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Solving Nine Men’s Morris

RALPH GASSER

Abstract. We describe the combination of two search methods used to
solve Nine Men’s Morris. An improved retrograde analysis algorithm com-
puted endgame databases comprising about 1010 states. An 18-ply alpha-
beta search then used these databases to prove that the value of the initial
position is a draw. Nine Men’s Morris is the first non-trivial game to be
solved that does not seem to benefit from knowledge-based methods.

1. Introduction

In recent years, a number of games have been solved using computers, includ-
ing Qubic [Patashnik 1980], Connect-4 [Allen 1989; Allis 1988] and Go-Moku
[Allis et al. 1993]. All these games were solved using knowledge-based methods.
These methods are successful because all these games have a low decision com-
plexity [Allis et al. 1991], that is, the right move is often easy to find. Not all
games profit to the same extent. For instance, in checkers, chess and go a multi-
tude of moves often seem fairly equal. Brute-force search is often the most viable
means of playing or solving this type of game. This observation is supported by
the fact that the best programs for both chess [Hsu 1990] and checkers [Schaeffer
1992] rely heavily on search.

Search methods are not only useful for playing games: they are ubiquitous
in many aspects of problem solving. Some of these algorithms are among the
best understood in computer science. However, not all search algorithms are
equally well studied; in particular, exhaustive search in large state spaces is still
in its infancy. Partly this is because the hardware has only recently progressed
to a point where interesting problems are within reach. Due to the continual
improvement in hardware and software, search methods must be constantly re-
evaluated and adapted to new system designs [Stiller 1991; Lake 1992]. Games
are ideal for gaining expertise in this area, because they are played in a restricted
domain, where the problem difficulty can be controlled and the effectiveness of
the approach measured.
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We describe the combination of two brute-force search methods used to solve
Nine Men’s Morris. An improved retrograde analysis algorithm computed end-
game databases comprising about 1010 states. An 18-ply alpha-beta search then
used these databases to prove that the value of the initial position is a draw.
Nine Men’s Morris is the first non-trivial game to be solved that does not seem
to benefit from knowledge-based methods.

2. Nine Men’s Morris

Nine Men’s Morris is one of the oldest games
still played today [Bell 69]. Boards have been
found on many historic buildings throughout the
world. The oldest (about 1400 BC) was found
carved into a roofing slate on a temple in Egypt.
Others have been found as widely strewn as Cey-
lon, Troy and Ireland.

The game is played on a board with 24 points
where stones may be placed. Initially the board
is empty and each of the two players hold nine
stones. The player with the white stones starts.

During the opening, players alternately place
their stones on any vacant point (Figure 1).
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Figure 1. After the opening.

After all stones have been placed, play proceeds to the midgame. Here a
player may slide one of her stones to an adjacent vacant point. If at any time
during the game a player succeeds in arranging three of her stones in a row—this
is known as closing a mill—she may remove any opponent’s stone that is not
part of a mill. In Figure 2, if White closes a mill in the opening by playing to
b6, she can now remove Black’s stone on a1, but not the one on d2.

As soon as a player has only three stones left, the endgame commences. When
it is her turn, the player with three stones may jump one of her stones to any
vacant point on the board.
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Figure 2. After b6, White removes a1 or b4.
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Figure 3. Black has no moves.
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The game ends in the following ways:

• A player who has less than three stones loses.
• A player who cannot make a legal move loses (Figure 3).
• If a midgame or endgame position is repeated, the game is a draw.

Two points are subject to debate among Nine Men’s Morris enthusiasts. The
first hinges on the observation that in the opening it is possible to close two
mills simultaneously. Should the player then be allowed to remove one or two
opponent’s stones? Our implementation only allows one stone to be removed.
The second point concerns positions where the player to move has just closed a
mill, but all the opponent’s stones are also in mills. May she then remove a stone
or not? In our implementation she may remove any stone. It seems unlikely that
either of these rule variations affect the value of the game.

3. Solving Nine Men’s Morris

Nine Men’s Morris can be divided into two distinct phases. The opening,
where stones are placed on the board and the mid- and endgame, where stones are
moved. These two phases lead to a state space graph with specific characteristics.
Most importantly, the opening phase induces an acyclic graph, whereas in the
mid- and endgame phase move cycles can occur. Another difference is the search
depth. The opening is clearly defined to be 18 plies deep for every path; by
contrast, the time spent in the mid- and endgame depends on the chosen moves.

These different properties suggest the use of different search methods. We
decided to use retrograde analysis to construct databases containing all mid-
and endgame positions. This seems advantageous because retrograde analysis
handles cycles more efficiently than forward search. In addition the opening
search will require the values of many positions. Due to the interdependencies,
this probably means computing the value for all or nearly all mid- and endgame
positions, an ideal task for retrograde analysis.

