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1. Algebra now

Algebra has been a part of mathematics since ancient times, but only in the 20th
century did it come to play a crucial role in other areas of mathematics. Algebraic
number theory, algebraic geometry, and algebraic topology now cast a big shadow
on their parent disciplines of number theory, geometry, and topology. And algebraic
topology gave birth to category theory, the algebraic view of mathematics that is
now a dominant way of thinking in almost all areas. Even analysis, in some ways
the antithesis of algebra, has been affected. As long ago as 1882, algebra captured
some important territory from analysis when Dedekind and Weber absorbed the
Abel and Riemann–Roch theorems into their theory of algebraic function fields,
now part of the foundations of algebraic geometry.

Not all mathematicians are happy with these developments. In a speech in 2000,
entitled Mathematics in the 20th Century, Michael Atiyah said:

Algebra is the offer made by the devil to the mathematician. The
devil says “I will give you this powerful machine, and it will answer
any question you like. All you need to do is give me your soul; give
up geometry and you will have this marvellous machine.”

Atiyah (2001), p. 659.

But Atiyah is giving his view of the situation at the research level. At high school
level, algebra is by no means dominant. There have been calls for its total abolition.
Algebraically minded mathematicians also lament the state of high school algebra.
The algebraic geometer Igor Shafarevich wrote:

Algebra courses in schools comprise a strange mixture of useful
rules, logical judgments, and exercises in using aids such as tables
of logarithms and pocket calculators. Such a course is closer in
spirit to the brand of mathematics developed in ancient Egypt and
Babylon than to the line of development that appeared in ancient
Greece and then continued from the Renaissance in western Europe.
Nevertheless, algebra is just as fundamental, just as deep, and just
as beautiful as geometry.

Preface to Shafarevich (2003).

We see here not only two views of algebra, but two views of geometry. How these
views developed, and how they intertwined, is an interesting story.

In Atiyah’s view, the difference between geometry and algebra is the difference
between space and time. Geometry is powerful because humans have a highly
developed visual system, enabling us to perceive a complicated spatial situation
at a glance; algebra is powerful because it enables us to process a sequence of
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operations occurring in time. In Shafarevich’s view both are powerful because they
have a logical structure, first exemplified by Euclid’s Elements.

Whichever view one takes, it seems important to understand the historical de-
velopment of both algebra and geometry.

2. Algebra and geometry

For most of its history, algebra had the goal of solving equations—finding an “un-
known” quantity in terms of known quantities. Simple examples occur in Egyptian
mathematics from around 1850 bce, mostly equivalent to linear equations but on
one occasion a quadratic equation with integer roots, solved partly by trial and
error. In Mesopotamia, around the same time, there was a more sophisticated
mathematical culture that studied problems relating length to area. This of course
leads to quadratic equations, and the Mesopotamians found a general algorithm for
their solution, essentially equivalent to our quadratic formula.

So, the ancients understood “algebra” up to the level of quadratic equations,
but was it algebra as we know it? Not exactly, because mathematics as we know it
(theorems and proofs) began much later. The first systematic account of theorems
and proofs that we know of is Euclid’s Elements, from around 300 bce. It contains
well-developed treatments of geometry and number theory, but little, if any, algebra.
Yet when algebra began to develop, 1000 years later, the Elements provided the
model for its first proofs.

To understand how geometry could be a model for proofs in algebra, consider
two of Euclid’s theorems that seem to have algebraic content: Propositions 1 and
4 of the Elements, Book II. These propositions involve the “rectangle” of two line
segments a and b, which is literally the rectangle with adjacent sides a and b, but
which behaves, in some ways, like the product of (numerical) lengths a and b. (The
Greeks avoided identifying line segments with numbers because they knew irrational
line segments, which were not their idea of numbers.) When the “rectangle” is
understood as a product, Proposition 1 is essentially the distributive law,

a(b+ c+ · · · ) = ab+ ac+ · · · ,

in the geometric form shown in Figure 1.
Proposition 4 is essentially the formula

(a+ b)2 = a2 + 2ab+ b2,

in the geometric form shown in Figure 2.
Debate once raged over the question whether this was really algebra; see Unguru

(1975) versus van der Waerden (1975) and Weil (1978). Today it seems to be agreed
that the Greeks were not really doing algebra—because they did not grant lengths
all the properties of numbers—but that geometry played a supporting role in the
development of algebra and eventually merged with it.
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b+ c+ · · ·
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b
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Figure 1. Geometric version of the distributive law
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Figure 2. Geometric version of (a+ b)2 = a2 + 2ab+ b2

Algebra became a cohesive discipline in the Islamic world between 700 and 1000
ce, with the goals of solving equations and explaining algorithms for their solution.
The name “algebra” comes from the Arabic word al-jabr, meaning something like
“restoring”. in the title of an influential book written around 825 by al-Khwarizmi
(whose name also gave us the word “algorithm”). Equations were still written in
words, but they were manipulated according to explicit rules—such as the distribu-
tive law—and the rules were justified by appeal to Euclidean propositions like those
above. In particular, al-Khwarizmi solved quadratic equations by “completing the
square” geometrically.

