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Abstract. With this talk we want to pay tribute to the late Professor
Gerd Veenker who deserves the historic credit of initiating the formation
of the German AI community. We present a summary of his scientific
contributions in the context of the early approaches to theorem prov-
ing and, against this background, we point out future perspectives of
Automated Deduction.

Formal logic is still often looked upon as a kind of esoteric doctrine.
Evert W. Beth 1958

The fundamental scientific progress lies in the area of logic and the cog-
nitive sciences.

Pierre Papon 2006

1 Introduction

Gerd Veenker is known in the German Artificial Intelligence (AI) community for
his initiative and organisation of the first national AI meeting in Bonn in 1975
and the second one in Dortmund in the same year. This year we celebrate the
thirtieth German AI conference and for this reason commemorate of him and of
his work. Had he not died so prematurely we could as well have celebrated his
seventieth birthday.

Veenker’s scientific contributions are in the field of Automated Deduction
(AD). In fact, he was the very first German scientist who contributed to this
fruitful and still promising field. In the mid-sixties of the last century with his
theoretical work and his working systems he was at the forefront of AD interna-
tionally. For instance, his system NEU of 1966 realized what only a decade later
was reinvented and called UR-resolution (for Unit Resulting). Unfortunately, he
was totally isolated in those days when Informatics did not yet exist in Ger-
many, let alone an “esoteric doctrine” like computational logic [Bet58, p.50]. So
his contributions have stayed totally unnoticed.

As a courageous pioneer he deserves to be commemorated. We therefore sum-
marize in Section 4 of this paper some of his early contributions. Because these
cannot be appreciated without some knowledge about the state of the art in
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AD at those days, we give in Section 2 an account of the first complete theo-
rem proving procedures in first-order logic by Prawitz and Gilmore, with a brief
mention of other early deductive systems by Dunham et al., Newell et al., and
Davis as well as of McCarthy’s seminal contribution of LISP.

Section 3 then describes the advances in AD made in the early sixties. These
include unification, Skolem functions, Herbrand universe, clause form, unit reso-
lution, and especially Robinson’s resolution. We also point out the circumstances
under which these achievements could be obtained and draw a lesson from these
observations. This is contrasted with Veenker’s situation and his work is anal-
ysed in comparison with those advances in the subsequent section as already
mentioned. Again we draw a lesson from this comparison for the discipline of
Informatics of our days in Germany (or in Europe for that matter).

The paper concludes with some perspectives for AD in the future. Although
AD is extremely successful already and offers even more potential, a substan-
tial advance of our systems’ performance would require a much better support
especially in terms of the quality of education and of the research environment.
This is because the formidable challenge of an integration of the many different
features in one single system as well as solving important remaining problems
will hardly be achievable in the current splintered manner. Even further, there
are deep remaining issues to be solved concerning the nature of the underlying
logic. Under these considerations we are led to the proposal of the foundation
of some European center of excellence for semantics, logic and computation in
order to come a step closer to Leibniz’ dream of a reasoning machine in the not
so distant future.

2 How Automated Deduction Started

In 1957 Aridus Wedberg taught a first year logic course at the University of
Stockholm. On one occasion he mentioned to the class the possibility of proving
mathematical theorems in first-order logic on a machine. This remark raised the
interest of one of the students in the class, namely Dag Prawitz, who decided to
realize this idea in practice [SW83, p.200].

First he developed a general procedure for the predicate calculus which we
illustrate with the valid formula ∀xPx → ∃y Py, shortly F . In order to prove F ,
we assume it were false and infer a contradiction. That is, we start by assigning
the truth value f to it and let the pair (F, f) be the first in a list of subformulas
along with truth values. Given the semantics of implication, for F assumed to
be false this means that ∀xPx must be true, or t, and ∃y Py must be false,
yielding the next two pairs in the list. Taking the first list item not considered
so far, this means that for any constant c in the universe under consideration Pc
must be true. In order to mechanize this step for the general case, assume that
all constants are enumerated as c1, c2, . . .. Since no constant of this enumeration
was used before in our example, we simply take its first one and, hence, add the
pair (Pc1, t) at the end of our list. The final item yet to be considered in the
list, (∃y Py, f), implies that for any constant it must be false. The procedure in
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general selects one already used before in this case, ie. here c1, leading to the
final list element (Pc1, f). Now the list contains two occurrences of the literal
Pc1 with opposite truth values, indicating the expected inconsistency so that
the proof now is complete in this case.

