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THE LORD OF THE NUMBERS, ATLE SELBERG.
ON HIS LIFE AND MATHEMATICS

NILS A. BAAS AND CHRISTIAN F. SKAU

The renowned Norwegian mathematician Atle Selberg died on 6 August, 2007,
in his home in Princeton. He was one of the giants of the twentieth centuries
mathematics. His contributions to mathematics are so deep and original that his
name will always be an important part of the history of mathematics. His special
field was number theory in a broad sense.

Atle Selberg was born on June 14, 1917, in Langesund, Norway. He grew up near
Bergen and went to high school at Gjøvik. His father was a high school teacher
with a doctoral degree in mathematics, and two of his older brothers, Henrik and
Sigmund, became professors of mathematics in Norway. He was studying mathe-
matics at the university level at the age of 12. When he was 15 he published a little
note in Norsk Matematisk Tidsskrift.

He studied at the University of Oslo where he obtained the Cand. real. degree
in 1939, and in the autumn of 1943 he defended his thesis, which was about the
Riemann Hypothesis. At that time there was little numerical evidence supporting
the Riemann Hypothesis. He got the idea of studying the zeros of the Riemann
zeta-function as a kind of moment problem, and this led to his famous estimate of
the number of zeros. From this it followed that a positive fraction of the zeros must
lie on the critical line. This result led to great international recognition.

When Carl Ludwig Siegel, who had stayed in the United States, asked Harald
Bohr what had happened in mathematics in Europe during the war, Bohr answered
with one word: Selberg.

During the summer of 1946, Selberg realized that his work on the Riemann zeta
function could be applied to estimate the number of primes in an interval. This
was the beginning of the development leading to the famous Selberg sieve-method.

Received by the editors April 14, 2008 and, in revised form, May 8, 2008.
2000 Mathematics Subject Classification. Primary 01A60.

c©2008 Nils A. Baas and Christian F. Skau

617

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



618 NILS A. BAAS AND CHRISTIAN F. SKAU

In 1947 Selberg went to the Institute for Advanced Study in Princeton in United
States where he continued the work on his sieve-method. In the spring of 1948
he proved the Selberg Fundamental Formula which later in 1948 led to an elemen-
tary proof of the Prime Number Theorem. This was a sensation since even the
possibility of an elementary proof had been questioned by G. H. Hardy and other
mathematicians.

For these results he was awarded the Fields Medal in 1950—at the time the
highest award in mathematics.

He became a permanent member of the Institute for Advanced Study in 1949
and a professor in 1951, a position he held until he retired in 1987.

In the early 1950s, Selberg again produced a new and very deep result, namely
what is now called the Selberg Trace Formula. Selberg was inspired by a paper by
H. Maass on differential operators, and he realized that in this connection he could
use some ideas from his Cand. real. Thesis. The Selberg Trace Formula has had
many important implications in mathematics and has also been applied in theoret-
ical physics, but Selberg was never interested in the wide range of applications. In
his Trace Formula, Selberg combines many mathematical areas like automorphic
forms, group representations, spectral theory and harmonic analysis in an intricate
and profound manner. The Selberg Trace Formula is considered by many mathe-
maticians to be one of the most important mathematical results in the 20th century.
His later works on automorphic forms led to the rigidity results of lattices in higher
rank Lie groups.

In his later years he continued to work on his favourite subjects: sieve-methods,
zeta-functions and the Trace Formula. In 2003 Selberg was asked whether he
thought the Riemann Hypothesis was correct. His response was: “If anything
at all in our universe is correct, it has to be the Riemann Hypothesis, if for no
other reasons, so for purely esthetical reasons.” He always emphasized the impor-
tance of simplicity in mathematics and that “the simple ideas are the ones that will
survive”. His style was to work alone at his own pace without interference from
others.

In addition to the Fields Medal in 1950, Selberg received the Wolf Prize in 1986
and then in 2002 an honorary Abel Prize prior to the regular awards. He was also
a member of numerous academies.

