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PREFACE

This memo is an outline of some preliminary work on a completely general
theory of inductive inference, for universes containing continuous, discontinuous,

numerical and non-numerical objects.

The most important previous attempts to obtain a unified theory have been
those of R. A, Fisher and of R. Carnap. It is felt thaé there is a good possibil-
Soung. ©
ity that the method outlined here, overcomes’the serious shortcomings of the

methods of Fisher and of Carnap.

The final statement of the present method is Equation (5) of Section 11.
The rest of the memo deals with successive approximations leading to Equa-

tion (§), and some outlines of applications of Equation (5) to specific problems.

Although the gross approximations used to obtain some of the results of the
application of Equation (5) lead the author to have incomplete confidence in
them, it is felt that Equation (5) itself is fairly likely to be correct.

The specific inductive inference problem dealt with is the extrapolation of
an ordered sequence of discrete symbols. The methods may, however, be
used to extrapolate unordered sets of objects. In order to deal with continuous
data, any conmsistent method of converting from continuous to digital symbolism
may be used, and then the regular method can be used with the digital symbols.
The method described is used only for the extrapolation of sequences of sym- -

bols. If predictions about objects in the real world are desired, one must devise | (::

FM“YL

some method of making a correspondence between the symbol sequences and

13
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events in the world. It is believed that using the present extrapolation

method on the symbol sequences will result in probability values that corre-
spond to those in the real world, and that the probability values obtained

for real-world events in this way will be largely indepeudenfw?f the nature of “
the correspondence that is devised between the sxmhols and/events
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1. INTRODUCTION

We shall be concerned primarily with the problem of extrapolation of a
very general time series, whose members may be numbers or non-numerical
objects, or mixtures of these. At first,a fairly simple extrapolation formula
will be given. Its shortcomings will be discussed, and it will be progressively
improved. upon, until a final formula that seems to overcome all of these

difficulties will be presented.

Consider a very long sequence of symbols — e.g., a passage of English text,
or a long mathematical derivation. We shall consider such a sequence of
symbols to be "simple" and have high a priori probability, if there exists a
very brief description of this sequence — using, of course, some sort of
stipulated description method. More exactly, if we use only the symbols
0 and 1 to express our description, we will assign the probability Z*N to a
sequence of symbols, if its shortest possible binary description contains N
digits.
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2. THE CONCEPT OF "BINARY DESCRIPTION".

Suppose that we have a general purpose digital computer M; with a very
large memory(éater we shall consider Turing machines — essentially -

computers having infinitely large memories,) .

Any finite string of 0's and 1's is an acceptable input to M;. The output
of M; (when it has an output) will be a (usually different) string of symbols,
usually in an alphabet other than the binary. If the input string S to machine
M, gives output string T, we shall write

M, (S) = T.

Under these conditions, we shall say that "'S is a description of T with
respect to machine M;." If S is the shortest such description of T, and S
contains N digits, then we will assign to the string, T, the a priori

probability, 2N,
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3. THE FIRST APPROXIMATE EQUATION

Let us apply this a priori probability to time series extrapolation. Suppose
that T is a string of symbols that constitutes a time series. We want to know
the relative probability that the next symbol in the series will the symbol
"a'" rather than the symbol "b".

Let T a represent the string of symbols that is T concatenated with the
symbol a,

Let T b similarly defined.

Let S, be the shortest description of T " a, with respect to machine M;.
Let Sy, be the correspondingly minimal description for T b,

Let Nsa be the number of digits in S,.
Let NSb be the number of digits in Sp,.

Then the relative probability of a, rather than b, as continuation of the

sequence T, will be, with respect to machine M;,

—Ne +N
1) 2 Sa Sb

which is the ratio of the a priori probabilities of T ™a and T b,
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4. FIRST OBJECTION: THAT EQUATION 1 IS MACHINE DEPENDENT

There are several very serious objections that immediately come to mind.

- First, it is quite clear that NS and NS will depend very much upon just

a
what machine is selected — in fact, by properly selecting machines, we can
give Nsb - NS any value we like.

We will later (in Section 3) try to make it plau&ble that if T is a very
long sequence of symbols that contains all of the kinds of data that a man is
likely to observe in his lifetime, then NS - NS will be machine

"vmiv o a
independent over a rather large/set of machines



5. SECOND OBJECTION: THAT THE PROBABILITIES OF EQUATION 1
DO NOT CONVERGE

Another objection is that if we assign a priori probability 2—'N to a binary
string of length N, then the total a priori probability of all binary strings does
not converge — i.e., There are 2 strings for N = 1; their individual
probabilities are Y, each, their total probability is 1. There are 4 strings for
N = 2, their total probability is 1 also. Similarly, the total probability of all
strings of length N will be 1, for any value of N, Clearly the sum of all
these probabilities does not converge.