For those readers with some familiarity in AD it is clear that this procedure is
generating a so-called tableau for the given formula except that today the truth
values are coded by adding a negation sign in front of the subformula instead
of falsehood. In generating the tableau Prawitz’ procedure follows precise rules
for each of the possible cases, characterized by the outermost logical symbol
determining the form of the formula as well as by the associated truth value.
Since, for instance, false conjunctions could lead to alternative subcases such
a tableau in general consists of a tree with each of its branches being a list
like the one in our example, especially in terms of closing the branch by some
contradictory pair of literals. Also the selection of constants is a little more
complicated than illustrated by our simple example.

Prawitz coded this procedure in a programming language which he designed
himself for this special task and wrote a report in Swedish. His father, Håkan
Prawitz, hand-translated the program into machine code in 1957. The result was
worked over and tested by Neri Voghera, a software expert, for a number of ex-
amples in 1958. Thereby he used a computer named Facit EDB, built in Sweden.
It featured a core memory of 2048 40-bits machine words and a drum with a
capacity of 8192 words. In other words, the first experiments with a general the-
orem prover for first-order logic were performed in Stockholm in 1958. In 1959
the work was outlined in the discussion of the session on theorem proving at the
First International Conference on Information Processing (IFIP) in Paris, the
discussion being contained in the proceedings. In 1960 the full paper describing
the work appeared in the Journal of the ACM [PPV60].

This short description of the very first work in first-order AD needs to be
complemented by a number of comments. First, Prawitz’ procedure did not fall
from heaven but rooted in well-known work done in Mathematical Logic. Second,
there were several other efforts undertaken in that period of time. Third, progress
in the early years of AD depended a lot on the programming infrastructure
available at the respective location. Let us discuss each of these three important
issues in turn.

To begin with the first point, this is not the place to give an outline of the
history of logic. There are excellent sources for this purpose such as [KK84].
Also the article [Dav83] summarizes this history with an emphasis on AD and
the author’s work in it. We want to point out the following highlights in this
remarkable history.

Leibniz was the visionary for an instrument to increase the powers of reason-
ing [Dav83, pp.2ff,14]. Frege’s Begriffsschrift [Fre79], with explicit reference to
this vision, laid the grounds for all formal languages, logical or programming
ones, as well as for logical calculi. Around the 1920’s and early 30’s the work of
Skolem, Herbrand, Gödel, Gentzen, and Jaśkowski as well as the book by Hilbert
and Ackermann [HA28] clarified the most important logical concepts and issues
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such as completeness, decidability, Skolem functions, Herbrand’s theorem, Her-
brand universe which for historical correctness should actually be named “Skolem
universe”, Gentzen calculi, cut elimination, and so forth.

In the mid 1950’s a proof procedure by W.V. Quine [vOQ55a] as well as four
new and simplified completeness proofs for first-order logic by E.W. Beth [Bet55],
K.J.J. Hintikka [Hin55], S. Kanger [Kan57], and K. Schütte [Sch56] were pub-
lished independently which had an immediate impact on the way early theorem
provers were designed. For instance, Prawitz followed closely Beth’s formalism
in developing his procedure discussed above. While Beth’s and Hintikka’s sys-
tems used proof by contradiction, Kanger and Schütte pursued an affirmative
approach. The difference is completely irrelevant from a logical or deductive
point of view. But Prawitz and others introduced the contradictory approach
which led later researchers to follow this habit.

Let us now come to the second point concerning other early AD efforts. Here
we may distinguish four different lines of research, namely first-order theorem
proving, propositional methods, heuristic approaches, and decision procedures,
which are discussed again in turn.

In 1958 Paul Gilmore, teaching at Penn State (Pennsylvania State University,
State College PA), a place made famous by the great logician (and amateur
ornithologist) Haskell B. Curry, read an advertisement in the New York Times
for a mathematician interested in assisting in a project for proving theorems
in Euclidean Geometry. He applied and eventually joined the Mathematics De-
partment of IBM Research at the Lamb Estate in Croton-on-Hudson NY in July
1958 where he worked with Herbert Gelernter (of whom more below). Gilmore
had a solid background in Mathematical Logic from a course in Mathemati-
cal Logic of S.W.P. Steen at Cambridge University, his studies in Amsterdam
with E.W. Beth and A. Heyting, and his earlier collaboration as a postdoc with
Abraham (“Abbie”) Robinson at the University of Toronto in Canada. Since he
had had no experience with or knowledge of electronic computers at the time,
Gilmore decided to learn by implementing in assembly language on an IBM 704
Beth’s method of semantic tableaux for first-order logic, although eventually the
implemented method was “closer to the work of Hintikka”.

