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Introduction. If G is a semi-group and p a metric on G, p will be

called left invariant if p(gx, gy) =p(x, y) whenever {g, x, y} CG, right

invariant if always p(xg, yg) =p(x, y), and invariant if it is both right

and left invariant. If T is a topological space and p a metric on T,

we shall say that T admits p if the p-topology of T agrees with its

original topology. G. Birkhoff [2]2 and Kakutani [5] proved that a

Hausdorff group admits a left invariant metric if and only if it satis-

fies the first axiom of countability. §1 below contains some remarks on

invariant metrics,3 including a slight sharpening of the theorem just

mentioned.

A topological space will be called topologically complete if it admits a

metric under which it is complete. The principal result of this note

(2.4) is that if G is a Hausdorff group which is abelian, metrizable, and

topologically complete, then G admits an invariant metric under which

it is complete. As applied to linear metric spaces, this answers affirma-

tively a question of Banach [l, p. 232].

I am indebted to Professor Kakutani for pointing out an oversight

in my original version of this note.

1. Invariant metrics.
(1.1) If G is a group with left invariant metric p and neutral ele-

ment e, then p(g~1, e) =p(g, e) whenever gEG.

(1.2) Suppose G is a group with left invariant metric p. Then the

following statements are equivalent: (a) p is right invariant; (b) p is

invariant under inversion; (c) p tí invariant under every inner auto-

morphism of G.
Proof, (a) implies (b): p(x~\ y~1)=p(x~1x, y~1x)=p(e, (x-1y)-1)

=p(e,x~1y)=p(x, y).

(b) implies (c): p(gxg~\ gyg~l) = p(xg~\ yg-l)=p(gx~\ gy-1)

=p(x~\ y-1) =p(x, y).

(c) implies (a): p(xg, yg) =p(gxgg~\ gygg'1) =p(gx, gy) =p(x, y).
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(1.3) Suppose G is a semi-group with metric p. Then invariance of p

implies

($) p(ab, xy) 5= p(a, x) + p(b, y) whenever {a, b, x, y\ C.G.

If G is a group, invariance of p is equivalent to ($>).

Proof. If p is invariant, then

p(ab, xy) ^ p(ab, xb) + p(xb, xy) = p(a, x) + p(b, y).

If ($) holds and G is a group, then

p(gu, gv) g p(g, g) + p(u, v) = p(u, v) = p(g-xgu, g~lgv) ^ p(gu, gv),

so p is left invariant. A similar argument shows that p is right in-

variant and completes the proof.

(1.4) Suppose G is a semi-group with invariant metric p, (G*, p*)

is the metric completion of (G, p). Let multiplication in G* be defined by

termwise multiplication of Cauchy sequences. Then G* is a semi-group,

p* is invariant on G*, and the natural embedding of G in G* is an iso-

morphism as well as an isometry. If G is a group, then so is G*.

Proof. As usual, two Cauchy sequences ua and va of G are said to

be equivalent («a~i>a) if lim,- p(«», z>0=0. The elements of G* are

equivalence classes of Cauchy sequences, with p*([x„], [ya])

= lim¿ p(xi, yi). Now suppose xa, x'a, ya, y'a are Cauchy sequences

with xa~x'a and ya~yá. For each n let z„ = xnyn and z'n = x'ny'n. From ($)

above it follows that za and z'a are Cauchy sequences, with za~za. Thus

we can define multiplication in G* by [xa][ya]= [(xxyx, x2y2, • • •)]

and G* becomes a semi-group in which G is isometrically and iso-

morphically embedded. It is easy to see that p* is invariant on G*.

And if G is a group, the fact that G* is a group follows from in-

variance under inversion of p. The proof is complete.

