was

rst introduced it was thought that it did not become faster than QS until between ���
and ��� decimal digits� More recent work by Montgomery and Huizing has shown than the
crossover point is somewhere between ��� and ��� decimal digits ����� although the exact
crossover point will always be machine and implementation dependent�

We begin with a review of the factoring attacks that motivate the recommendation for
strong primes� beginning with a review of the �p � � method	 of Pollard ����� We then
review the generalizations of the p�� method� the p�� method and Lenstra�s elliptic curve
method�

��� Pollard�s p� � Method for Factoring

Pollard�s p�� method ���� is the standard justi
cation for recommending the use of p��strong
primes�

The heart of Pollard�s p�� method is a technique for splitting a given composite number
n that is divisible by at least two distinct primes� using any given multiple m of p � �� for
some prime factor p of n� The presentation here follows the more modern presentation of
Bach et al� ����

How can one obtain a multiple m of p� �� Suppose that p is �weak	 in the sense that
p � � is B��smooth� for a suitably small factor�bound B�� Although we don�t know B�� we
can perhaps be lucky and guess a suitable value for B� �say� ��

��� Then if we let m be the
product of all prime powers less than B�� we have that m is a multiple of p� ��
Given a multiple m of p � �� the following method can now be used to split the odd

number n�
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�� Choose an element a at random from Z�n � f�� 
� � � � � n� �g�

� Compute d � gcd�a� n�� If d � �� report that d is a factor of n and halt�

�� Compute x � amn mod n�

�� Compute d � gcd�x� �� n�� If d � �� report that d is a factor of n and halt�
�� If x � � and m is even� set m
 m�
 and return to step ��

�� Report failure to 
nd a factor� Halt�

Bach et al� prove that this algorithm has a ��! chance of picking an a that causes n to be
split� By running this algorithm several times� then� we are virtually certain of splitting n�

The reason why p � � is special is that p � � is the size of the multiplicative group Z�p
modulo p� Computing a power of a in step � is done modulo n� but the result is also correct
modulo p by the Chinese remainder theorem� Since ap�� � � �mod p� for all a � Z�p� we see
that step � is likely to return p as a factor of n�

A second �FFT	 stage of the algorithm� also due to Pollard ����� enables the method to
factor n if p� � contains a single prime factor p� between B� and some second bound B��
where B� �� B�� and if all other prime factors of p� � are less than B�� For example� we
might have B� � ��

� and B� � ��
��� The approach� in its most e�ective form� makes use of

the Fast Fourier Transform� Montgomery and Silverman ���� demonstrate the practicality of
using a variant of the second stage that implements the FFT using residue arithmetic� but
note that �on average the Elliptic Curve algorithm will still be more e�ective than the p� �
algorithm� even with our enhancements�	

��� The p� � Method for Factoring

A variation on the p � � method� called the �p � � method	� has been described in ����
by Guy ����� who attributes the idea to J� H� Conway� and in ���
 by Williams ����� Using
Lucas sequences instead of raising to large powers allows one to factor n if p� � is smooth�
Bach et al� ��� give an alternative interpretation of this method as the analogue of the p� �
method� working now over GF ��p��� the multiplicative group in the extension 
eld of degree
two over GF �p�� rather than over Z�p� The p � � method motivates the use of p

��strong
primes� since if p� � is smooth then n can be easily factored� The FFT second stage of the
p � � algorithm generalizes to the p � � algorithm as well� see Montgomery and Silverman
���� for details�

��	 The Elliptic Curve Method for Factoring

In ���� Hendrik W� Lenstra� Jr�� discovered a factoring algorithm �
�� that upset all of
the previous wisdom about �strong primes�	 Stephens ���� gives an alternative exposition
of this method� and Montgomery ����� ���� describes some implementation details and im�
provements� For additional background� note that Koblitz �
��� Kaliski �
�� and Miller ����
propose some ways that elliptic curves can be useful in cryptography�
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Based on �elliptic curves�	 this method generalizes the p � � method even further� by
replacing the multiplicative group modulo p with the group of points on a random elliptic
curve E de
ned modulo p�

Speci
cally� an elliptic curve Ea�b is de
ned �modulo p� by two values a and b such that