The resulting program, described in [Gil60], took as input any negated first-
order formula in prenex form with its matrix in disjunctive normal form (called
standard form in the paper). In this relatively unimportant aspect it differed
from Prawitz’ procedure (applicable to arbitrary formulas) but otherwise used
the same crude search technique for appropriate substitutions. Gilmore thought
that his “work is the first working program for quantification theory”. He learned
of Prawitz’ working program only, when he met him at the Paris conference in
1959, and acknowledged the fact in a footnote in [Gil60].

Due to the focus of the present paper we will treat the other three mentioned
lines of AD research only in passing. Abbie Robinson had already pointed out
in an influential talk at the important five weeks Summer Institute for Symbolic
Logic at Cornell University in 19571 [Fef03] which was attended also by some

1 In [Dav83, p.16] the year was stated incorrectly as 1954.
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twenty people working in the computer industry including G.W. Collins, B.
Dunham, R. Fridshal, H. Gelernter, J.H. North, who presented talks there and
are mentioned elsewhere in the present paper, that through Herbrand’s theorem
first-order theorem proving could be reduced to the propositional level [Rob57].
So propositional theorem proving became interesting not only because of its
relevance for the logic of computer hardware but also in our more general context.
The first propositional method of a formal kind was used in [DFS60], again
programmed for an IBM 704 and also presented at the Paris conference. It
used rules such as case splitting and pure literal reduction to rewrite the given
expression until the truth value t or f was obtained.

In a sense this work may be seen as a reaction to earlier work by Newell, Shaw
and Simon [NSS56] who took a heuristic rather than systematic approach to
propositional theorem proving, relying on axioms, forward and backward impli-
cational chaining and modus ponens (cf. [Cor96] for an account of such heuristic
approaches). Their program was run on the JOHNNIAC computer from Rand
Corp. Russell. Similarly Herb Gelernter relied on a heuristic approach in his real-
ization of a rather successful geometry-theorem proving machine [Gel59] which
became operative in 1959. Geometry with its long axiomatic tradition since
Euclid’s Elements was a natural mathematical subject to start with. Through
Gilmore’s paper [Gil70] Gelernter’s geometry theorem prover came to influence
modern theorem proving by its use of models to test the consistency of an hy-
pothesis.

The final line of early AD research mentioned above consisted in the im-
plementation of known decision procedures. Martin Davis implemented such a
procedure for Presburger arithmetic already in 1954, using the JOHNNIAC of
the Princeton Institute for Advanced Study [Dav57]. In effect this then was the
very first operative system in AD, although a very restricted one in scope as in
achievement. George Collins from the IBM Labs implemented on an IBM 704
parts of Tarski’s decision procedure for elementary algebra in order to deal with
a variety of problems that could be expressed in that language, a work presented
at the same occasion as Davis’ [Fef03].

The third and final point in this review of the beginning years in AD refers
to the available infrastructure. It constrained the possible success much more
than anything else. Prawitz had the luck to find the support of his father and of
Voghera who did the extremely time-consuming job of programming and testing.
Similarly a well-equipped environment like IBM Research, eg. for Gilmore and
Gelernter, turned out to be very helpful.

It was John McCarthy who, on the basis of this experience, put the design
and implementation of LISP on the top of his priorities since the availability of
such a high-level language could reduce the amount of implementational work
dramatically. For instance in [McC59] McCarthy says: “[The Wang algorithm for
propositional logic] took about two hours to write the program and it ran on
the fourth try.” Unfortunately, even more than a decade later computing centers
such as those in Germany typically had no implementation of LISP yet available
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so that, for a few exceptions, the waste of time in implementational efforts in AI
continued for many more years all over the world.

3 Important Historical Advances in AD

In the previous section we have described the very first attempts of automating
deduction in first-order logic. Needless to mention that the theorems, which could
be proved with those systems, were only rather trivial ones. This initiated half
a century of research into improvements of these first procedures. In this section
we want to describe some of the main early contributions in this vein.

An immediately obvious drawback of the first procedures was their treatment
of substituting constants in a stupid systematic manner. Prawitz was the first
in proposing a unificational method instead [Pra60] which used metavariables
and substituted constants by need rather than according to some fixed sequence.
The unification was computed by way of a system of resulting equations to
be solved under certain restrictions. These restrictions derived from the well-
known variable conditions in Gentzen-type systems. It is worth pointing out
that later unification algorithms used a rather similar way of computation. In
other words Prawitz deserves the credit for having introduced unification into
proof procedures.

