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Hallucigenia’s onychophoran-like claws and the
case for Tactopoda
Martin R. Smith1 & Javier Ortega-Hernández1

The Palaeozoic form-taxon Lobopodia encompasses a diverse range of
soft-bodied ‘legged worms’ known from exceptional fossil deposits1–9.
Although lobopodians occupy a deep phylogenetic position within
Panarthropoda, a shortage of derived characters obscures their evo-
lutionary relationships with extant phyla (Onychophora, Tardigrada
and Euarthropoda)2,3,5,10–15. Here we describe a complex feature in
the terminal claws of the mid-Cambrian lobopodian Hallucigenia
sparsa—their construction from a stack of constituent elements—
and demonstrate that equivalent elements make up the jaws and claws
of extant Onychophora. A cladistic analysis, informed by develop-
mental data on panarthropod head segmentation, indicates that the
stacked sclerite components in these two taxa are homologous—
resolving hallucigeniid lobopodians as stem-group onychophorans.
The results indicate a sister-group relationship between Tardigrada and
Euarthropoda, adding palaeontological support to the neurological16,17

and musculoskeletal18,19 evidence uniting these disparate clades. These
findings elucidate the evolutionary transformations that gave rise to
the panarthropod phyla, and expound the lobopodian-like morpho-
logy of the ancestral panarthropod.

Palaeozoic lobopodians feature prominently in discussions about
the origins of crown-group panarthropods—the extant velvet worms
(Onychophora), water bears (Tardigrada) and euarthropods (Euarth-
ropoda)5,9–11,20. Although lobopodians have been regarded as onycho-
phoran ancestors2,3, the presence of ‘primitive’ characters—such as a
terminal radial mouth, unsclerotized annulated cuticle, a non-segmented
body and terminal claws in the walking legs—suggests a deeper phylo-
genetic position1,4,13. Because lobopodians have few derived morpho-
logical features in common with extant panarthropod phyla, there has
been much disagreement over the precise affinities of these extinct
organisms and their significance for the origins of the major extant
groups5,10–12,14,20,21.

Here we describe the fine morphology of exceptionally preserved ter-
minal claws in the Burgess Shale lobopodian H. sparsa (mid-Cambrian;
Stage 5), and demonstrate a fundamentally similar construction in the
claws and jaws of the extant onychophoran Euperipatoides kanangrensis.
These new data clarify both the affinity of ambiguous lobopodians and
the evolutionary origins of extant panarthropods.

H. sparsa bears two types of sclerite: a pair of appendicular sclerites
(claws) on each walking leg, and seven pairs of armature sclerites (spines)
along the trunk (Fig. 1a). The claws form smooth curves that subtend
an angle of 100u, and comprise a stack of three constituent elements
(Fig. 1b–d), separated by 21u of displacement along a logarithmic curve
denoted by the Raupian parameters22 W 5 3, T 5 0, D 5 2. The pre-
served carbon film thins gradually towards the base of the claw, reflect-
ing a lesser degree of sclerotization.

Hallucigenia spines each comprise a stack of one to five constituent
elements6 that are separated by 1–6u along the logarithmic spiral given
by W 5 3, T 5 0, D 5 1.07. Spines that have been compressed obliquely
to their plane of curvature express a smaller value of D, representing
a preservational artefact (Extended Data Fig. 1). The surface of each
constituent element is characterized by an ornament of regularly ar-
ranged scales (Extended Data Fig. 2).

Onychophorans lack armature sclerites, but possess two types of ap-
pendicular sclerite: paired terminal claws in the walking legs, and den-
ticulate jaws within the mouth cavity9,23. As in H. sparsa, claws in E.
kanangrensis exhibit a broad base that narrows to a smooth conical point
(Fig. 1e–h). Each terminal claw subtends an angle of 130u and comprises
two to three constituent elements (Fig. 1e–h). Each smaller element pre-
cisely fills the basal fossa of its container, from which it can be extracted
with careful manipulation (Fig. 1e, g, h and Extended Data Fig. 3a–g).
Each constituent element has a similar morphology and surface orna-
ment (Extended Data Fig. 3a–d), even in an abnormal claw where
element tips are flat instead of pointed (Extended Data Fig. 3h). The
proximal bases of the innermost constituent elements are associated with
pigmented tissue (Fig. 1e and Extended Data Fig. 3e–h).