The general methods of solution, being based on plane geometry, could not
succeed on equations of degree more than two. However, algebra advanced in
other respects. Around 1000, al-Karaji stated the binomial theorem, and a century
later its connection with “Pascal’s triangle” was explained in The Shining Book
of Calculation by al-Samaw’al. (Chinese mathematicians made a similar discovery
at about the same time and used it to solve polynomial equations numerically.)
The Shining Book also extended some of al-Karaji’s ideas about polynomials to a
full-scale arithmetic, allowing addition, subtraction, multiplication, and division of
polynomials.

Meanwhile, the cubic equation beckoned. Around 1100, al-Khayyami (known
to most westerners as the poet Omar Khayyam) was able to solve cubic equations
geometrically—describing their roots in terms of the intersections of two suitably
chosen conic sections—but was disappointed not to find an algebraic solution.

Such a solution was first found in Italy, in the early 16th century. It became
known as the Cardano formula after its publication by Cardano (1545), though it
had been discovered earlier by del Ferro and Tartaglia. The formula states that the
solution of x3 = px+ q is
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Like the familiar quadratic formula, Cardano’s formula is a solution by radicals.
That is, the solution is obtained from the coefficients of the equation by the opera-
tions +,−,×,÷ and the “radicals”

√
and 3

√
. Shortly after Cardano learned of the

formula, his assistant Ferrari found a solution by radicals of the general equation
of fourth degree (the quartic).

These dramatic advances in algebra after centuries of stagnation set off an explo-
sion of algebraic research in Italy, France, and England. Its main goal—solution by
radicals of the quintic (fifth degree) equation—was not reached. But the nature of
algebra became clearer, and it was finally able to emancipate itself from geometry.
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Around 1600, Viète in France and Harriot in England developed an algebraic sym-
bolism quite close to modern notation, so that computation with unknowns became
as easy as computation with numbers. At this point, algebra became able to help
geometry more than geometry could help algebra, and the result was La Géométrie
of Descartes (1637), the ancestor of today’s algebraic geometry.

3. Algebra and number theory

Until around 1800, algebra was formally the same as the arithmetic of numbers:
mostly about the operations +,−,×,÷, and it was subject to the same laws. The
radical operations

√
, 3
√
, . . . were occasionally invoked to solve polynomial equa-

tions, but they too were viewed as operations on numbers. For all intents and pur-
poses, algebra was just “universal arithmetic”, as it was called by Newton (1728)
and Lagrange (1795). Of course we now know that algebra was about to be trans-
formed by Galois and his analysis of solution by radicals. This part of the story
will be continued in the next section. But another change was in the offing, due to
the transformation of arithmetic itself.

Since the time of Euclid it has been noticed that the arithmetic of integers
presents problems quite different from the arithmetic of rational numbers. The
problems with integers are due to the fact that they do not generally divide each
other, so the concepts of division with remainder, common divisors, and primes
arise. The most basic problem, finding the greatest common divisor of integers a
and b, gcd(a, b), was solved by Euclid in the Elements, Book VII, Proposition 1.

Euclid’s solution introduces the Euclidean algorithm, a process also discovered
(apparently independently) by Indian and Chinese mathematicians. As Euclid
presented it, the algorithm is to “continually subtract the lesser number from the
greater” (and save the difference), but the equivalent process of performing division
with remainder turns out to be more suitable for generalization.

The Euclidean algorithm produces ever smaller integers and hence terminates
with the gcd, in the form gcd(a, b) = ma + nb for some integers m and n. This
implies the property discovered by Euclid: if a prime p divides cd, then p divides c
or p divides d. The latter property implies unique prime factorization, the property
we single out today as the fundamental theorem of arithmetic. It was first identified
as such by Gauss (1801), but was used long before that, sometimes unconsciously.
Other applications of the Euclidean algorithm are the solution of linear Diophantine
equations by Brahmagupta (628) and the “Chinese remainder problem” solved by
Sun Zi in the third century ce.

A new twist in the story of unique prime factorization occurred in Euler (1770), a
supposedly elementary book on algebra which broke new ground in number theory.
In seeking positive integer solutions of the equation x3+y3 = z3, Euler made use of
numbers of the form a+b

√
−3, where a, b ∈ Z. He saw that they behave rather like

integers and effectively assumed that they have unique prime factorization (which
is not quite right, though the error is repairable). Without justifying this bold
assumption, Euler showed that it yields the conclusion that x3 + y3 = z3 has no
positive integer solutions—thus proving a case of Fermat’s last theorem. Similarly
using integers of the form a+ b

√
−2 and assuming their unique prime factorization

(this time, quite correctly), he was able to prove that the only positive integer
solution of y3 = x2 + 2 is x = 5, y = 3, proving another claim of Fermat.
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At the time, Euler’s belief that the certain numbers could be viewed as “inte-
gers” with unique prime factorization was unfounded. It was eventually justified
by a theory of algebraic integers developed by Dirichlet, Eisenstein, Kummer, and
Dedekind between the 1830s and the 1870s. However, this theory did not develop
until it was necesary to fix a more serious problem: failure of unique prime factor-
ization. Like the failure of solution by radicals, failure of unique prime factorization
led to a reconstruction of algebra on new, abstract, foundations.