None of the procedures mentioned so far allowed function symbols other than
constants as it was known from standard logic textbooks that these could be
replaced in a certain way by predicates. The first paper [DP60] introducing
Skolem functions, hence function symbols, and the Herbrand universe was by
Martin Davis, a former student of Alonzo Church, and by Hilary Putnam, a
mathematician-turned philosopher. It also proposed the clause form arrangement
of the initial data to be refuted, ie. proved by contradiction, which from there on
has become a widely used standard. Unfortunately, this standard along with the
weakness in Gilmore’s procedure beared the ineradicable myth that the use of
this standard has computational advantages over an analogue affirmative “clause”
form, ie. a representation of the formula in disjunctive normal form to be proved
rather than refuted, although the difference is of course totally irrelevant [Bib87].
A further contribution was unit resolution which the authors called rule for
the elimination of one-literal clauses.2 In its treatment of terms it remained
ignorant of Prawitz’ unificational ideas while in the propositional part it used
the independently discovered rules from [DFS60] already described above, all
without any implementation though.

In 1960 a postdoc, J. Alan Robinson, at the University of Pittsburgh sent
applications to several institutions including the Applied Mathematics Division
of the Argonne National Laboratory at Chicago IL and received an offer for
a summer research position from it. He eventually decided to rather accept a
tenure track teaching offer for logic and philosophy of science from Rice Univer-
sity, but go to Argonne for a summer research position with the task assignment
2 In [Cor96, Sect.3] the author erroneously attributes the introduction of unit resolu-

tion to [WCR64] as did others before him.
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by the Division’s director, William Miller, to implement on Argonne’s IBM 704
the method of the Davis-Putnam paper just mentioned. From a four years em-
ployment at duPont he already had a solid experience in assembly language pro-
gramming. So when he arrived at Argonne in May 1961 the programming was
already done, yet in lack of a computer untested. Getting it run, reprogrammed
in Fortran, and debugged took considerable efforts which were supported by
George Robinson, the head of the division’s Programming Development Section.
Alan wrote an Argonne Report [Rob61] which in a polished version appeared
eventually in 1963 in the Journal of the ACM [Rob63].

In the summer months of 1962 and 1963 Alan Robinson returned to Argonne
where George Robinson had already become so excited from the earlier exper-
iments that he started the transition to become a theorem proving researcher.
Miller assigned one of his mathematicians, Larry Wos, to join the team con-
sisting of the two Robinsons who first gave him a crash course in logic using
Quine’s Methods of Logic. During these two summer projects, Alan Robinson
rediscovered unification and the resolution rule (in 1962) and introduced these
two terms into the literature for the first time with the seminal paper [Rob65]
(although the publication was delayed by some rumored referee until January
1965).

As to unification we already pointed out that Prawitz’ first paper did contain
the basic idea behind unification (as did a work by N.A. Shanin – see [SW83,
p.30]) and Robinson was strongly influenced by it. He himself says: “I was ab-
solutely inspired by Prawitz”.3 However, already Herbrand’s paper [Her30] con-
tained a much more elegant version of it, which basically is the one Robinson
published in [Rob65], expressed in recursive definitional rather than algorithmic
terms though. Although Prawitz cited this Herbrand paper, he was not aware
of this part of its contents (nor was Robinson). As to the resolution rule it was
first discovered in [Bla37] already in 1937, coincidentally like Argonne also in
Chicago, then rediscovered in [vOQ55b] as consensus rule and proposed for use
in (propositional) theorem proving in [DN63], presented at Harvard University
already in February 1962.

The beauty of Robinson’s paper derives from his ability to rediscover these
two powerful techniques and merge them with the solid platform for theorem
proving which had been achieved by that time (including the purity and sub-
sumption principles). Further, he did so in a mathematically clean and perfect
way. This latter point is especially remarkable since Robinson by education was
a philosopher with a Master’s thesis on Theories of Meaning Implicit in the
British Empiricists Locke, Berkeley and Hume and a PhD thesis on Causality,
Probability and Testimony. He attributes the stimulation for his transformation
towards a mathematically-oriented scientist especially to his teacher Arthur Pap,

3 Personal communication (e-mail message of 7 March 2007). – Prawitz’ influence
can also be seen in the worked example of Davis paper [Dav63, Section 6] which of
course references Prawitz’ work. This paper does however give not yet any specific
hint to a unification-like method à la Robinson beyond Prawitz’ equational system
as suggested in [Dav83, p.18].
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like Putnam a mathematician-turned philosopher. Pap also advised him for his
PhD studies to go to Princeton where Alonzo Church educated a whole genera-
tion of excellent logicians (including John McCarthy, Marvin Minsky, and Dana
Scott), although it was actually Hilary Putnam who acted as supervisor to his
dissertation.