The jaws of E. kanangrensis represent a modified set of trunk
appendages23 whose paired sclerites exhibit two distinct morphologies:
the outer sclerite (Fig. 1j) resembles a claw, but has one or two accessory
denticles on its concave edge; the inner sclerite (Fig. 1i) bears six to eight
accessory denticles. These sclerites each comprise two stacked elements;
the distal outline of each internal constituent element corresponds to
the outline of its containing element enlarged by 2.4 6 2.7% (Extended
Data Fig. 1). Proximally, the internal element is truncated with respect
to its containing element; thus all elements terminate along a common
basal line (Fig. 1f and Extended Data Fig. 3g). The constituent elements
of the jaw are separated by 21uof displacement along a logarithmic curve
denoted by the parameters W 5 3, T 5 0, D 5 8.

We regard the internal constituent elements in the claws and jaws of
E. kanangrensis as future replacements of the outermost element. This
is supported by the uniform shape and sculpture of the constituent ele-
ments within both claws and jaws, the tendency of each element to increase
in size relative to its container, the separation of elements upon mech-
anical preparation, and the logarithmic trajectory of successive elements.
The presence of a single constituent element in shed onychophoran
exuviae23,24 indicates that two to three elements characterize the inter-
moult individual; this suggests that ecdysis involves discarding the out-
ermost element, secreting a new innermost element, and extending the
bases of all existing elements—presumably via the pigmented basal tissue.

The constituent elements of E. kanangrensis jaws and claws are dis-
tinct from the superimposed sclerites found in some ecdysozoans. The
duplicated sclerites that occur in certain Palaeozoic lobopodians and
palaeoscolecids7,8 represent the displacement of one individual sclerite
by another during growth; upon completion of ecdysis, the displaced
sclerite would have been shed. In such cases, each element is fully grown
when it is sclerotized, so each internal element extends proximally be-
yond the margin of its containing element; this is not the case in ony-
chophorans. Some euarthropods, such as ostracods and spinicaudatan
branchiopods, retain multiple exuviae after ecdysis25; here, overlying
moults are retained on the carapace during ontogeny, and continue to
accumulate as the individual grows. This contrasts with the stacked
elements in Euperipatoides, the outermost of which is shed during
ecdysis24. Unlike the elements of onychophoran sclerites, the overlying
exuvia of the former crustacean carapace does not correspond mor-
phologically with the underlying exuviae; nor does it share a common
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baseline contact with the epidermal tissue. Thus the constituent elements
of onychophoran claws and jaws neither represent superposition dur-
ing moulting, nor the partial retention of moult exuviae; rather, they

reflect the early formation of future moult elements. Being absent in
Euarthropoda or Tardigrada (Extended Data Fig. 4a, b), this feature is
diagnostic of Onychophora.

An onychophoran-like mode of development is inferred for the claws
and spines of H. sparsa, which also exhibit multiple constituent ele-
ments, logarithmic growth from a basal accretionary zone, consistent
morphology during growth and—verified at least on the dorsal spines—
a scaly ornament on the proximal region. Taken together, these features
support the homology between the claws of hallucigeniid lobopodians
and the appendicular sclerites of extant onychophorans, also identifying
enigmatic organic-walled microfossils as claws of stem-onychophorans
(Extended Data Fig. 4c–e). This distinctive mode of growth suggests
that a common process regulated the development of armature scler-
ites and appendicular sclerites in H. sparsa, despite their different loca-
tions. This could represent a shared evolutionary origin, perhaps as
armour plates on an ancestral worm-like ecdysozoan26, or the express-
ion of limb-patterning genes in a novel location; a similar situation is
observed in extant insects, where limb-patterning genes (for example,
Distal-less) are associated with the development of ventral appendages
as well as dorsal structures that may not have an appendicular origin
(for example, wings)27.