We can, however, think of the binary descriptions as being formed by a
simple Markov process. The digit 0 is produced with probability Y. The
digit 1 is also produced with probability Y,. Clearly such a Markov chain
has no means to terminate. It must be of infinite length.

We can remedy this difficulty in a very natural way by giving the digits
0 and 1, each probability Y% — ¥, ¢, and have the probability of termination
of the string be e. Since we will deal only with very long descriptions, ¢
will be very small. Using the ¢ formalism, we find that though the total a
priori probability of all sequences, does indeed converge, our prediction
probabilities have not changed much. Instead of

—N. +N
i 2 Sa Sp

we now write NS _ NS
[Ya(1-¢)] "2 b,

Since ¢ is much less than 1,

Ne. — N
(1—6) Sa Sb ~ 1
and
, N. — N, _ +
[Ya(1-e)] Sa b is very close to 2 Nsa Nsb.

It is clear that the expected length of a description is about !/¢.

V131 _- -5 -
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6. THIRD OBJECTION: THAT ALL THE PROBABILITY RATIOS OF EQUA-
TION 1 ARE INTEGRAL POWERS OF TWO

Another objection that comes imm ediately to mind is that NS - Ng
must always be an integer, and so the relative probabilities of the two possible
continuations of the sequence would have to be integral powers of 2 — certainly
this is not a realistic restiction, since, in general, probabilities may have

any values between zero and one,

We will overcome this difficulty by three different devices. The first is
somewhat ad hoc, and will be discussed immediately. The second will over-
come another diﬁ‘%culty ;ﬁn addition to the present one, and will be discussed
in Section 11." These two methods do not interfere with one another. A third
method is discussed in Section 13,7

It will be noted that the present difficulty seems associated with the use of
Jjust two symbol types in our description strings. If we used more than two
types of symbols/ Oier;zwg)uld bg even more trouble, since the probability ra- =
tios would then be restricted to integral powers of N — an even coarser gradat-
ion than integral powers of 2.

- . v\\ ¢l av—
An apparently direct source of trouble is that if an integral number of sym- ¢ ¢

g Lo 30$‘ hew
bol types are used, there is usually some "wastage of bits" in expressing in- iy s opplieable
tegers. For example, to express the integer 7 in binary notation, we use 3 ie. Just ’“’;L

cr ( nXeffaitS o5 )
bits in the sequence 111. However, to express the integer 8, 4 digits are ,“ . f
[N & ““'7 .

needed, i.e.:1000. It seems unlikely that 8, which is only 14% larger than
7, should require a whole extra bit. Also the numbers 9 through 15 all require
only 4 bits.
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Much "bit wastage" can be avoided if we allow a "cost" of just logyn bits
for the number n, if n occurs in a context in which the value zero would be

meaningless, If zero is meaningful, a cost of logy(n +1) should be
assigned to the number n.

In the previous paragraph, and in the following example, it will seem as
though the means used for representing numbers in descriptions are rather
arbitrary. It can, however, be made plausible that the probability ratios
obtained using these rather "arbitrary methods" are identical with the ratios
obtained using the more intuitively reasonable Equation (5) of Section 11.
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7. A SIMPLE EXAMPLE OF INDUCTION

A very simple example is afforded by a sequence of a A's and b B's,
The letters A and B occur in arbitrary order, We are then asked '"What is the
relative likelihood of an A rather than a B following this sequence?"

To describe the sequence of a A's and b B's, we first note that there are
just (a +b)!/ al b! different sequences containing just a A's and b B's.
A complete description of the sequence would then be given by the string
RA Babk. k tells which of the (a +b)!/al b! different orderings of <
the symbols A and B actually occurred and -

TL[ % @Dq‘guc(k % o'ﬂ7'.<,c(¢€@ .
T (znxu\’bc.f’ "?&‘)Csrmo(k_
= Loapls ca's
alb! {abicet ke ade to Baple -
fecwolr ) PR ocin e thei
R tells the computer just what sort of notation is being used. In general,

there will be several different symbols of this type.