Atle Selberg was highly respected in the international mathematical community.
He possessed a natural and impressive authority that made every one listen to him
with the greatest attention.

He loved his home country Norway and always spoke affectionately of Norwegian
nature, language and literature. In 1987 he was named Commander with Star of
the Norwegian St. Olav Order.

In November 2005 we—Nils A. Baas and Christian F. Skau—visited Selberg at
the Institute for Advanced Study in Princeton and interviewed him at length about
his life and mathematics. The interview took place on 11, 14 and 15 November
in Selberg’s office in Fuld Hall. One part is an audio tape, but most of it is a
videotape. The interview took place in Norwegian, and it has all been transcribed in
Norwegian. The video tape is more than six hours long. A short 20 minute version
with English subtitles was shown at The Selberg Memorial at The Institute for
Advanced Study on 11 January 2008. A longer version at about an hour was shown
on Norwegian Television on 13 October 2007. The (edited) complete interview
will appear in Norwegian in four parts in volume 56 (2008) of Normat (Nordisk
Matematisk Tidsskrift); the first two parts have already appeared.
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We have been asked to provide a translation of some of the most interesting parts
of the interview. Here we have made a selection. Some editing and reorganizing
have been necessary but without changing anything essential.

Of special interest is Selberg’s personal account of the events around the el-
ementary proof of the Prime Number Theorem. Various accounts of this have
appeared in the literature.∗ In an extended version of the translation more de-
tails of Selberg’s account may be found. In this extended version Selberg refers
to two letters by Hermann Weyl to Nathan Jacobson who was the editor of the
Bulletin of the American Mathematical Society at the time. All this can be found
at http://www.math.ntnu.no/Selberg-interview/. (Confer also Normat 56#2
(2008).) Here also is available the complete transcription of the interview in Norwe-
gian, in addition to some photos and material in connection with his 90th birthday
and his death.

The front page cover (which is reproduced here on the preceding page) is the
first page of a handwritten letter Atle Selberg wrote to his brother Sigmund, dated
26 September 1948, in which he gives his first written version of the elementary
proof of the Prime Number Theorem. It is written in Norwegian.

The interview

Question. When did you realize that you had a special talent for mathematics?

Well, I will tell you that the first time I remember—we lived then at Nesttun
near Bergen—I must have been 7 or 8 years of age, and we were engaged in playing
some sort of ball game, some boys in the neighbourhood and I. I think it was
what we called “langball”, which is a kind of softball game. During such a game
one often has time to stand and wait and not do anything. Then I often made
mental calculations. I looked at the differences between consecutive squares and
saw that one got odd numbers. I managed to find a proof of that. I did not use
letters or symbols at that time, but by thinking about the squares of the number
and the number plus one I inserted the product of the number and the number
plus one. Then I could easily find the differences on both sides. So I discovered
that by adding consecutive odd numbers I got squares all the time, and I thought
that was somewhat interesting. A little later I found by the same reasoning that,
as we would express it, A2 − B2 equals (A + B) · (A − B). This can be shown of
course by inserting AB between the two squares; then one can see the differences on
both sides. The latter helped me quite a lot in doing mental calculations. One can
simplify a lot of things in this way, especially because squares are easy to remember
a long way upwards.

Question. How would you compare that with Gauss, who as a child was asked by
his teacher to find the sum 1 + 2 + 3 + · · · etc. up to 100?

Yes, yes, that I think was better done. I am not so sure that I would have
thought of something like that. But nobody asked me to add the numbers from 1
to 100.

∗D. Goldfield in Number theory, New York Seminar 2003, edited by Chudnovsky, Chudnovsky
and Nathanson, Springer Verlag Yellow Series.
B. Schechter, My brain is open, Simon & Schuster (1998).
M. de Sautoy, The music of the primes, HarperCollins Publishers (2003).
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Question. Did you tell anyone, or did you discuss this discovery of yours with
your father?