To test the homology of the stacked elements in onychophorans and
H. sparsa, we analysed the evolutionary relationships of Palaeozoic lobo-
podians. Our data matrix is informed by recent findings on the segmen-
tal organization of the panarthropod head (Supplementary Note 1), and
yields a substantially resolved strict consensus tree that is robust to a
wide range of homology penalization—indicating a strong phylogen-
etic signal. The resultant topology consistently recovers H. sparsa and
Onychophora in a clade that ancestrally bore tall spines, characterized
by differentiated deutocerebral appendages and sclerites constructed
from stacked constituent elements (Supplementary Note 2, transfor-
mation series 34–35, 10, 39)—indicating that the latter represents an
evolutionary innovation of total-group Onychophora (Fig. 2). Palaeozoic
lobopodians are recovered as paraphyletic5,11,12,14,21, and can be broadly
categorized according to their position relative to panarthropod crown
groups. Aysheaia is the only taxon resolved in the stem-lineage of Pan-
arthropoda (per refs 1, 21; contra refs 3, 11, 14); an alternative—but
less supported—position within stem-Euarthropoda was only recov-
ered at low concavity values (28% of those sampled; see Supplemen-
tary Data). The results indicate a major dichotomy within Panarthropoda.
On one side of this basal split is total-group Onychophora, defined by
the limbless posterior extension of the lobopodous trunk, undifferenti-
ated posterior appendages and the loss of radially symmetrical circu-
moral structures (Supplementary Note 2, transformation series 61, 63, 19).
Stem-group Onychophora includes Diania (contra refs 5, 11), Xenusion,
Paucipodia, Antennacanthopodia and all lobopodians with sclerotized
dorsal elements except Onychodictyon ferox9. Luolishania and the
Emu Bay Shale ‘‘Collins’ monster’’ occupy a derived position within
a paraphyletic Hallucigenia grade. Antennacanthopodia and Ilyodes
represent the closest relatives of Onychophora, indicating the second-
ary loss of dorsal sclerotized elements in the crown group.

On the other side of the basal panarthropod split, our analysis recov-
ers a second major clade that includes the tardigrade and euarthropod
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Figure 1 | Appendicular sclerites in H. sparsa and E. kanangrensis. a–d, H.
sparsa. a, Royal Ontario Museum (ROM) 61124, exhibiting dorsal armature
sclerites (spines) and appendicular sclerites (claws, arrowed; image courtesy of
J.-B. Caron); b, ROM 63051, single claw with three constituent elements,
innermost partly dissociated, cf. e; c, d, ROM 57776, claw with three intact
constituent elements (image courtesy of J.-B. Caron). e–j, E. kanangrensis
(Onychophora, Recent). e–h, Claws; e, air bubble between middle and outer
elements; basal pigmented tissue (pig); f–h, pair of claws from single limb
(f, single claw comprising three stacked elements; g, h, single claw separated
into outer element (g) two stacked inner elements (h)); i, j, jaw sclerites, with
two constituent elements (i, inner jaw sclerite; j, outer jaw sclerite). Scale bars,
a, 1,000mm; b–d, 100mm; e, 40mm; f–j, 100mm.
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total groups as sister taxa (per refs 10, 14, 15 and contra a more con-
ventional grouping of Euarthropoda 1 Onychophora28,29), ancestrally
bearing radially symmetric circumoral structures, appendicules on the
lobopodous limbs and a modified posterior trunk appendage (Supplemen-
tary Note 2, transformation series 19, 49, 63). This result corroborates
the Tactopoda hypothesis10, which has recently been reinvigorated by the
pattern of ‘tritocerebral’ innervation of the stomatogastric ganglion17, the
segmentally ganglionated nerve cord with a parasegmental organization16

and the metamerically arranged longitudinal musculature shared bet-
ween these phyla18,19. Within this framework, Onychodictyon ferox9 is
resolved as a stem-group tardigrade—consistent with hypotheses that
the microscopic size of tardigrades is derived and that lobopodians
include ancestors of this phylum1,4,13,15. An alternative position for O.
ferox in stem-Euarthropoda was also recovered, but only at exceedingly
low concavity values. Total-group Euarthropoda includes various dis-
parate forms united by the ancestral presence of fused protocerebral
appendages bearing series of spines/spinules, ultimately transformed
into the euarthropod labrum9,20 (Supplementary Note 2, transforma-
tion series 12–17). The gradual evolutionary transition from lobopo-
dians with spinose frontal appendages (Jianshanopodia, Megadictyon)
through gilled lobopodians (Kerygmachela, Pambdelurion, Opabinia)
and anomalocaridid-type taxa (Peytoia, Anomalocaris, Hurdia) to stem
euarthropods with full body arthrodization (for example, fuxianhuiids)
is in overall agreement with previous reports5,11,14,20. These relation-
ships reveal the parallel evolution of key innovations associated with
the origins of panarthropod phyla; for example, the independent ventral
migration of the mouth in crown-Onychophora9, Heterotardigrada16

and stem-Euarthropoda20, and the non-homology between the lip pa-
pillae of Onychophora9,30 and the circumoral structures that support
Tactopoda (for example, lamellae in Tardigrada19, radial mouthparts in
anomalocaridids21).