Once resolution was available the group at Argonne under the direction of
Larry Wos and George Robinson set down to improve its performance by reduc-
ing the search space of generated resolvents. Most importantly they introduced
factoring, the unit preference, the set of support strategy and implemented res-
olution with these additional features on a Control Data 3600 [WCR64]. At this
point Argonne had become the undisputed world champion in theorem proving.
Later, in response to a suggestion by Alan Robinson, they started to concen-
trate on dealing with equality in a special way, introducing demodulation and
paramodulation. Generally, the publication of J.A. Robinson’s paper spawned a
flood of publications in theorem proving, ninety alone in the years 1967–1970, a
period which is well covered by the article [WH83].

This tremendous influence extends up to this day. For instance, the winner
of the recent CASC competitions in theorem proving was the resolution-based
system Vampire by Andrei Voronkov. This dominance is however not undisputed,
a topic which we further pursue in the final section of this paper.

So what is the lesson to be drawn for fertilizing the grounds for future discov-
eries in our or other fields? The obvious first conclusion is that a top education is
the most important prerequisite for excellence. Prawitz, Gilmore, Davis, Robin-
son, McCarthy and many others are proof to this rule as we described. Of similar
importance is the research environment comprising a wise leader like William
Miller at Argonne, the right combination of people like Prawitz (logician) and
Voghera (software engineer) or Robinson (logician), George Robinson (software
engineer) and Wos (Mathematician), and adequate facilities. Argonne had won
this competition because it featured both prerequisites in the best possible com-
bination. There was nothing like Argonne in Europe in those days. For instance
the Gesellschaft für Mathematik und Datenverarbeitung (GMD) was founded in
Bonn not before 1968.

4 Gerd Veenker (1936–1996)

Gerd Veenker was born 9.12.1936 in Lüneburg. His father was a tailor which
is worth noting because not only Gerd but also his brother Wolfgang later be-
came university professors. After his school education in Lüneburg until 1957 he
studied Mathematics and Physics in Hamburg, München and Tübingen.

Around 1960 he became interested in computers. He and his friend Frieder
Schwenkel developed a particular interest in non-numeric computation such as
game playing and theorem proving. They studied for instance the respective
parts in the proceedings of the first IFIP conference in Paris 1959 which has
already been mentioned several times in the preceding two sections.
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No guidance by any professor in Tübingen could be expected to further
this interest. Possibly not even an appropriate logic course was offered which
could have introduced him into the underlying subject. However, Karl Zeller
(28.12.1924–20.7.2006), a Mathematics professor with a speciality in limit the-
ory and with experiences from several visits at US universities, in 1960 got a
chair (Lehrstuhl Mathematik der Hochleistungsrechenanlagen, ie. mathematics
of high-performance computers) which was at the same time responsible for
the university’s computing center. It featured a Siemens 2002 also installed in
1960. Professor Zeller had a widely open mind and an unusually liberal atti-
tude towards his students in terms of their subjects of interest. So when Veenker
decided on his own to concentrate on theorem proving in his Diplomarbeit (Mas-
ter’s thesis) and dissertation he would let him go in this direction and formally
play the role of the supervising professor. He was supportive in that he allowed
his students to make suggestions for invited colloquium talks (eg. Hermes from
Freiburg) as well as for the topic and the literature of seminars officially run
under his name. Additionally helpful was the friendly cooperative atmosphere
among the members of the small group of students which as “Hiwis” (research
assistants) gathered around the computing center.

In 1963 Veenker completed his Diplomarbeit (master’s thesis) entitled Ein
Entscheidungsverfahren für den Aussagenkalkül der Formalen Logik und seine
Realisation in der Rechenmaschine (A decision procedure for the propositional
calculus of formal logic and its realisation on the computer). The list of its
references demonstrates that in the meantime he had read most of the theorem
proving literature available by 1962, in particular the papers discussed in the
preceding two sections of the present paper. He gives a concise description of
the related procedures of Hao Wang [Wan60b], Paul Gilmore [Gil60], Dunham
et al. [DFS60], and Davis and Putnam [DP60]. In effect his procedure follows
closely the one by Prawitz [PPV60], restricted to the ground level and allowing
for the five logical operators ¬, ∨, ∧, →, ↔. It is programmed in the symbolic
low-level programming language PROSA. For the first-order level he gives an
outline of an envisaged but not yet implemented procedure.