To compute the bit cost of this description, we would have to know how

A, B and R are to be represented in our system. Suppose A costs C A Dits,

@t B costs Cp bits and R costs Cg bits (C,, Cg and Cp are all

irrelevant to the final probability ratio to be computed).

The numbers a and b cost logya and logy b bits, respectively.

k will cost log; [(a +b)!/alb!] bits. . iy leck S /'U
- e‘@&e(fv\Ccea 4'
The cost of k seems a bit arbitrary — should it not be logyk ? L s sud e e

First of all, k differs from a and b, in that k has both upper and lower
limits. k is a choice between (a +b)!/a!b! alternatives, On thé'average," i
k will have about log, [ (a +b)!/a!b!] bits in its binary representation — Ordarliva
but this does not justify using a cost of logs [ (a +b)! /alb!] bits for k,

when k does not have that many digits in its binary representation.
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<7 > {2
AN ? Ggﬂ‘ Y
-2 > ; > A

Again the true justification to using this bit cost for k is that it results in

_ :
the same probability ratios as the more intuitively reasonable Equation 5 of
Section 10,

The total bit cost obtained for the description RA Babk is
Cp +Cp + Cg +logya + logg b + log; [ (a+Db)!/albl]. The resultant
a priori probability is
(-C, - Cg-Cp -0 (b-0) 1
2 é cb)!

Let us now consider the same sequence of A's and B's, to which an
additional A has been appended. The resultant sequence will have a +1
A's and b B's. Its a priori probability is therefore

2) ~-C
2

- C,h~C

A B R al(b-—1)!

(a+b+1)!
Appending an A has multiplied the a priori probability of the resultant
sequence by a factor of
—a
a+b+1
We may view - logy(a / (a +b + 1)) as the bit cost of the symbol A, in
that particular situation, and we shall call (a+b+ 1) / a the "raw cost” of
the symbol A in that situation.

Similarly, the a priori probability of the sequence after B has been appended

is
(=CA = Cg=Cp) (a- 1)1l

3) 2 (a+b+1)!

The bit cost of the appended B is —logy (b / (a + b+ 1)) and the raw cost of
Bwas (a+b+1)/b.

<

i BT T T T g e et s i P ST s 4 T TP EIRIEEESEE
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The relative probabﬂityi‘rA rather than B following the original sequence
tn
of a A's and b B's is the ratio of the a priori probabilities ef expression (2)
and expression (3). This is

(-C, ~-C_,~ ) . T cvia

s ATOBTR al(b—1)1/(at+b+)t _a ] °°7 “l;(gd‘?k-

2("CA"CB_CR) (a—1)tbl/(a+b+1)! = b Leplrce  axl
b+

which is approximately what is expected. Note also that

a _ raw cost of B
b  raw cost of A’

a relationsln'p which isgeuetahzable . Cewtiaves to be Ceva when svita b&’ﬁ‘z e (czao

This simple result, which gives the frequency ratio of 2 kinds of events as
an estimate of their probability ratio, is called, in inductive inference circles,
"The Straight Rule." An important objection to it is that if a = 2 and b = 0,
then it tells us that we have a probabiltiy of 1 for the next symbol being A.
This seems intuitively unreasonable, since we would certainly not be absolutely

certain of the next symbol after so short a sequence.
"Laplace's rule" gives the value (a+1)/(b+1),

Carnap (Ref. 1, page 568) gives (a +k;) /(b +ky), with the values of ky <« I shoold

T hae b o

and k, dependent upon the exact nature of the properties whose relative fre- Taws, ond see
2WST Mow
quency one is measuring. If we consider a universe in which very many proper- Coewmap

ties exist, /f(l and k,; become quite large, and the probability ratio obtained ‘teplize G5

. . . . - M &W d‘
becomes almost independent of empirical data, unless the amount of emirical ?:gm'é

data is very large. ko, ond s

+ (.

A more detailed analysis reveals that qu)a??nSé(l (as modified by the con- o
siderations of Section 6) does not give the’ratio a /b, for small values ofa e~ & uz‘@\‘f
-2ad"b, This is true be‘c;iuie;wgnder these circumstances, the code RA Ba b k o
is not a minimal céfie,l‘_mlﬂgisfrﬁore economical to write the sequence itself than

to use the "R'" method,

V131 - 10 -
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Let us use the symbol V to denote the identity code, so that if we use the
sequence V A BB A as input to machine M, its output would be A BB A,
Symbolically,

M;(VABBA) = ABBA

or, more generally,
M{(V7X) = X

for any sequence X,

The cost of coding- A B using the " V" method is CA + CB + CV'
The cost of coding A B using the "R method is
C, + Cy + Cy, + logy | 2! | = c +c 441
ATTBTRT OB\ T Oy (1101 ATt &R
The " V" coding method will be more economical than the "R" coding
method in this case if (’w(‘)(?‘k b‘fﬁ;{
CV < CR+1. «eorc;cj Yl

- eceﬁ“’t ——
o av e |

=

In general, the raw cost of a symbol type (e.g., Ror V) will be about equal

to the reciprucal of its relative frequency of use in the previous part of the code.