The finding that sclerites with stacked constituent elements are di-
agnostic of total-group Onychophora, in combination with a develop-
mentally informed phylogenetic analysis, fundamentally improves the
resolution of panarthropod relationships relative to their lobopodian
ancestors. Consistent with the basal position of Aysheaia, Siberion and
Onychodictyon species within their respective stem-lineages, our analysis
indicates that the ancestral panarthropod was probably a macroscopic
lobopodian with heteronomous body annulations, an anterior-facing
mouth with radial circumoral papillae, and paired dorsolateral epider-
mal specializations associated with paired lobopodous limbs that bore
simple terminal claws (Supplementary Note 2, transformation series 31,
18–20, 32, 1, 5, 52, 39).

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Weighting strategies. Under equal weights, each additional step in a tree topology
is penalized equally. Taking an example from Goloboff31, if transformation series A
has one step on tree X and two steps on tree Y, whereas transformation series B has
15 steps on tree X and 14 steps on tree Y, trees X and Y each contain 16 steps in total
and are thus treated as equally plausible. Implied weighting assumes that an addi-
tional step in a highly homoplastic transformation series is preferable to an additional
step in a less homoplastic transformation series: that is, it is more parsimonious to
add a 15th step to transformation series B, which is already highly homoplasious,
than it is to add a second step to transformation series A, which otherwise exhibits
no homoplasy.

Successive weighting32 represents an iterative solution to this problem, calculat-
ing the homoplasy of each transformation series under an equally weighted tree, then
repeating the analysis using characters’ consistency index to repeat the analysis. This
approach suffers from circularity; it generates different results from different start-
ing points. The method of Goloboff31 circumvents this problem by penalizing each
additional step in a transformation series less strongly than the step before, thus
weighting each transformation series according to its consistency with each eval-
uated tree. The penalty attached to subsequent steps decreases at a rate set by a con-
cavity constant, k; the lower the concavity constant, the less weight is attached to
subsequent steps.

With a small concavity constant, transformation series that have one or more
additional steps are down-weighted to the point of irrelevance. At k , 1.5, a tree X
where transformation series A has no additional steps and transformation series B
has six additional steps will be preferred to a tree Y where both transformation
series have a single additional step. At k , 1, transformation series B can have any
number of steps on tree X, and tree X will still be preferred to tree Y. Thus k , 1 cor-
responds to a stance that transformation series either represent homologies or con-
tain no phylogenetic information at all: if a transformation has occurred more than
once, it is (almost) no more likely to appear twice than it is to appear 100 times.
This approach is overly aggressive; indeed, k , 2 is rarely seen in the literature.

With a larger concavity constant (k . 30, perhaps), characters with additional
steps are scarcely down-weighted; implied weighting under large values of k approx-
imates equal weighting. An intermediate value is therefore most suitable, but there

is no objective means to select this value. Values of k between 3 and 5 are typical,
although the most appropriate value varies with the number of terminals (and thus
opportunity for homoplasy) in a data set31. One way to approach this issue is to re-
peat an analysis over a range of values of k, and to identify the strict consensus of
these possible trees33. Rather than select a narrow range of values, we took 99 values
of k from a log-normal distribution, with mean 5 5 and s.d. 5 5, so as to exhaustively
sample parameter space. The strict consensus of most parsimonious trees for each
value of k, generated using the parsimony ratchet34 and sectorial search35 heuristics
in TNT36,37, is reported in the Supplementary Data. Figure 2 displays the consensus
of all most parsimonious trees recovered at all sampled values of k (0.12–210) and
the equal weights tree.
Removal of transformation series. If transformation series 39 (‘sclerites consist
of a stack of constituent elements’) is excluded from the analysis, an identical topol-
ogy is recovered for all values of k, demonstrating that homology between the stacked
elements of onychophoran claws and the claws of Hallucigenia sparsa is supported
even if the character is not reflected in the input matrix.

31. Goloboff, P. A. Estimating character weights during tree search. Cladistics 9,
83–91 (1993).

32. Farris, J. S. A successive approximations approach to character weighting. Syst.
Biol. 18, 374–385 (1969).

33. Mirande, J. M. Weighted parsimony phylogeny of the family Characidae
(Teleostei: Characiformes). Cladistics 25, 574–613 (2009).

34. Nixon, K. C. The Parsimony Ratchet, a new method for rapid parsimony analysis.
Cladistics 15, 407–414 (1999).

35. Goloboff, P. A. Analyzing large data sets in reasonable times: solutions for
composite optima. Cladistics 15, 415–428 (1999).

36. Goloboff, P. A., Farris, J. & Nixon, K. TNT: tree analysis using new technology.
(http://www.lillo.org.ar/phylogeny/tnt/, 2003).