�a� � 
�b� �� � �mod p� � ����

To de
ne the curve� we 
rst de
ne an equivalence relation on the set Z�
p � f��� �� ��g of

triples of values from Zp� not all zero� by saying that �x� y� z� is equivalent to �x
�� y�� z�� if

there exists a nonzero c such that x � cx� �mod p�� y � cy� �mod p�� and z � cz� �mod p��
The equivalence class of �x� y� z� is denoted �x � y � z�� The elliptic curve is then the set of
points

Ea�b � f�x � y � z� � y�z � x� � axz� � bz� �mod p�g �
It is possible to de
ne a binary operation � on Ea�b so that �Ea�b��� forms an abelian group�
analogous to multiplication modulo p� �Details are omitted in this paper� see Lenstra �
����

Lenstra�s method can be viewed as a generalization of Pollard�s p � � method� where
the operations are now taking place in the elliptic curve group �Ea�b��� rather than the
multiplicative group �Zp� �� modulo p� As a result� the critical parameter now becomes jEa�bj
rather than

���Z�p
��� � p� ��

Interestingly� the size jEa�bj depends not only on p� but also on a and b� If a and b are
chosen from Zp� then jEa�bj satis
es

p� �� 
pp � jEa�bj � p� � � 

p
p �

If a and b are chosen at random from Zp satisfying ����� then to a 
rst approximation� jEa�bj
can take on more or less any value in this range �see Lenstra �
�� for an accurate discussion��

Since jEa�bj is now a random variable� however� one can repeatedly choose new elliptic
curves Ea�b by choosing new values for a and b until a curve is found such that jEa�bj is
smooth� One can not do this with Pollard�s method�if p� � is not smooth you are stuck�
Now� however� the factorer can generate curves until he achieves success� The fact that p��
may have a large prime factor does not deter him� He will continue to generate elliptic curves
until he 
nds one whose size jEa�bj is smooth�
Let

L�n� � e
p
lnn ln lnn �

Then Lenstra estimates that the running time of the elliptic curve method on an input n�
where p is the smallest prime factor of n� is

L�p�
p
� �

Thus this method is particularly good at 
nding small prime factors� but is also asymptoti�
cally one of the fastest factoring algorithms known for arbitrary numbers�

Montgomery� in his doctoral thesis� presented a very e�ective form of FFT�s that works
with the second stage of ECM ����� which is much better than the ine�cient approach
suggested in �����
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Thus we see that it is useless to protect against factoring attacks by building in large
prime factors into p�� or p��� since the enemy cryptanalyst can instead attempt to 
nd an
elliptic curve Ea�b such that jEa�bj is smooth� The cryptographer has no control over whether
jEa�bj is smooth or not� since this is essentially a random number approximately equal to p�
Only by making p su�ciently large can he adequately protect against such an attack�

The reader should not misinterpret this conclusion to mean that the elliptic curve factor�
ization method is a useful attack against the RSA cryptosystem� In fact� the elliptic curve
factorization method is not very e�cient when used against numbers of the sort used in
RSA cryptotsystems� But then� neither is the p � � method very e�cient� which has been
proposed as a justi
cation for using strong primes� The point is that if the cryptographer
attempts to avoid a p � � attack by using strong primes� then the adversary can merely
switch to an elliptic curve factorization method� which has greater e�ciency �because it can
run in parallel� � independent of whether p� � is a strong prime or not� Choosing a strong
prime is like locking one door� but leaving the others unlocked� Choosing large primes is like
locking all the doors�

��
 Class Group factoring methods

During the �����s there were a number of algorithms proposed for factoring which depended
upon smoothness properties of yet another group� known as the Class Group� The technical
details are beyond the scope of this paper� however we give a brief sketch of the ideas behind
the methods because they give yet another reason why �strong primes	 are obsolete�

If one considers the quadratic 
eld Q�
p�kN� for some small integer k� there exists

a group associated with this 
eld known as the Class Group� An algorithm by Schnorr
and Lenstra ���� and later improved and implemented by Atkin and Rickert will succeed in
factoring N if the order of the Class Group is smooth� It basically applies the p� � method
by replacing the multiplicative group mod p� with the Class Group� However� as one can
vary k� one gets multiple choices of groups as with ECM� and in fact this method has the
same asymptotic run time as ECM� While one can get lucky� as with p� �� this algorithm
has not proved e�ective for keys much beyond �� decimal digits�

Nevertheless� there is no way to guard against the Class Group being smooth by spe�
cial construction of the primes which form the modulus� One can only guard against this
algorithm by choosing the primes to be su�ciently large�

��� Probability of success of special methods

References ���� and ��
� discuss in detail the practical computing limits of ECM and p� ��
This section summarizes those results� We give the probability of success for these methods
on ��
�bit primes ���
� bit keys� for various levels of e�ort� Times are given in hours for a
MIPS�R����� computer� As mentioned before� both p� � and ECM are 
�step algorithms�
In the 
rst step one hopes that the order of the relevant group is smooth up to a limit B��
In the second step one allows that the order of the group is divisible by a single� larger
prime P � where B� � P �� B
� It is important to note that the 
rst step of the p � �
algorithms is inherently serial� while ECM may be run in parallel by giving separate curves

��



to di�erent machines� One can therefore increase the chance of success for p � � only by
increasing elapsed time� while one can increase the chance of success for ECM by increasing
the number of machines� The table below gives B� the step�� bound for both the p� � and
ECM algorithms� It then gives the time required to execute the algorithm for p� � and for
a single Elliptic Curve� The next column gives the probability of success for p � � or for
ECM with a single curve �the probabilities are the same�� Finally� the last colum gives the
probability of success if one were to run ���� Elliptic Curves in parallel�

B� P � � Time ECM Time Prob�Success� ECM w� ���� Curves
��	 �� ��� �
 ����� �
 ����	

��
 � �� 

 ����� 

 �����

��� �� ��� �
 ����� �
 �����

���� ��� ���� �
 ����� �
 �����

���� ���� ����� �
 ����	 �
 �����

���� ����� ������ �
 ����� �
 �����

It should also be noted that for ECM� one can spend a 
xed amount of time by lowering
B� and increasing the number of curves proportionally� For numbers that are within practical
computing range of this method �say �� decimal digits� it often makes sense to do this�
However� for ��
�bit primes� it does not make more sense to lower B� and run more curves
until B� reaches about ���� and this is way beyond computing range�

As indicated by the table� it takes about ��� hours to run step � to ��	� ECM performs
approximately like an O�p���� algorithm for factors that are within reach of even extraor�
dinary computer facilities ��
�� The cost to 
nd a �
��bit factor with probability ��� ��e�
is about ���� curves with step � limit of ��� 
 ���� A single curve can be run in about
��� hour on a MIPS�R������ One can therefore 
nd a �
��bit factor of a ��
��bit modulus
with probability about ��� with about ���� such machines running in parallel� Doubling the
number of machines will increase the chance of success to about ���� Finding a 
���bit factor
with the same probabilities will take about 
��
�� 	 � 
 ��	 much work� Finding a ��
�bit
factor will take about 
�
��� 	 ���
 ���� times as much work� Put another way� it will take
� billion machines running for ����
 ���� years to give a ��� chance of successfully factoring
a ��
��bit modulus with ECM� This is roughly twice the age of the universe�

Since ����� the entire worldwide group of people doing factoring has discovered exactly
one �� and one �� decimal digit prime factor with ECM� This work comprises dozens of
researchers running many millions of curves� It will take approximately 
��������
�� 	 
��

���� times this total e�ort to give a ��� chance of factoring a ��
��bit RSA key with ECM�
The conclusion that is easily reached from this data is that ��
��bit RSA moduli are well
beyond the computing range of the p � � and ECM methods within the lifetime of the
universe�

� Strong primes as protection against cycling attacks

The original �cycling	 attack is due to Simmons and Norris ����� as noted above� Given a
ciphertext C �M e mod n� the cryptanalyst repeatedly re�encrypts the ciphertext until C is
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again obtained� If k re�encryptions are performed� then

Cek � C �mod n� � ����

and so
Cek�� �M �mod n� � ����

The generalization of this cycling attack proposed by Williams and Schmid ���� and
Berkovits ��� is always at least as e�cient as the Simmons�Norris attack� In the generalized
cycling attack� rather than 
nding the least k such that Cek � C �mod n�� we look for the
least u such that

gcd�n� Ceu � C� � � �

Typically� the gcd computation will return one of the prime factors of n� and we have thereby
factored n� In the rare case that the gcd computation returns n� we can still compute M �
since in that case equation ���� holds� Therefore the generalized attack succeeds whenever
the original attack would have succeeded and� in fact� it is likely to succeed much more
quickly� since we are now detecting cycling modulo p �or modulo q� rather than cycling
modulo n� Indeed� equation ���� implies both of the equations