As a result, the V notation will be used here if, in the past, the V notation
has been used more than Y as often as the R notation. If short strings of random
2 g
symbols have occured quite often in the sequence to be described, then the

V notation will be used verv often, and will have a low bit cost.

If V has a very low bit cost, then if we want to extrapolate the sequence
A AB, thecostof AABB is C, + 2C, + 2C,.. Thecostof A A BA is

\' A B
CV + BCA + CB’ The relative probabilities of A and B following will
then be
(-C, +C,) C C
9 A B - 2 B 9 A

This will be about equal to the ratio of the frequency of occurrence of the symbol

._11-
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A and the symbol B in the sequence preceding the subsequence A A B. If A
and B have never occurred before, we might obtain the ratio 1, or if the s clea
symbols A and B have other structural features, we might obtain some other

ratio — corresponding to Carnap's k;/ k;.

However, if the present sequence is quite long, e.g., ABBABABAAABAA,
then the R notation is likely to cost less than the V notation, and the computed
relative probabilities of A and B following will be independent of their
frequencies in the part of the sequence preceding the part under present con-

sideration.
ic
In Section #, an improved inductive inference method will be described, in

which all possible methods of describing a sequence contribute to its probability
— rather than just the "minimal method" of description. Using this method, the ; Yow ‘é“jﬂy
I 57
probability ratio (a +ky) /(b + ky) appears to be approximately correct. The j &

values of k; and k, are, however, not the same as those of Carnap.

- 12 -
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8. CODING AND RECODING

The method used in coding a sequence is to first write a code description

of it, using any convenient symbols,

This description will sometimes contain the R and V symbols of Section 7,
a space symbol, and verious letters and numbers. The numbers are recoded by
special methods that take advantage of either the fact that the range of pos-
sible values of the number is known, or else that the first digit of the number

must be 1, the second digit is more probably a zero than a 1, and so on.
The R, V, and space symbols are recoded using the R notation.

If any regularities are found in the resuitant code sequence, it is recoded
again in a manner that takes advantage of these regularities. The final
"minimal” code for a sequence will contain about an equal number of zeros

and ones, and will desplay no "significant” statistical regularities at all.

_13._
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9. REPLY TO THE FIRST OBJECTION

At this point the reader may note that the original premises have apparently
been discarded entirely — that while the original idea was to devise a
minimal description for a sequence using an arbitrarily chosen machine, we
have instead made a description for a special machine that must be very

narrowly specialized to interpret that description!

To answer this criticism it will be necessary to modify the premises a bit,
Let us designate by S, the sequence consisting of a A's and b B's. Unless
the sequence S is very long, the present methods are not very useful for
extrapolating S alone. However, let us define S' to be a very long sequence
of symbols oontammg all the kinds of data that a man is likely to observe in
his hfef It would be well if this man had a broad background in the kinds of
material that we will be extrapolating, but this is not absolutely necessary.

The present methods will be useful for extrapolating the sequence S' " 'S.
Note that S' need not have any material bearing directly on the sequences,, - bs exérspeiried.

'The relationship of S$' to S will be seen presently,

We shall try to make it plausible that the last few symbols in the minimal
description of the sequence S'” S will be largely independent of just what
computer is to be used to-interpret-the description; as long as that computer
is a "universal machine" — which is a kind of general purpose computer —
also, that these last few symbols will probably be R A B a b k, or equivalent
symbols having the same bit costs.

First the concept of "universal machine" will be defined. A "universal
machine” is a sub-class of universal Turing machines that can simulate any

other Turing machine in a certain way.

_14_
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More exactly, suppose M, is an arbitrary Turing machine, and M, (x) is
the output of M,, for input string x. Then if M, is a "universal machine,"
there exists some string, « (which is a function of M; and M,, but not of x),

such that for any string, x,
My (@7 x) = My(x).
@ may be viewed as the "wanslation instructions” from M, to M,.