4. Abstraction

Now we come to the 19th century, when algebra begins to look “modern”—with
groups, rings, fields, and vector spaces. The first modern algebraist was Galois, who
introduced the concepts of group and field to explain the structure of polynomial
equations and solution by radicals. However, his most important works, such as
Galois (1831), were not published until 1846, long after his death, and they were
not well understood even then. The first course on Galois theory was given by
Dedekind in 1856 and the first book on group theory, an exposition of Galois’s
ideas, was Jordan (1870).

Galois also noticed interesting examples of fields, the finite fields, previously
only implicit in the arithmetic of congruence mod p. But, like the theory of groups,
the theory of fields did not catch on until more applications came to light, mainly
in number theory. As mentioned in the previous section, the need for a theory of
rings and fields became urgent when unique prime factorization was found to fail
for certain algebraic integers. The failure was first noticed in the 1840s by Kummer,
in the rather complicated setting of cyclotomic integers. These are the “integers”
one meets in the linear factors of an + bn when a and b are ordinary integers.

Dedekind (1877) gave the simpler example of Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z},

where 6 has two “prime” factorizations, 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5). When

Kummer found his examples, he believed there were “ideal” prime factors dividing
the actual factors, which would restore unique prime factorization in the new world
of ideal numbers. In the example above, one would hope in particular for an ideal
common divisor of 2 and 1 +

√
−5. Harking back to the situation in Z, where

the set {ma + nb : m,n ∈ Z} consists of precisely the multiples of gcd(a, b), one
might guess that gcd(2, 1 +

√
−5) in Z[

√
−5] is realized as a set of combinations

2m+(1+
√
−5)n. This idea, suitably generalized, was the Dedekind (1871) concept

of an ideal in the ring of integers of an algebraic number field—later generalized to
the concept of an ideal in arbitrary ring.

The concept of an algebraic number field Q(α), which Dedekind took as the
setting for his theory of algebraic integers and ideals, was modelled on the example
Z/pZ of integers mod p. Instead of the ring Z one begins with the ring Q[x]
of polynomials with rational coefficients, and instead of congruence mod p one
has congruence mod p(x), where p(x) is the minimal polynomial for the algebraic
number α. It easily follows that Q(α) is a vector space of dimension n over Q,
where n is the degree of p(x). This is just one of the places where the concept of
vector space began to emerge towards the end of the 19th century.

Dedekind and Weber (1882) took this idea a giant step further, with remarkable
applications to algebraic geometry and even analysis (as mentioned at the beginning
of this review). Following Dedekind’s approach to algebraic number fields, they
began with the field Q(x) of rational functions of x and took an extension field
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Q(x, f) of finite degree n. Then Q(x, f) is an algebraic function field of degree n,
from which they were able to define a Riemann surface, and prove the classical
theorems of Abel and Riemann–Roch, originally proved by analytic methods.

“Universal arithmetic” had come a long way since the time of Newton!

5. Comments on the book

Most of the story sketched above is covered in detail in Taming the unknown,
with roughly the same allocation of space to the ancient, classical, and modern
parts of algebra. The authors are very thorough and avail themselves of the most
recent scholarship. Indeed, I learned many things (such as the work of al-Samaw’al)
for the first time when reading this book. Readers of the Bulletin might wish that
more space had been allocated to the modern period, but the history of modern
algebra is a huge topic, and there are three excellent chapters of the book (11, 12,
and 13) devoted to the 19th-century roots of the modern period.

I have some small quibbles with the coverage of the fundamental theorem of
algebra at the end of Chapter 10: the factorization of zn−an is attributed to Euler
in 1748 rather than to Cotes in 1714, and the gaps in Gauss’s first proof in 1799
are glossed over. The heart of the difficulty with the fundamental theorem—that it
depends on general properties of continuous functions, and hence does not entirely
belong to algebra—is not made very clear.

The authors explain in their Prelude (p. 3) that they are writing for an audience
ranging from high school students and their teachers to college students and their
professors, since even the latter should “know the roots of the algebra they study”.
I wholeheartedly agree, and would add that knowing the roots of algebra is probably
the best antidote to Atiyah’s fear that algebra is just a machine, and the best way
to realize Shafarevich’s vision of an algebra as fundamental, deep, and beautiful as
geometry.
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