No, I did not do that. The discovery I had made was an interesting experience
that I can remember even today. The regularity I had managed to establish made
a deep impression on me—that it was true in general, and not only in concrete
examples. It was some years later that I began to read a little. My father had
in his relatively large collection of mathematical books also some textbooks from
Denmark. The Danish books were of a higher quality than the Norwegian ones, and
they were clearly written by better mathematicians. I took a look at the Danish
textbooks, and I learned how to solve quadratic equations with one unknown, and
linear equations with several unknowns—by elimination, not with determinants.
Determinants I encountered much later, and I must confess that I did not like
determinants that well, but later I found out that they could be quite useful. Then
I started to read more advanced mathematics. I discovered Störmer’s† lecture notes
in mathematics. My father had a fairly old edition which was hand written. I often
leafed through the book, and I found the formula

π

4
= 1 − 1

3
+

1
5
− 1

7
+ · · ·

which I thought was very strange, because I knew already what π was in connection
with the circle. So I made up my mind to find out how this could be, and I began
to read the book carefully from the start. It was a wonder that I did not give
up because the book started with introducing the real numbers by using Dedekind
cuts. I read through it and I could not comprehend what this should be good
for. I thought I had a pretty clear concept of real numbers, which I thought of
as decimal numbers, perhaps infinite decimals. I must say that Euler undoubtedly
had a clear concept of what a real number was, so there is no reason to think that it
originated with Dedekind. I could not understand the purpose or usefulness of this
introduction of real numbers in Störmer’s lecture notes, but I did read through it.
After I had finished that section of the book the material began to be interesting
to me. Even today I think Störmer’s lecture notes are very good, and it was very
unfortunate, I think, that they were substituted with Tambs Lyche’s‡ textbooks.
In a certain sense, of all the mathematical literature I have read, Störmer’s book is
perhaps the book that has meant most for my mathematical development!

Question. In Störmer’s lecture notes you became acquainted with continued frac-
tions for the first time?

Continued fractions I thought were interesting. Among other things, I found out
that they had some connection with what, for one reason or another, is called Pell’s
equation. In reality it has nothing to do with Pell. André Weil once said that if
something in mathematics gets attached to the name of a person, then the person
in question usually has very little to do with it.

†Carl Störmer (1874–1957), Norwegian mathematician, professor in mathematics at the Uni-
versity of Oslo, 1903–1946.

‡Ralph Tambs Lyche (1890–1991), Norwegian mathematician, professor in mathematics at
Norges Tekniske Høyskole (NTH), Trondheim, 1937–1949, and at the University of Oslo, 1950–
1961.
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Question. How old where you when you began to read Störmer’s book?

I believe this was the summer before I started in 7th grade, so this must have
been around the time I turned 12 years of age.

Question. You had no benefit of the mathematics education you were exposed to
in school, did you?

I read no geometry. I first encountered the trigonometric functions as power
series, and also through Euler’s formulas for sine and cosine in terms of eix and
e−ix.

Question. But did you later became interested in geometry?

Only if I could have some use for it, so to say. In what I have done later, I
have sometimes needed to use some geometric considerations. I thought it was
easier, however, to deal with symbols, and to use analysis and the like, even when
I was more interested in applications to discrete problems. I was never particularly
interested in general function theory. I liked the special functions—elliptic and
automorphic functions, for example—and especially modular functions and modular
forms and the like. The general analytic function I thought as interesting as the
general real number. One is basically not so interested in that. The proletariat of
real numbers is not so interesting in a way, even though it can be difficult to decide
their nature, whether they are irrational or algebraic, or whatever it can be. For
example, Euler’s constant—nobody yet knows its nature.

Question. What about Riemann surfaces?

Of course, when I read about function theory I encountered Riemann surfaces.
But I was more interested in algebraic Riemann surfaces than the general concept,
and also in uniformization theory and automorphic functions.

Question. Did your interest in automorphic forms coincide with your discovery of
Ramanujan’s works?