Let us suppose that M, is a machine that is able to perform the decoding

from the code string RA B a b k, to the sequence S, so that
M, (RABabk) = S, i

Suppose that Mj, a universal machine, has some other method of coding the

sequence S, so that
Ml (D) = S’

and that the sequence D is longer (has more bits) than the sequence

R A B a b k. Furthermore, let us suppose that the sequence S' contains many
subsequences similar to S, in the sense that the same kind of coding method
would apply. Let us assume that the RA Ba b k method of coding used by
M; is, on the average, better than that used by M;, so that on the average, it
costs M; 3 more bits than M, to code a sequence like S, If M,'s coding
method is in any sense "optimum" (the method described is, indeed, close to

optimum), then the assumptions mentioned are realistics veasowsble .

If S' contains 1000 sequences of "type S, then M; will take 3000 more

Gz ¥ & LY‘U’S
Seed Con (’17\(‘

bits to code this part of S' than will M,. Let s, porat
My(E"RABabk) = 8§ M
and
M (F) =8 "7s
be the normal methods of coding for My and Mz. = continvad o peltons

o 6’@5:3 (6.

- 15 -



10. A FOURTH OBJECTION: THAT EQUATION (1) CONSIDERS ONLY
"MINIMAL" DESCRIPTIONS

Another objection to the method outlined is that Equation (1) uses ounly the
"minimal binary descriptions" of the sequences it analyzes. It would seem
that if there are several different methods of describing a sequence, each of
these methods should be given some weight in determining the probability of

that sequence.

In accordance with this idea, we will modify Equation (1) and write the
probability that a, rather than b, will be the continuation of sequence T,

will be
oc
— € ai
i=1 2
lim .
— N
€0 2 ( 1—¢ ) Sbj
\ ¢ €
i=1 2 N (m:n:«
af e
i M (S )=M (S )'—:M (S ): oooooo = (s sz‘. -?}Za, “7
: _ 1 1ay 1 \Paz2 1 {933 M, acd) a p
The S,; are all thedescriptions of T a,. (:Wq R
, £
Similarly, w“;\&\ﬁ v;&
/’1(.(0 ‘;J‘P/
My (Sbg) = My (Sp) = =+ <+ = My(Spee) = T7'b Tl
Nsai is the number of digits in S;. . &UW

g Saa faf (< Tev  Wew P A
3

The limit ¢ — 0 has been incorporated into the equation to overcome the
objection in Section 5, that the sum of all the probabilities diverged. In [
Equation (4) it may not be necessary for € to approach zero. It may be both )
expedient and adequate to let it take some small value like 0,001, <

'€ Ve L;”v\ . w V T'heﬂ o vt
\plwwﬁ’ M; (am ET"RABabk) = s' s -~ .
. S hLeo
RIS T s /
V131 b - 16 - ( (< (,‘Jﬁ,\ Afeow Fes )

T e e € laad oo

Pge (7.
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and if the string a contains less than 3003 bits, the code string
a@ E "R A Babk will be shorter than the code F, so the "minimal" codes

for both M and M, will terminate in the sequence RABabk.

The figure "3003 bits"” was arbitrary. In general, a will have a fixed
number of bits, but the figure "3003" will be proportional to the length of the
sequence S °Asa result, all universal machines will tend to code long
sequences ending in S by code sequences ending in RA Ba b k, because

coding me thods of this type will be shortesty (a We \ouxé YUA

It will be noted that this latter statement on the similarity of minimal
codes for universal machines is not much more than a sttong conjecture, with

suggestions of how a proof might, under certain circumstances, be constructed.

More exactly, if S’ is a very long sequence of a kind containing the kinds

of information that a man would normally observe in his lifetime and

S is a short sequence,
M; and M, are both universal machines.

Gy, G,, Hy and H, are the shortest strings such that

M; (Gy) =8, M (Gy) =S,
M, (H;) =S' S, M, (H,) =S'"S.
NG1 is the number of bits in Gy, with similar definitions for ch etc.
Then we would like it to be true that ' [flhis wodjebon
eV (el
NH1 - NG1 = NH; — NGz' :‘,: 0; - (gjr
for all fairly short sequences, S, and all pairs of universal machines, My and My be 3lmes®
tvoe fo
The truth of this conjecture is a sufficient condition for the probability k_ (rege,
estimate of Equation (1) to be independent of just what machine was used t:\::(tb‘:;sd A
(providing, of course, that it was a "universal machine"). ‘OF M@

; Mgcc\épﬁ
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~— 11. LAST OBJECTION: THAT THE MORE DISTANT FUTURE OF pole)

THE SEQUENCE SHOULD BE CONSIDERED

The final objection that we will discuss at any length is that Equation (4)
does not consider in any serious way the more distant future of the sequence
being extrapolated. Consider, for example, the sequence abcdabcdabcdab.
The next symbol is probably ¢, and this is so because the sequence

abcdabcdabcdabcd hasa particularly simple description, and is
therefore very probable.