For a master student this work is truly remarkable if one takes the lack of
guidance and logical education as well as the limited computational infrastruc-
ture and ressources into account. For instance, he used a number of tricks to fit
formulas with up to 50 logical operators into the machine’s core memory consist-
ing of 2048 machine words. In contrast to McCarthy’s two hours mentioned in
Section 2 it took Veenker probably hundreds of hours to get the program to the
point of success. He proudly states that for one example his program takes 84
seconds, for which Gilmore’s system could not find a proof after 21 minutes. The
technical reason for this advantage is Gilmore’s costly transformation to disjunc-
tive normal form which Prawitz had already avoided. The work was published
shortly after completion [Vee63].

He also published a paper on a program for chess endgames which allow mate
in two or three moves. But his focus remained on theorem proving. At the end
of 1966 he had a dissertation ready with which he passed the rigorosum at the
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beginning of 1967. Again, although working in full isolation, he was fully upto-
date with his references to the papers influencing the field during that thime
which in those days in lack of anything like a world-wide web required enormous
efforts indeed. Apparently he learned of Robinson’s 1965 resolution paper after
much of his thesis and especially of his program was already completed. This can
for instance be seen from his way of treating unification (in his algorithm GLS
which is short for German >GLeichSetzung<) which follows the equational style
of Prawitz’ first paper but now extended to cover general terms since he used
Skolem functions. So he may well have – once again – reinvented unification
(called Verschmelzung) for general terms. Generally, he follows Davis’ repre-
sentational style [Dav63] and uses Davis’ term “linked” in form of the German
Verkettung.

On this basis he enumerates all paths through the matrix given by the set
of clauses. However, once the procedure has located a connection it eliminates
all paths through this connection in one step, focusing next on the two paths
obtained from the current one by replacing each of the connected literals by
another literal of the same clause. One of these two resulting paths is handled
next while the other one is put on a stack for later treatment. So in summary the
procedure is advanced in terms of the enumeration of the paths but in comparison
with the later connection procedures [Bib87] does not yet restrict the search for
a subsequent connection to those with literals in the previously connected clause
which in resolution is known as the linearity restriction. This is unfortunate
because he already mentions this possibility but only as a preference strategy;
apparently he had not seen that this preference can be done without restriction
of generality. He does use also the unit preference and the set of support strategy.

In addition to the complete and sound proof procedure just described, Veenker
gives an incomplete procedure, called NEU (for new), which today we know
as the unit-resulting (UR) strategy combined with unit resolution. The liter-
ature thus incorrectly attributes the discovery of this strategy to the authors
of [MOW76], where it was introduced under this name, while Veenker invented
it already ten years earlier. In lack of a better machine he programmed both
procedures still for the Siemens 2002 which in comparison with the CD 3600 at
Argonne was at least two orders of magnitude inferior. Taking this into account
his running times were well competitive with the state of the art in 1966, a re-
markable achievement in view of the lack of what we pointed out at the end of
the previous section as the prerequisite for excellence, namely a top education
in the subject and a stimulating research environment.

His PhD work was published in [Vee67] but totally ignored by the community.
One reason of course was the publication being in German. Another was his total
isolation as the only theorem proving specialist in the entire German-speaking
area, if not in all of Europe at that time with the sole exception of Prawitz
in Stockholm and of Bernard Meltzer at Edinburgh. In addition Veenker was a
rather modest and reserved person. When the present author met him in 1969,
discussing theorem proving issues, he apparently failed to point to his published
work, then as well as in all encounters in later years, which I therefore read
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carefully for the very first time not before the preparation of the present paper.
This meeting in 1969 gathered Informatics researchers with DFG-funded projects
at the Chiemsee and most likely was the very first event were Informatics-based
German AI researchers from different institutions got together for presentations
and discussions. According to my recollections he did not give a talk (nor did I).