Yes, yes, this started with Ramanujan, and that was my first contact with it.
It started not with general automorphic functions or general groups, but with the
modular group and the classical modular function which is associated to it, and
also with subgroups of finite index—these were the objects I studied.

But let me backtrack a little: Originally it was mostly analysis that interested
me, but my brother Sigmund got my interests shifted towards number theory. Not
towards diophantine equations, which had interested my brother in high school
and his early student days. That never appealed to my imagination, but Sigmund
made me aware of a book in my father’s mathematical library which contained a
section on Tchebycheff’s work on the distribution of prime numbers. I read that,
and from that moment I was completely dedicated to this area of mathematics.
It was also Sigmund who brought home Ramanujan’s Collected Works from the
university library in Oslo during one summer vacation. This was some time after
Störmer’s article about Ramanujan appeared in Norsk Matematisk Tidsskrift, a
Norwegian mathematics journal, which I read. All this caught my interest and gave
me the impetus to study and work with discontinuous groups, modular functions
and modular forms, and more general automorphic functions and forms. These
things have always been my main interest later in life.
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My brother Sigmund, in fact, was the only one I discussed mathematics with
while I was in Norway. There were others that were helpful in their way, my
brother Henrik and Professor Störmer, in particular. Henrik typed my first article
when I came to Oslo in 1935 to study. He wrote in the formulas—he thought that
my handwriting was not good enough—and introduced me to Störmer, who then
subsequently presented my article for Videnskapsakademiet in Oslo [the Norwegian
Academy of Science and Letters] the same autumn.

Question. Let us return to the school: Did you follow the usual teaching there?

I read some foreign languages on my own. I had already started to learn English
when I was in elementary school. I had found a copy in my father’s library—
not the mathematical part of it!—of Alice in Wonderland, so I got interested in
the illustrations, and I wanted to translate the text word for word. It was very
cumbersome, of course, but I got an older sister of mine to read and translate the
text for me. It was my oldest sister, Anna, who did this, and it was very kind of
her. I do not know if she was particularly interested in the book herself.

Question. Can you tell us about your first discovery in mathematics that resulted
in a paper?

My first discovery was the thing I mentioned about differences of square numbers!
I read a great deal in various mathematical books, but I did not make any discoveries
that are worth talking about. There were some particular things, like finding a
connection between the integral ∫ 1

0

dx

xx

and the series
∞∑

n=1

1
nn

.

It is a relatively simple proof if one knows about the gamma function and Euler’s
integral for the gamma function. Then it is an easy formula to show.

Question. How old were you then?

That was some years later. I was 15 years old, perhaps.

Question. The solution to that problem was published in Norsk Matematisk
Tidsskrift in 1932, so you were 15 years old?

In 1932? What time of the year? I do not know precisely how long it took before
it appeared. It was not me that sent it to the journal; it must have been my father.
The formula in question can also be generalized.

Question. Can you tell us about the discovery you made when you read about
Ramanujan and Hardy’s work on the partition function?

That was what led to my first article: “Uber einige arithmetische Identitäten”. I
spent quite some time studying Ramanujan’s so-called mock theta functions. There
was an English mathematics professor, G. N. Watson, who had written about such
functions of the 3rd and 5th order, as Ramanujan had called them, and shown
relations between these. Ramanujan had also introduced something that he called
mock theta functions of 7th order. By utilizing some of the things I had shown that
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led to my first article, I managed to prove that these functions had the property
that Ramanujan had defined, namely that they could be approximated by irrational
points, as one may express it, on the unit circle; that is, they could be approximated
as well as a modular form. So I started to take a look at Hardy’s and Ramanujan’s
article on “partitions”, and I found the exact formula. But that turned out to be a
disappointment! You see, I had finished my investigation of the partition function
in the summer of 1937, and when I came to Oslo and looked in Zentralblatt, I found
the review of my first article. On the same page was the review of Rademacher’s
article on the partition function. I had something that Rademacher did not have,
and that was a much simpler expression for the coefficients that appear in the
relevant series. This was undoubtedly something Ramanujan would have done if
he had been at his full power when this work was under way. In fact, the inverse
of the function that generates the partitions is in reality a theta function, and
the root of unity that occurs in the transformation formula in front of the theta
function can always be expressed as a kind of Gaussian sum. If one does that, it
is clear that the series for the partition function is transformed by the inverse root
of unity and conjugation. Doing this and inserting it into the definition of these
coefficients, which are denoted by Aq(n) for term number q in the series for the
partition function P (n), one gets a rather simple series that exhibits the order of
magnitude for these coefficients. The convergence of the series is obvious. But this
is something that in a way should have been done by Hardy and Ramanujan; but I
think that it was Hardy that prevented them from reaching the final result because
Ramanujan had already been on to the right formula earlier in the letters he wrote
from India to Hardy, before he came to England. But at the time their joint article
was written, there is no doubt that Ramanujan was not well. He probably suffered
from vitamin deficiency; he only ate food that was sent to him from India. He had
no fruit or vegetables or other fresh things, only what could be dried. He obviously
suffered from quite serious nutrition deficiency.