We take all possible future continuations of the sequence into account in
the following M refinement of Equation (4):

We cwmen  aloom CRG
| 1 . “ v - ‘Ad
5) N Nacess: for (& w
O N( S ). ad ~\/\ox‘.(47v\ar,c)) o'é‘
Z 1 - Ta Cn k 1 : |
v Cv- 4 Cani 1 6"18 : : € 3 “ bor (O%a"&w\“{;

)

%fffl I;a — ;o/ f@ k=1 i= 2 by T daserighic
0/ n—’cC n (t"\ Pelin v, agd
CK-:% % &L?‘ ¥ o N( S ) A(c\/\m'« ) w/( [F 2N

5 movwevlass E E . ( 1~ e) Tb Cn,k ! . bite ov leos.
Shown telbedaler '

. ———, = i= T lee € VA= 05 -
jo . h«mt‘»; k=1 i=1 2 Ve o v

‘V\A"P B aevb . I Wb ts\, ‘““,.. o§u5“,\u\m fa (aav—\o\m\%’ gt MBA// bs 2 va;Z
fead

N Cont ToK g9,

Cp, k 1s a sequence of n sym%ols in '%ﬁe ougut alphabet of the universal fte wate

machine. There are r different symbols so there are M different sequences ‘V‘G'c](_; "
g, = b
of this type. C g is the kth such sequence. k may have any value from

;\("\-" 6* ‘/
1 to rn. z,gmrli lovi d aw u«( a_\\ f(m%q coa b onuatichs

~ pa Ta (an& Tb ) (et have Z @y
TaCp,kx isthesameas T 'a’ "Cy k. bits tw Cueir devasg .

(STaC k)l is the ith description of Ta Cpq, k With respect to Machine M.
\r?&tf?

N(STa Cn, k)i is the number of ‘digits in (ST, Cn, k)i ;

It can be shown that Equation (5) also eliminates the ‘Third Objection in a
very satisfactory way — i.e., the "bit wastage" in both numerator and
denominator average out to be the same, and so they cancel. This cancellation
does not ordinarily occur in Equation (4).
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12. AN INTERPRETATION OF EQUATION (5)

Equation (5) has at least one rather simple interpretation. Consider all
possible sequences of symbols that could be descriptions of all the things a
person might observe in his life. These sequences correspond to the sequences

being coded in Equation (5), such as Ta Cn K

y

Then a comp'lete“modelwthat "explains” all regularities observed in these

sequences is that they were produced by some arbitrary universal machine
with a random binary sequence as its input. Equation (5) then enables us to
use this model to obtain a priori probabilities to be used in computation of

a posteriori probabilities using Bayes' Theorem. Equation (5) finds the proba-

bility of a particular sequence by summing the probabilities of all possible “,e‘i:
Ae & .
ways in which that sequence might have been created. o2 /""'Jjgz»‘ryc!*
S

This particular model of induction is somewhat similar to that of Carnap : -‘5‘\' cv“_«m‘”ea'f
(Ref. 1, page 562). Carnap restricts his discussions to only the simplestg—-—""""
finite languages, yet he is able to obtain some very reasonable results with

this very limited means.

Here, however, we use the full generality of description methods that are

available through Turing machines.
A comauw et reve g vava ) W émﬁb s d @’?Ua—[l7 e ow{) [ate ’

2

mé;$a( vu\'a/ 2 (e be cbCacaa & L8 "F’ W e a/(éu) Tt 5"\/{""6 fe P
T oecw wa e bicue fo b o 7 M% wlov el 3o o vien —vaulsh ‘K‘“i '
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13. USE OF A SKEW INPUT DISTRIBUTION TO OVERCOME THE
THIRD OBJECTION

The above model for Equation (5) suggests a very natural way to avoid the
"bit wastage” inherent in the representation of numbers using any integral

radix.