Computing further databases for the opening is not reasonable, because their
size would be even larger than for the mid- and endgame. In addition, because
the value of only a single position (the empty board) is of interest in the opening
phase, no intermediate position values must be stored. Alpha-beta search [Knuth
and Moore 1975] is ideal for this type of problem.

4. Mid- and Endgame Databases

4.1. State space. To see if applying retrograde analysis is feasible, we must
construct an appropriate state space. Each of the 24 board points can either be
unoccupied or occupied by a black or white stone, so an upper bound for the
state space size is 324, or approximately 2.8 × 1011, states. This rather loose
bound can be improved by taking the following game constraints into account:
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• players have three to nine stones on the board,
• there are unreachable positions, and
• the board is symmetrical.

The first observation allows us to split the
state space into 28 subspaces. Figure 4 shows
these subspaces and their dependencies; thus
the 7-5 positions (seven stones against five) can
only be computed after the values for all 7-4 and
6-5 positions have been determined.

Not all states in these subspaces are reach-
able in the course of a legal game. For example,
if one player has a closed mill, her opponent
cannot have all nine stones on the board (Fig-
ure 5). Similar considerations can be made if
two or three closed mills are on the board. The
9-9, 9-8, 9-7, 9-6, 9-5, 9-4, 9-3, 8-8, 8-7 and 8-6
subspaces contain such unreachable states.

The subspaces also contain many symmetri-
cal positions. In general there are five symme-
try axes (Figure 6). In the special case of the
3-3 subspace, there are additional symmetries,
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Figure 4. Database dependencies.

because all rings are interchangeable. Since one of these five axis is redundant—
for example, π4 = π1 ◦ π2 ◦ π3, we can expect about a 16-fold reduction in the
state space size from the symmetries.

Taking all three reductions into account leaves a total of 7,673,759,269 states
in the mid- and endgame phase.

For such large state spaces, a memory-efficient storage method is needed. The
standard method used in retrograde analysis is to construct a perfect hash func-
tion, which, given a state, returns a unique index. This makes it unnecessary
to store the state description along with the state value, because the state de-

Figure 5. An unreachable state.
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Figure 6. Symmetry axes.
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scription is encoded in the index. Ideally the perfect hash function ranges from
0 to the number of states minus 1, and can be computed rapidly. Constructing
such a hash function can be difficult. Therefore, as rapid computation is critical,
it seems reasonable to loosen the requirements and allow hash functions with
slightly larger ranges. This means that some unused entries are included in the
file, but this will not impede the computation as long as the file size does not
become too large. The hash function we decided to use maps the 7,673,759,269
states into a range of 9,074,932,579 indices.

4.2. Calculation. The first step in retrograde analysis is to initialize all easily
recognizable won and lost positions. In Nine Men’s Morris there are two types
of terminal positions, both of which are losses for the player to move: positions
where the player cannot move, and positions where the player has less than three
stones. Therefore, if the player to move is blocked, we mark that state as a loss.
We would also like to mark positions where the player to move has less than
three stones as losses, but because we eliminated these positions from the state
space, we mark positions where the player to move can close a mill and reduce
the opponent to two stones as wins. We also mark positions where the player
with three stones loses in two plies. Such positions are easy to recognize and
belong to one of the following categories:

• the opponent has two open mills with no stones in common;
• the opponent has two open mills and the player to move cannot close a mill;

or
• the player to move must remove a stone blocking an opponent’s mill.

After the initialization has set these wins and losses, it sets the value of all
remaining positions to a draw. An iterative process then determines the real
values of these “drawn” states. As a first step, consider how wins and losses are
propagated in two-player games. If a position is lost for the player to move, all
the position’s predecessors can be marked as wins for the opponent. Similarly,
if a position is won for the player to move, all predecessors are potential losses
for the opponent. They are only true losses if all of their successors are also won
for the player (Figure 7).

It would be inefficient to check all successors to determine if a position is a
loss or not. This can be avoided by using a Count field for each state, to store
the number of successors that have not yet been proved a win for the opponent.
Then, instead of checking all successors every time a position occurs, we simply
decrement Count. When it reaches zero, all successors have been proved wins
for the opponent, and the position can be marked a loss. The cost of this
improvement is the additional memory used for the Count array.

Since we compute the depth of the wins and losses, one byte is used to store
the value of each state, in a Val array. In practice the Count and Val array
can use the same memory, since the two pieces of information are never needed
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Figure 7. Determining predecessor values. Position A is won for White (to play)

since some successor, say B, is lost for Black. Position C is lost for Black since

all of it successors D are won for White.

simultaneously: the Count array is only needed while a position’s value may still
be drawn. In other words, the Count and Val values are stored as a “union”; see
Table 1.