37. Goloboff, P. A., Farris, J. S. & Nixon, K. C. TNT, a free program for phylogenetic
analysis. Cladistics 24, 774–786 (2008).

38. Campiglia, S. & Lavallard, R. in Proc. 7th Int. Congr. Myriapodology (ed. Minelli, A.)
461 (E. J. Brill, 1990).

39. Harvey, T. H. P., Ortega-Hernández, J., Lin, J.-P., Zhao, Y. & Butterfield,
N. J. Burgess Shale-type microfossils from the middle Cambrian Kaili
Formation, Guizhou Province, China. Acta Palaeontol. Pol. 57, 423–436
(2012).
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Extended Data Figure 1 | Claw measurements. To reconstruct the
relationship between the stacked constituent elements, a digital image of a
sclerite (a) was duplicated, rotated and enlarged such that its outer sclerite
precisely overlay the inner sclerite in the original image (b; the cyan image has
been enlarged by 5% and rotated to match the inner sclerite in the yellow
image). Repetition of this process demonstrates a logarithmic growth trajectory
(c); a logarithmic spiral was fitted to this trajectory and its Raupian parameters22

calculated. This process was most accurate in the inner jaw elements, whose
dentate margin provided multiple landmarks that allowed the precise fitting of
subsequent images. Estimates were also obtained for the outer jaws and

appendicular claws of Euperipatoides, and the claws and spines of H. sparsa.
Hallucigenia spines demonstrated variability in Raup’s D because they are
sometimes obliquely preserved, so the maximum value was taken as
representative. The implied growth rate of 2.4 6 2.7% in Euperipatoides
sclerites (range 0–8%; measured from five inner and six outer jaw sclerites)
cannot persist throughout the organism’s lifespan, since moulting consistently
occurs every 2 weeks (ref. 38). Either moulting occurs less frequently in wild
populations, the rate of growth varies during ontogeny or the constituent
elements deform slightly during growth.
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Extended Data Figure 2 | Density of scaly ornament in a hallucigeniid spine
with three constituent elements (Geological Survey of Canada 136958).
a, Complete spine, showing regions of enlargement; b, apex of spine showing
tips of two internal elements; c, margins of two internal elements faintly
visible (dotted lines); density of scales where three elements are superimposed is
0.050 scales per square micrometre; where two elements are superimposed it is
0.039 scales per square micrometre; for a single element it is 0.026 scales per

square micrometre; slight deviation from a 3:2:1 ratio is attributed to decreased
visibility of individual scales in occluded regions; d, up to five scales overlap;
only two could overlap if scales were restricted to the front and back surfaces
of a single element. Transmitted light images from multiple focal planes
combined using CombineZM (A. Hadley). Scale bar, a, 100mm; b, 40mm;
c, 10mm; d, 5 mm.
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Extended Data Figure 3 | Claws of Euperipatoides kanangrensis
(Onychophora). a, b, Secondary electron images of a single claw, separated
into outermost element (a) and inner elements (b), each with ornamented basal
region. c, d, Differential image contrast images of a single claw, separated
into outermost element (c) and inner elements (d). Nomarski interference
contrast accentuates the basal ornament. e–g, Single claw, separated into

innermost element (e) and outer elements (f); pigmented foot tissue only
associated with inner two elements; g, digital superposition of e and f showing
original claw construction. h, Abnormal claw with blunt tip reflected in each
constituent element. Transmitted light images from multiple focal planes
combined using TuFuse (M. Lyons). Scale bar, 100mm.
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Extended Data Figure 4 | Sclerite constitution in other taxa. a, b, Single
constituent element in claws of (a) Nephrotoma spp. (Tipulidae, Hexapoda,
Euarthropoda) and (b) Eutardigrada (species indeterminate). Nomarski
interference contrast. c–e, Small carbonaceous fossils with stacked constituent
elements, interpreted as appendicular sclerites of total-group onychophorans
(images courtesy of T. Harvey): c, d, from the basal mid-Cambrian (Stage 5)
Kaili biota39; e, articulated pair from the mid- to late Cambrian Deadwood

Formation, each claw comprising two constituent elements. f, Three
appendicular sclerites (claws: arrowed) from a single appendage of Aysheaia
pedunculata from the mid-Cambrian Burgess Shale (ROM 63052), each
comprising a single element. Transmitted light images from multiple focal
planes combined using TuFuse (M. Lyons) and CombineZM (A. Hadley).
Scale bars, 100mm.
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