For Equation (5) we used as input to the universal machine, binary
sequences in which 0's and 1's were equally probable, In such a situation,
the probability of any particular input sequence was always a power of 2,
However, suppose that we use the following type of input sequence for the

machine:
probability of 0 is & - Y, ¢
probability of 1 is 1 - & - Y, ¢
probability of termination of sequence is ¢

Here again, the "expected length" of a sequence is about Ve, If 6 is
small, however, we can have very fine gradations of probability available in
these sequences — much finer than the integral powers of 2.

It will be noted that the descriptions (i.e., input sequences to the machine)

¥

of a given output sequence that are "'most probable " are now entirely
different from the shortest (and therefore most probable) sequences that were
used before for "minimal” descriptions. There exists, however, a translation
method, so that it is possible to go from a "shortest” description using equal
probabilities for 0 and 1, to a comresponding "most probable" description

using the highly skewed distribution,

Using this highly skewed distribution, it is possible to devise sequences
that correspond to any integers with arbitrarily little of the "bit wastage"

that was evident when an integral radix was used for representation of numbers,

In general, the lengths of sequences of highest probability in the skew
distribution that are needed to code a given text will be much longer than

the corresponding code sequences using a symmetric distribution.

-20_
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14, APPLICATION OF THE METHOD TO CURVE FITTING

The application of Equation (4) to numerical extrapolation by means of
"curve fitting'" has been investigated to some extent. The problem is formu-
lated in the following way: We are given a set of pairs of numbers that cor-
respond to empirically observed data points — e. g., a set of pairs of temperature
and pressure readings of a gas. We are then required to extrapolate this data
—i.e., given a new temperature reading, to obtain the relative probability of

any possible corresponding pressure reading.

A"\ Gt ONO Wiy

Lt
A-stmplg, method of describing such a set of data points is to give an equation
that approximates the data, then give a set of temperatures, then a set of

numbers that give the deviations of the empirical pressures from the equation.

w\u\%ﬁ‘"\ e
We could conceivably try to express the list of temperatures in more compact| "¢ cogits last

te o ypass sendlf

form, but doing so would not affect the resultant probability ratios. ot Cuan, hepg
oNneS, (XS
If the curve fits very well, the cost of the set of deviations will be smaller i epte covee’
c(cfd;cu. 12
than for a curve that fits poorly. The cost of describing the equation must also _“;% WKWQ,
be taken into account, so, in general, a 20-parameter polynomial could give |~ f”\“f{‘
‘a,\,_ wo, ©
a low-cost set of deviations for 20 empirical points, but the cost of the 20 6.%&\;@ oy -
parameters would be high. There will exist some optimum number of param eters® A
W ‘é\/ws
that should be used, such that the total cost of the equation description and the | ¢ tgan theeed®
. . . oo o T At
deviation descriptions will be minimal, Have we vn2e o5« {‘ ~ Tw. & M‘@"’&
it coste oo (o (cdor sua | vowmbe s “fraa (wga‘« oues ot P g wuviys
= i B

molynomxafs for curve flttﬁxg has been useful in the past, this method
of description will have a low bit cost. Using unusual functions that have few
parameters in them, yet are complex to describe and have been used infrequently
in the past, will be very expensive to use for extrapolation, so one would tend

not to use them unless they gave a very small set of deviations. .

These latter notions are certainly what one feels to be true intuitively when
one is fitting a curve to empirical data. The present method of analysis seems

to put this intuitive idea on a quantitative basis.

-21_



An objection might be raised that the curve fitting method described is
close to one that assumes a very un-normal distribution of empirical error ,
— certainly a distribution quite different from that which is ordinarily

observed.

If, however, in the sequence of data preceding the present problem, there
have been many empirical situations in which the deviations had a normal
distribution, or if there are enough empirical points in the present problem,

then it will be less expensive to describe the deviations as a normal distribu-

tion than to simply list them. Asa result, we would obtain something close
to a mean-square goodness-of-fit criterion — with the added feature of taking

the complexity of the curve used into account,

If the emg\mcal data obtained corresponds to a known physical law, then
ceNTou s

therem be“data to corroborate this law. In such a case, the equation will

have been used many times in the past, and will be correspondingly less ex-

pensive to use in the present case.

and he simply read about the law in a book, then the cost of the equation is
somewhat more difficult to compute. It Mepend; in part, upon the empiri-
cal accuracy in the life of the curve-fitter of physmal laws that he has read

|
| Q¢(w\bﬂ
If the physical law used has not been/empirically verified by the curve fitter,ﬂ\rovf(t\ praviecs
é)(fymw‘aﬁbh
about in books.