Table 2 shows the algorithm by which we determine the value of all states.
The first database was computed in 1989 on a Macintosh IIx, the last on a

Macintosh Quadra 800 in 1993. In between, the algorithm was improved and
ported to various machines. These include a Cray X-MP/28, a DEC VAX 9000-
420, an IBM RS/6000, a 16-Transputer (T805) system, a 30-Processor MUSIC
system (Motorola DSP 96000) and a DEC 3000 (Alpha). Only the DEC 3000
showed better performance than the Apple Macintosh. There are various rea-
son for this surprising result. Many machines executed our code at low priority
because of their multi-user environments. Also, many of the more powerful ma-
chines are optimized to deal with floating-point and vector operations, whereas
their integer performance is not as highly tuned. The parallel machines addi-
tionally suffered from insufficient main memory and no direct disk access. This
made the Macintosh front-end an I/O bottleneck.

Val entry

0 = loss in 0
1 = win in 1
2 = loss in 2
3 = win in 3

. . . . . .

Count entry

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

252 = “draw” (3 successors unknown)
253 = “draw” (2 successors unknown)
254 = “draw” (1 successor unknown)
255 = “draw” (all successors unknown)

Table 1. All known information for a position fits in one byte.
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Backupable← [ ]; {initialization}
for all states do

Val[state]← Initialize(state);
Count[state]← 0;
if Val[state] 6=draw then

Put(state,Backupable);
end; {if}

end; {for}
while not Empty(Backupable) do {iteration}

state← GetState(Backupable);
for all Predecessors(state) do

if Val[pred] = draw then
if Val[state] = loss then

Val[pred]← win;
Put(pred, Backupable);

else {Val(state) = win}
if Count[pred] = 0 then

for all Successors(pred) do {count successors}
Count[pred]← Count[pred]+1;

end; {for}
end; {if}
Count[pred]← Count[pred]−1;
if Count[pred] = 0 then

Val[pred]← loss;
Put(pred,Backupable);

end; {if}
end; {if}

end; {if}
end; {for}

end; {while}

Table 2. This algorithm shows how the initialization and iteration determine the

value of all states. For simplicity, we don’t show the merging of the Count and

Val arrays, nor the computation of the depth of the wins and losses.
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4.3. Verification. Computations of this size almost inevitably contain some er-
rors. The most common cause are software bugs in the retrograde analysis code,
the system software, or the compiler. Hardware problems, such as disk errors
or memory glitches, occur as well. For these reasons, the databases were veri-
fied on a cluster of 30 Sun Sparcstations [Balz 1994]. This took approximately
three months. The verification found half a dozen hardware errors. Addition-
ally, an error was found in the Nine Men’s Morris code, which allowed some
positions to be classified as draws instead of losses. These errors induced further
inconsistencies, so that thousands of positions had to be corrected.

The verification only checked that the wins, losses and draws were consistent.
The depth information was not checked, because the additional memory needed
to store the databases increases the disk I/O and slows the verification dramati-
cally. Presently, we are running a depth verification algorithm on a new parallel
machine which may enable the complete verification. Even if depth verification
finds no additional errors, how can we ascertain that none exist? A basic idea
behind the verification is to use a different algorithm (forward search) and in-
dependent code to verify the data. But there are still some procedures common
to both algorithms, such as the file indexing function or the initial state values.
Ideally, our results should be independently verified.

5. Opening Search

Now that all mid- and endgame position values are computed and stored
in databases, the value of the initial position can be found with a simple 18-
ply alpha-beta search. In principle, the 18-ply opening can lead to any of the
databases except 8-3, 9-3 and 9-4. This comprises approximately 9 GBytes of
data. Since our machine only had 72 MBytes, accessing database values becomes
an I/O bottleneck. The following methods were applied to alleviate this problem:

• reduce the size of the databases,
• reduce the number of used databases, and
• reduce the number of disk accesses.

Because no cycles occur in the opening, it is not necessary to compute the depth
of the win or loss. Therefore a first idea is to reduce the size of the databases
by packing five positions into one byte (35 = 243). However, in order to further
minimize storage requirements, we decided to pack eight states into a byte.
Although we then have only one bit per state, this is sufficient to compute the
game-theoretic value if we do two alpha-beta searches. In the first search we
determine if the initial position is won or not. If it is not won, we do a second
search (with different databases) to determine if the initial position is lost or
not.

While this reduces the size of the databases by a factor of eight, it still leaves
files totaling about 1 GByte. To Nine Men’s Morris players, it is clear that most
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Opening database

Transposition table

8 plies

16 plies

9-9 9-8 8-8

18 plies

Figure 8. The opening search.

reasonable games will result in at most one or two mills being closed during the
opening. For this reason we decided to try to prove the draw using only the
9-9, 9-8 and 8-8 databases, a total of 115 MBytes. It is then no longer possible
to compute the correct value for every position. But in a position with White
to move, we can compute an upper bound on the correct value by assuming all
positions not in the databases are won for white and a lower bound if we assume
all such positions are won for black. To prove that the game-theoretic value is a
draw, we must show that White has both an upper and lower bound of a draw.