Cek � C �mod p� ����

Cek � C �mod q� � ����

whereas the generalized attack succeeds �and factors n� if only one of these conditions holds�
If these conditions are more�or�less independent �a reasonable assumption� and equally likely�
then if the original cycling attack succeeds in time T � then the generalized cycling attack
will succeed in time

p
T � And� moreover� it typically succeeds by factoring n� not just

determining the message M � as in the original attack�

Since the generalized cycling attack is thus essentially a factoring attack� one can argue
that it must not be very e�ective� on the grounds that if it were an e�cient attack� then
people would be using it as a general�purpose factoring method �which they are not�� While
this is perhaps a sound argument against the e�cacy of these cycling attacks� it begs the
question of analyzing just how �in�e�cient these attacks are� In the rest of this section we
provide a group�theoretic analysis of the e�ciency of the generalized cycling attack�

Even in the extremely unlikely event that one of p � � or q � � has only small primes
factors� it is much more unlikely that both have only small factors� Suppose r is a moderately
large prime exactly dividing LCM�p � �� q � ��� Without loss of generality� assume that r
divides p�� so p�� � Rr� If r divides ord�e� mod ��N�� then the order of e is automatically
large� Suppose r does not divide ord�e� mod ��N�� It follows immediately that e must be
an rth power mod��N�� There are no more than r such integers and the probability that

e is one of these is less than r���N�� It is easy to show that r must be less than
q
N���

and that ��N� � r
p
N so the chance that e is an rth power is no more than ����r�� This

is a worst case estimate� For every prime factor � that appears in only one of q � � or
p � �� this probability drops by ���� Therefore� either r divides the order of e� and hence
the order of e is large� or e is a perfect power mod ��N� with vanishingly small probability�
Futhermore� suppose GCD�p � �� q � �� � s� If p� q are randomly chosen� then s will be
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very small� The probability that a randomly chosen integer mod N has order k is at most
ks�LCM�p� �� q � �� � ks����p� ���q � ��� � ks��N � 	� with 	 being very small� If k is
small� then this probability will be correspondingly small�

�� Conclusions

We see that the elliptic curve method of factoring removes any special status that p � � or
p � � may have had because of the p � � methods of factoring� There is no advantage to
the cryptographer in building �special structure	 into p� � and p�� in terms of protection
against factoring attacks�

If one expends the same level of e�ort with p�� as was claimed spent factoring RSA����
with the Number Field Sieve �roughly �� years on a single Sparc����� one can take step � of
p� � to about ����� The probability of factoring a ��
��bit modulus with this level of e�ort
is about �
 ������ Furthermore� this work is inherently serial� it can not be run in parallel�
so while RSA���� was 
nished in several months by using many machines� the time for p��
is elapsed time� While strong primes protect against the p� � methods� they do not protect
against their generalization� the elliptic curve method� Using strong primes doesn�t seem
to be harmful� except for the extra cost of generating them� but using them doesn�t seem
to buy much protection either� The only real protection comes from choosing large enough
primes p and q�

Actually� some harm does come from the use of �strong	 primes� but it has nothing to do
with the e�ective security of keys that use them� Instead� the harm comes from the fact that
they lead an unsophisticated user into believing that because they are �strong	 that they
are more secure than keys that are not �strong	� i�e� that any other key must be �weak	�

Similarly� we see that strong primes buy little if anything in terms of protection against
cycling attacks� The chance that a cycling attack will succeed is negligible� even if the primes
are chosen randomly� Factoring attacks have a much higher probability of success�

The gist of this paper is thus that strong primes o�er little protection beyond that o�ered
by random primes� On the other hand� aside from the additional e�ort required to generate
them� there seems to be no technical reason not to use strong primes if one so desires� But
we see no rationale for requiring the use of strong primes in public�key RSA standards�

We note that the conclusions in this paper re"ect the current state of knowledge about
factoring� It is entirely possible that future developments might change these conclusions�in
either direction� A new factoring algorithmmight again make strong primes seem desirable�
or it might make strong primes seem particularly dangerous�
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