Presumably he had just applied to the DFG for project funds to attack his
next goal in theorem proving which was a special treatment of equality in his
(incomplete) procedure NEU. This was achieved in the Diplomarbeit of Geerd-
Rüdiger Hoffmann and published 1971 in [HV71] in English. It uses a kind
of theory unification for equality. In the same year the author presented his
first theorem proving paper at the GI Jahreskonferenz in München which in
the discussion was heavily attacked by Mr. Hoffmann who pointed out that
my Gentzen-type approach had already been shown not to be workable and
thus waste of efforts. One might infer from this opinion of his student that also
Veenker at that time had given up hope to pursue the line initially taken by
him and rather opt for resolution as the winning technique. Perhaps it is for this
reason that he also gave no talk about his work at the Oberwolfach meeting on
automated theorem proving in 1976 which he attended.

Without having undergone the procedure of Habilitation Veenker received
an (associate) professorship for Informatics and Applied Mathematics at the
University of Bonn in 1972 where for 34 years he represented AI in his teaching.
He never was promoted to a full professorship. In this position he took the
initiative for the first official German AI meeting mentioned in the Introduction.
His PhD students are Rainer Fröning, Joachim Hertzberg, Eberhard Klein, Knut
Möller, Peter Schmidt, Volker Steinhage, and Erich Vorwerk, as far as I could find
out. Two of these (Hertzberg and Möller) are now professors. As a professor he
was popular with students because of his friendly and warm-hearty personality
and hence he supervised a great number of Diplomarbeiten (master’s theses).
Some of these laid the foundation of academic careers of prolific scientists like
Gerd Brewka, Dieter Fox, and also Sebastian Thrun whose autonomous vehicle
Stanley in 2005 spectacularly won the DARPA Grand Challenge. Unfortunately,
since 1976, Veenker suffered from very serious health problems which apparently
kept him from staying scientifically as productive as during the first decade of
his career. He died 23.6.1996 at the age of 59 shortly after the deaths of his wife
and of his brother in the same year.

Are there any lessons to be learnt from the history of a man who was the
first German scientist in the area of AD? In any case it raises a number of
questions. One such question was already asked in 1969 by the logician Richard
Büchi: “Why did the German logicians not engage in establishing the new field
of Informatics?” He posed this question, which is to be seen within the context
of Germany during Hilbert’s time being the world-leader in logic, at the occasion
of the inauguration of the Informatics buildings at the Technical University of
München (TUM) to the internationally known German logician Kurt Schütte, a
student of Hilbert. Büchi, then at Penn State, was invited to this occasion for a
presentation. Schütte could not provide any reasonable answer to his question.
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Later, Friedrich L. Bauer, one of the founders of Informatics in Germany joined
Büchi and Schütte and, although he had not heard their prior discussion, shocked
the two (as well as me) by harshly stating from nowhere: “Logic by now has no
more than a peripheral significance for Informatics.”

In fact, Bauer’s statement provides an explanation for Veenker’s unfortunate
situation. Establishing a new field like Informatics against the extremely rigid
structures of the German academic world was not something to be achieved
by decent and modest persons like Schütte who was exclusively devoted to his
subject. It required clever and versatile power figures like Bauer who had all the
required tricks at their disposal, even though they may have lacked the necessary
education in the germane subjects. So Bauer was in fact right insofar as power
influence was concerned.

Also it must be said that the German logics community did remain seated
in its ivory tower. Besides organizing the International Logic Colloquium (held
in Hannover) one of their major concerns in the sixties was the revision of the
constitution of the German logic association (Deutsche Vereinigung für Math-
ematische Logik und Grundlagen der Wissenschaften, or DVMLG) which was
bitterly debated for years. Bernays (Basel) was already too old to play a leading
role, Specker (Zürich) as a Swiss kept himself at a distance, Büchi left to the
US, Schütte did not even dare to respond to Bauer’s statement, and so forth.
Academically they kept themselves in high regard as an elite which allegedly
had good reason to look down to the academically and logically uninteresting
computational problems of Informatics. Those who transformed from Logic to
Informatics, like the author, became sort of banned, in any case kept in low
regard. So people like Veenker, and to some extent also Prawitz who perhaps
for those reasons later retreated back into logic and philosophy, academically
found themselves sitting between the chairs, in stark contrast to the analog situ-
ation in the US where Computer Science was open-minded enough to appreciate
topics like theorem proving and respected logicians like Davis did not feel like
making their fingers dirty by pondering over the computational issues of proof
procedures.

Since these historic frictions are still virulent in various ways, the lesson then
is that attempts should be made to become consciously aware of, and overcome,
them. In particular this means that Informatics should acknowledge computa-
tional logic as one of their fundamental and promising subareas, reflected also
in the official characterizations of the field where it is rarely mentioned at all.