\
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15. THE PROBLEM OF CONFLICTING LINES OF EVIDENCE ot 2 wmuch s bt

gg,(w te Ty
An insurance company wants to determine the probability that a man will dofty)
live over 60 years, and has compiled tables of data to aid in solving this ga; o @8- o
problem. . tem

JURTCTARTS S oHhiea €
One day a man cemesap the company and asks to be insured, He is 50

years old, has had pneumonia, and both of his parents died at the age of 95.

The insurance company has tables that tell the probability that a 50-year-
old man who has had pneumonia will live to 60. The tables give the
probability py.

They have tables that tell the probability that a 50-year-old man, both
of whose parents lived to be over 90, will live to 60. The tables give the
probability p,.

They have no tables for 50-year-old-men who have had pneumonia and

both of whose parents lived morc than 90 years,
How shall the company combine the data from the two tables that it has?

It might be argued that it is impossible — that one must have a table for the
coincidence of the three characteristics before one can make a probability
estimate. However, every day we are forced to combine evidence of various
kinds to make probability estimates, and in many cases the data is inadequate,
as in the above problem — yet we make decisions based on such inadequate
data. Indeed, it might be argued that there are few decisions that we do make

in which we have "adequate data."

A very approximate analysis of this problem was mgde usmg the coding

rued

method of probability evaluation. The probability /that the man will live more

than 60 years that-was obtained is - .
The " sclw.’ saawms

6) p(V) vaversensble (§ vknes——
+ p, +
pl p2 p(R) €\ oo o = 1.

_ N )
(1 =py) + (1—py) +§®
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Speaking very loosely, P(V) and P(R) are the relative frequencies with
which the R coding method and the V coding method of Section 7 have been

used in the past. In the present case, P(V) / p(R) is probably much less than 1.

It is characteristic of the present method of induction that most probability
values obtained are dependent, to some extent, on sequences of events that
are apparently not very closely related to the events whose probabilities are

being computed.

It should be noted that the validity of Equation (6) is not very certain,
since it was obtained by using some very uncertain assumptions. These uncertain
assumptions need not characterize the method and are symptomatic of the
author's present inability to always devise good approximation methods for

Equation (5),
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16. GENERAL REMARKS ON EQUATION (5) AND ITS APPLICATIONS

While Equation (5) is put forth as what is hoped to be an adequate explica-
tion of conditional relative probability, the cquation itself will not ordinarily
be used directly for probability computation — any more than the definition of

a Lebesgue integral is used directly in the evaluation of integrals.

Instead, Equation (5) canfand has been used to obtain theorems about
probability from which actual probabilities may be calculated. Among
the techniques used are the discovery of coding methods that are simple to
use, and nonminimal, yet from which it is possible to obtain the same
probability ratios as those given by Equation (5). The apparently ad-hoc
number manipulation of Sections 6 and 7 is an example of this, though a

proof has not been given here.

Minimal coding techniques do have important direct applications, however.
One of these is information rewieval. The minimal coding enables us to dis-
card information that is least relevant to prediction, or to whatever the appli-

. . ) . hape - . ) .
cation ¢t the coded information might b€. Coded information that is most

valuable for prediction is also most likely to be correlated with other data, and

for this reason, in coding new data, we examiue relationships between it and

parts of previously coded data that are of most value in prediction.

Another direct application of minimal coding is in the generalized hill-

climbing problem. Here, there is a set of continuous and/or discrete parameters

that must be adjusted to maximize the value of a certain evaluation function.
Organic evolution is an important example of a hill-climbing problem with

discrete parameters. These parameters are the coded sequences that constitute
the chromosomes. The evaluation function of such a set of coded sequences is

the expected reproduction rate of the resultant organism.

The method used for hill-climbing in organic evolution of asexual organisms
is to make each new set of trial parameters a random change of a few of the
parameters of a fairly good organism. This random change corresponds to a
mutation.
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While there is some reason to believe that the genetic code description of i 2 e Qo
the organism is not a minimal code, it shares with minimal codes the property et Fonet?
that a random change of one of the code symbols will yield a code sequence | ’
for an organism that has a not-altogether-too-small probability of living and \

a somewhat smaller probability of being a bit better than his parent.

None of the computing machine simulations of organic evolution have
attempted representations or organisms using minimal codes, and it seems like

Soo &

a reasonablyﬂhoing to uy.
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