Question. Can you tell us about the disappointment you had when you discovered
that Rademacher had got at this result before you?

I made up my mind not to publish this result about the coefficients that I men-
tioned. I thought it was too little to write about. But I decided to do something
else, and what I decided to do was the thing I talked about at the Scandinavian
Mathematical Congress in Helsingfors in 1938 (we said “Helsingfors” at that time,
not “Helsinki”). I gave a short talk lasting 20 minutes. It was the first talk I had
ever given. I met quite a few mathematicians at that congress. For example, I
met Lindelöf there, and Carleman was there. Carleman chaired the session when I
gave my talk and he was very friendly towards me, I must say, and so was Harald
Bohr. What otherwise made a strong impression on me at that congress was a talk
that Arne Beurling gave. It contained quite a few things; for one thing he talked
about his generalized prime numbers and the generalization of the Prime Number
Theorem in that connection. As I told you, it made a deep impression on me. In
1939 I had obtained a stipend, a travel grant, which I intended to use for a travel to
Hamburg in Germany to see Erich Hecke. A talk by Hecke at the ICM congress in
Oslo in 1936 had made a great impression on me. I did not go to listen to his talk
– I did not have enough sense to do that – but I read it later when the Proceed-
ings from the congress was published. That was the article that made the greatest
impression on me of all the articles contained in the Proceedings. So I wanted to
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travel to Hamburg to see Hecke. I had already finished my Master Degree (Cand.
real.) at the University of Oslo during the spring term of 1939, and I had finished
the first part of my mandatory military service by the summer of 1939. As I had
already finished my university studies it made sense to travel to some place to get
new impulses. However, the Second World War started at exactly the time I had
finished my military service that summer, and I decided not to travel to Hamburg.
So instead I travelled to Uppsala in Sweden. I had heard that they had a very good
mathematical library located at the Department of Mathematics.

In Oslo at that time it was very cumbersome. They did not have many mono-
graphs at Blindern, where the Department of Mathematics was located. Math-
ematical journals and the like were scarce, and one had to go to the University
Library which was located at Drammensveien. We were not allowed to go and
look for things ourselves, but we had to look in the catalogue and then order. The
University Library was located very inconveniently for us—it was cumbersome to
get there from Blindern. Things were very much better in Sweden. So I travelled
to Uppsala instead of Hamburg, and thought that Beurling would be there. But it
turned out that he was drafted into military service to work at the cryptography
unit, or “the cipher unit”, as they called it, and where he made some impressive
piece of work during the Second World War. He was very talented in this direction.
I met Beurling only once while I was there. It was on a Sunday when I was sitting
and working alone at the library of the Mathematics Institute, that Beurling came.
I recognized him from the Scandinavian Congress in Helsingfors the year before.
I talked with him, but apart from this encounter he was of no use for me, simply
because he was not there. Nagell was there. He gave some lectures that I attended.
But most of the time I sat at the library, which was very good. They had a lot
of journals there, so I had much better access to the literature than I would have
had in Oslo—I mean easy access to the literature. In Oslo it was, as I said, more
complicated to get hold of these things.