5 Perspectives for AD

The author has outlined his credo for the field of AD only recently in the arti-
cle [Bib06]. We will therefore not repeat these arguments here again except for
a few additions especially with respect to the issues discussed in the previous
sections.

Recall that at the end of Section 3 we reported of the success of resolution
in the mid-sixties of the last century. But it turned out that resolution was no
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panacea either in terms of efficiency of proof search. A lot of tricks have to be
added and sometimes it is not clear why they work at all. The deeper reason
for these problems lies in the fact that up to now the resolution rule has not
been thoroughly understood. The present author thought he had achieved such
a thorough understanding in his paper [BE97]. But Jörg Siekmann and Graham
Wrightson pointed out that the result contradicts an example from [Eis91] so that
there must still be some mistake in the obtained result which has not yet been
discovered and corrected by anyone. Imagine that forty, in fact nearly 70 years
after the discovery of resolution we are still struggling to understand it fully.

The situation is quite different for Gentzen-type theorem proving of the kind
which was initiated by Prawitz as discussed in Section 2. With all the work which
followed Andrews’ matings method [And81] and Bibel’s connection method
[Bib83] which eliminated the original disadvantages pointed out in the literature
discussed in Section 3 we know exactly what kind of improvements could still
be made for a better performance of the systems. The difficulty lies in the enor-
mous complexity of the task. In consequence many of the improvements which
were worked out theoretically are not yet incorporated in one single system. The
CASC-winning system SETHEO [LSBB92] featured many of them but by far
not all. One particularly important example is the cut rule which has never been
taken care of in any running system except for its very limited consideration in
SETHEO. The author has stated a conjecture in [Bib06] which would open a
way for its treatment. Another example concerns a refined treatment of variables
as already discussed in [Bib87] which has just been worked out in more details
in [AW07]. Like these two there are many more issues (heuristic guidance at
the meta-level in special theories, learning of strategies, integration of models,
etc.) let alone visions like Robinson’s “science of proofs-as-explanations” [Rob00],
which all are still waiting for being integrated into one single system along with
all features scattered in various existing systems. Altogether this amounts to a
formidable task.

One should even go a step further in broadening the perspective. Our field
today features a great variety of different logics and logical calculi. In [Bib06,
Sect.5] I already pointed out the importance of embedding the static logical
space, under discussion so far in this paper, into the course of time in an ap-
propriate way. We believe that transition logic [Bib04] achieves this aim in a
more natural and effective way by focussing on local transitions rather than on
a global transition from one world to another as in modal logics. But even within
the static logical space something might be going wrong which could be rooted
deeply in some historical decision made long ago. I mention the book [Brü96]
which tries a restart of Aristotle’s syllogisms in a modern and precise setting. It
is just a very first little step in comparison to what modern logics offer. But it
could be one of a more constructive nature, which, if followed by further ones,
might possibly lead to a logic with better computational features than those
which we know today. In fact it might be a good idea to start yet one step fur-
ther back and abstract with modern AI technologies the logic underlying natural
languages from large text corpora.
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Achieving all these tremendously complex tasks according to the lesson from
the end of Section 3 would require an excellent education of brilliant minds
along with a research environment which I cannot spot anywhere in the world.
Therefore I put forth the suggestion to found sort of a Max-Planck Institute on
the European level with such a broad basic research mission. It would have to
combine research excellence in a variety of related fields including semantics of
natural language, logic and philosophy of logic, psychology of inferencing and
proofs, cognitive science, knowledge representation and reasoning, and above all
computation.

I want to conclude by pointing to the relevance of deduction in all kinds ap-
plications in virtually every area, independent of any of these future advances.
This is because of the fundamental importance of reasoning in all human ac-
tivities [Bib03]. Especially through the semantic web and through knowledge
systems the importance of deduction will surely grow tremendously [Bib07]. So
I completely share physicist Pierre Papon’s conviction as expressed in his state-
ment cited at the beginning of this paper [Pap06, p.10].

Acknowledgments. The text owes a lot to a number of people from whom
the author got first-hand information about those early days. This includes a
touching text about his personal developments by Alan Robinson and a delin-
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one of the initiators for this paper, and from lively discussions or exchange of
letters with Margarete Zeller, Tübingen, Wilhelm Niethammer, Karlsruhe, Man-
fred Reimer, Dortmund, and Frieder and Trude Schwenkel, Hamburg/Winsen.
Further information was received from Thomas Christaller, Martin Davis, Hans
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