We inserted a transposition table at the 16-ply level to further reduce the
number of database accesses. Normally, a transposition table includes positions
from any ply, possibly even giving priority to those higher up in the tree. We
chose to include only the 16-ply positions because it is far more important to
reduce disk I/O than the total number of nodes in the tree. See Figure 8.

Finally, all positions that were visited by the alpha-beta searches at the 8-ply
level were stored in an intermediate database. This allows games to be played in
real time, because for the first 8 plies only a search to the intermediate database
must be performed. Here is the number of 8-ply positions alpha-beta visited in
each of the two searches:

proved not proved
White at least draws 15,501 12
White at most draws 4,364 29
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Figure 9. Black to move.

Loss in 26 plies.

Figure 10. White to move and win.

Mill closure in 187 plies.

We differentiate between positions that could be proved to be at least (or at
most) a draw and those that could not. This does not mean the positions are
lost (or won); only that using three databases was insufficient to show otherwise.

Of the approximately 3.5 million positions at the 8-ply level, the table shows
that only 19,906 were evaluated. The time for a node evaluation ranged from 2
seconds to 15 minutes. The total run-time was about three weeks on a Macintosh
Quadra 800. Examining the table, one might be inclined to assume that most
positions are drawn. This must not be the case; perhaps the move-ordering
heuristic was simply successful in selecting drawish moves.

6. Results

6.1. Database Positions. Sifting through the final databases in search of “in-
teresting” positions is a daunting task. Since we have no real intuition about
what makes a position interesting, we decided to gather results in a more statis-
tical fashion. The next two figures show examples of positions with long winning
sequences. The 3-3 position in Figure 9 is an example of the longest sequence
in that database. The 8-7 position in Figure 10 shows a won position with the
longest move sequence until a mill is closed.

Figure 11 shows the percentage of positions that are won for the player to
move. They are grouped according to the number of stones on the board, and
normalized accordingly. The figure shows that the win probability strongly cor-
relates with the stone difference: more stones are better. There seems to be a
cut-off at about seven stones, so that having less makes winning difficult. The
statistics also show that the 3-3 database seems to be special. This is probably
because both players are allowed to jump, essentially making this a different
game. One must keep in mind that these statistics can be misleading. For in-
stance, in the 4-3 database, if the player with four stones is to move, it seems she
has a small chance of winning. Upon closer examination of the database, we see
that all wins are trivial positions where the player can close a mill immediately.
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Figure 11. Win percentages for the player to move, as a function of the initial

number of stones. The highest percentage, for 3-3 games, is about 83%. The

absence of a column (as for 3-9 games) indicates a zero percentage.

These positions will not occur in a real game, so actually the player with three
stones has a small advantage. Similar reservations apply to all these databases.
It is not clear how the realistic positions can be filtered from the rest.

6.2. Opening Positions. It is now also possible to examine some common
opening positions. Between equally matched players, games tend to be very
drawish during the opening, that is, most possible moves result in a draw, as
for the example in Figure 12. However, occasional blunders do occur. Figure 13
shows a position that occurred in a match our Nine Men’s Morris program played
against Mike Sunley (British Champion) at the Second Computer Olympiad in
London, 1990. The program, which was then still based on heuristics, won four
games and drew two.

Figure 12. Opening position with black to move. Any move leads to a drawn

position.
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9

Figure 13. White 9 loses.

5

Figure 14. White 5 loses.

Since the initial position is a draw, a natural question to ask is how soon a
mistake can be made. The position in Figure 14 shows one of the earliest losing
moves we have found. This positions refutes a common misconception, namely
that closing mills is a desirable opening strategy. White follows this strategy with
her first two moves, while Black ignores the potential mill threats. Subsequently,
White’s third move loses even though she will now easily be able to close two
mills during the opening.

7. Conclusion

Nine Men’s Morris is a draw. This result was achieved using a combination of
alpha-beta search and endgame databases. Our new efficient retrograde analysis
algorithm allowed the 1010 database states to be solved on a desktop computer.
This makes Nine Men’s Morris the first classic board game to be solved that
does not profit from knowledge-based methods.

The expertise gained in the management and use of large, pre-computed
databases can also be applied to other problems. Many games and puzzles
profit from combining databases with search, for instance Awari, Checkers, the
15-Puzzle or Rubik’s Cube. Since games and puzzles are a restricted problem
domain, future work will examine how more general optimization problems can
be made amenable to this approach.
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