Question. When did you start to get interested in the Riemann hypothesis—was
that at this time?

No, that came later. That was after the military campaign in Norway in 1940.
I also had another disappointment, I must say. When I came to Uppsala, I saw an
article where I learned something that I did not know before. I had no knowledge
about hyperbolic geometry, and, in particular, I had never before heard about the
measure

dx dy

y2
,

which is the invariant measure with respect to the hyperbolic geometry in the upper
half plane. I learned that by looking at one of the German journals that arrived
while I was there. Then it dawned on me that I could do something that I had
already done in not such a good way for the modular group in my Master Thesis,
and I sat down and wrote an article about what today is called the Rankin-Selberg
convolution. If you have two modular forms, you can form a Dirichlet series, where
the coefficients are the products of the corresponding coefficients of the two modular
forms, and which then has a certain functional equation. I gave the proof for the
functional equation and deduced some consequences which I did not give complete
proofs of, but only sketched the proofs. I waited until I had returned to Oslo before
I submitted this manuscript. That was in the spring of 1940. I had come back
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to Oslo at the end of December 1939, and I made up my mind not to go back
to Uppsala since the weather there was rather nasty in winter. It had been quite
pleasant earlier that year, but awfully windy. In the winter when snow falls, it very
quickly turns into slush, so it was difficult to keep one’s feet dry. I did not like the
wind either. Oslo was much better—it had a much better winter climate. Oslo was
colder, but much more pleasant. In Oslo there was more sunshine in the winter,
and it was not so windy. So I made up my mind not to return to Uppsala, but stay
in Oslo in the spring.

It was in March that I saw in Zentralblatt a review of a paper by Rankin. He
had not really defined a convolution of two functions. He only operated with one
function and the squares of the coefficients associated to it, so that was more special
than what I had. He had drawn some consequences of all this. What he had done
had only applications to modular forms of the same weight or automorphy factor,
while the thing I had defined could be used for two forms of different weights. My
idea was somewhat more general than his, but he was unquestionably first. Even
if I had submitted my article to Störmer by sending it from Uppsala, the priority
would nevertheless belong to Rankin. He had, as I could see from his manuscript,
finished his work during spring 1939, while I finished mine in the autumn.

Question. So that was another disappointment?

That was a disappointment, I must say. At this time Siegel came passing through
Oslo on his way to the US.§ He gave a talk that I went to, and it made an impression
on me. I had not gone to his talk at the IMU congress in Oslo in 1936. I did not
have enough knowledge to make the right choices about which talks to go to. I did
hear the talks of others, among them Mordell and Polya, who gave the talks I liked
the best of those I heard. I have to say that my brother Henrik sometimes got me
to help fill up the auditorium, when it seemed that there would be few listeners.
So I listened to certain things that I had absolutely no interest in listening to. On
the other hand, Henrik had been so helpful to me in other ways, so I shall not
complain.

Then the war came to Norway at the beginning of April 1940, and that caused
an interruption of my mathematical research. I did not think about mathematics
while I fought with the Norwegian forces against the German invaders in Gud-
brandsdalen,¶ and also not while I was a prisoner of war at the prison camp at
Trandum. When I finally was released, I travelled to the west coast of Norway,
and later with my family to Hardanger. I wanted to start with something entirely
new. I came across a paper by Polya, “Über ganze ganzwertige Funktionen”, where
Polya had strengthened a result by Hardy a little.

I looked at that paper, and saw that I could sharpen it considerably. So I wrote
a paper that was about entire analytic functions which take integer values when the
argument is a positive integer. Polya had also another work about entire functions
taking integer values when the argument is an integer, that is, either positive or
negative. I could make the same improvement on his result also in this case. I
also wrote a third paper on entire functions that took integer values, but where in
addition the derivatives up to a certain order took integer values.