(1.5) Suppose G is a group having a Hausdorff topology. Then (for

t = l, 2) the statements (ai) and (hi) below are equivalent:

(ai) G admits a left invariant metric;

(bi) G is first countable at e, the group operations are continuous

at e, and yg\gEG is continuous for each y EG;

(a2) G admits an invariant metric;

(Joi) G is a Hausdorff group which admits at e a countable complete

system of neighborhoods, each invariant under every inner automorphism

ofG.
Proof. Suppose first that (ai) holds. Then two of the assertions

of (bi) are obvious. Continuity at e follows for inversion from (1.1)

and for multiplication from the inequality,

p(xy, e) = p(y, ar1) = P(y, e) + p(e, x~l) = p(y, e) + p(x, e).
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Now suppose (a2) holds. That G admits at e a system of neighbor-

hoods of the specified type follows from (1.2), as does the fact that

inversion is continuous. Continuity of multiplication follows from

($) of (1.3).
That (b¿) implies (aO (for t = l, 2) follows without difficulty from

a general theorem of Kakutani [ó] and also from an examination of

the proof of Birkhoff [2]. In each case there is a countable complete

system Va of neighborhoods of e such that for all k, Vk= Vï1 and

FtCF*_i. Assuming (b2), these can be taken invariant under every

inner automorphism of G. Then (following Birkhoff) let 8(x, y)

= inix-1vGvk (1/2)* and p(x, y) =infI=„0,Un=„E*=i S(«*-i. «*)• In both

cases p is a left invariant metric compatible with the topology of G,

and under (b2) p is actually invariant.

2. Complete invariant metrics. An argument essentially the same

as that in (2.1) and (2.2) below is used by Mazur and Sternbach

[8, p. 50 ] to prove that a G¡ linear subset of a Banach space must

actually be closed.
(2.1) Suppose S is a second category topological group and X is a

subgroup of S. Then S — X is either empty or of second category in S.

Proof. Suppose y ES—X. Then yXES—X, and if S—X is of first

category, so is yX; but then so is X, and hence S itself, a contradic-

tion completing the proof.

(2.2) Suppose S and X are as in (2.1), and X is a dense G¡ subset

of S. Then X = S.
Proof. We have X = Ç\fXi, where each Xn is a dense open set. But

then each set S—Xn is closed and nowhere dense, so S — X (being

the union of these sets) is of first category. The desired conclusion

follows from (2.1).
(2.3) Suppose G is a group with invariant metric p. Then if the

space (G, p) tí topologically complete, G is actually complete under p.

Proof. Let (G*, p*) be the metric completion of (G, p) and recall

the facts stated in (1.4) : (G*, p*) is a topological group in which (G, p)

is isomorphically and isometrically embedded. Sierpinski has proved

[9] that a topologically complete metric space is a Gs set relative to

every metric space in which it is topologically embedded. Thus from

(2.2) it follows that G (as embedded in G*) is identical with G*,

and hence G is complete under p.

Neither (1.4) nor (2.3) is valid if p is assumed merely to be left-

invariant. For let G be the group of all homeomorphisms of [O, l]

onto itself, with topology supplied by the metric d(u, v)

= supXQio,i]\u(x)—v(x)\. Then G is a Hausdorff group and thus

admits a left-invariant metric.  However, Dieudonné   [4]  has ob-
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served that G cannot be isomorphically embedded in a complete

topological group. (I am indebted to Dr. Ernest Michael for this

reference.) It is further easy to see that G is a G¡ set in the set of all

continuous monotone functions on [0, l], and that the latter set is

complete in the metric d. Thus G is topologically complete.

From (2.3) and (1.5) we obtain:

(2.4) Suppose G is a Hausdorff group whose neutral element admits

a countable complete system of neighborhoods, each invariant under

every inner automorphism of G. Then G admits an invariant metric,

and if topologically complete must be complete under every invariant

metric.

Dr. Michael has pointed out that (2.4) implies:

(2.5) The space of a metric dbelian group is topologically complete

if and only if it is complete in the uniformity determined by the neigh-

borhoods of the neutral element.

A corollary of (2.4) is:

(2.6) Every complete linear metric space can be metrized as a (com-

plete) space of type (F).

This answers affirmatively a question of Banach [l, p. 232]. The

question has also been considered by G. G. Lorentz [7]. His principal

results are reduced by (2.6) to previous results of other authors.

Another consequence of (2.4) is:

(2.7) A normed linear space is a Banach space if and only if it is

topologically complete.
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