§Siegel left Norway by ship for the United States just days before the German invasion of
Norway on April 9, 1940.

¶We were also in the upper part of Østerdalen, and ended up near Åndalsnes. I was a soldier
in Major Hegstad’s artillery batallion, and I held him in very high esteem.
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My focus then shifted towards the Riemann zeta function ζ(s). For s real-valued
and greater than 1, Euler had shown the product formula

ζ(s) =
∞∑

n=1

n−s =
∏
pεP

(1 − p−s)−1,

where P denotes the prime numbers. Riemann showed that ζ(s), s = σ + it, could
be extended to a meromorphic function on C, with a simple pole at s = 1, and
with the so-called trivial zeros at −2,−4,−6, · · · . The non-trivial zeros lie in the
critical strip 0 < Res < 1, and Riemann’s conjecture—also called the Riemann
hypothesis—is that all the non-trivial zeros lie on the critical line Res = 1

2 . I began
to think about an idea I had of trying to show the existence of zeros of the Riemann
zeta function ζ(s) on the critical line, by considering certain moments. These were
not moments of the zeta function, but by considering integrals of the real-valued
function that one can get if one uses the symmetric form of the functional equation

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(1 − s

2

)
ζ(1 − s),

where Γ denotes the gamma function, then one gets a function that is real-valued
on the critical line. By considering that function and its various moments, and
then looking at the sign changes of these moments, one can say something about
the zeros on the critical line. I could do something with this, but it did not give as
sharp results as the ones obtained by Hardy and Littlewood. I took a closer look
at their paper, and I understood the reason why they could not get better results
than they got. I discovered, so to say, what was the basic flaw in their approach,
and what they had misunderstood. They made some comments at the end of their
article where they showed that

N0(T ) > constant · T.

Here N0(T ) denotes the number of zeros on the critical line between 0 and T .
Their comments had to do with the variations of the argument, but it became
clear to me that this could not be right. I looked at it, and then I saw what one
should do: one should try to reduce the oscillation, because the real function that
one gets on the critical line is a strongly oscillating function. It has amplitudes
that vary highly—some places the fluctuations are small and some places they are
very large. When they, that is Hardy and Littlewood, considered the integrals of
squares, which they took over short intervals and then computed the average over
a long interval, it will be these regions, where the interval is too short and where
the amplitudes are very large, that will dominate. By doing this, one will not get
information about the average behaviour of the function, but simply what happens
when the amplitude is very large. So I came up with the idea to try to mollify
and normalize, such that the contributions would be somewhat larger where the
amplitudes were small and less where they were large. The first thing I tried to
do was to take a section of the Euler product and then take the square root of the
absolute value. That gave a result which I wrote up as an article, which I sent to
Archiv for Mathematik og Naturvidenskab. Then I started to experiment by taking
instead an approximation to the series that one gets by looking at a section of
the Dirichlet series for (ζ(s))−1/2, reducing the coefficients so they become zero for
n ≥ z, and then use the square of the absolute value of this as the mollifying factor
on the line s = 1

2 + it. It turned out that I got better and better results, until I
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discovered that the best way to reduce the coefficients was to multiply them with
the factor (1 − log n

log z ) for n < z. Then we get∑
n≤z

µ(n)
ns

· log z/n

log z
,

where µ denotes the Möbius function. I then found the correct order of magnitude
for N0(T ) relatively quickly.

It required some work to estimate the sums that occurred in the integrals, but
with some patience I managed to obtain the result that N0(T ) was greater than a
positive constant multiplied with T log T , which is of the right order of magnitude.
I did not try to compute the constant, but if I had been interested in doing that I
would have modified the proof to get a better constant. By modifying in the right
way, I think one can get a constant that will lie somewhere between 1/10 and 1/20.
I have never gone through the computations.

Question. The article you sent to Archiv for Mathematik og Naturvidenskab, did
it have the right term

constant · T log T?

In the course of the proofreading I added this as a footnote. I sent a short note
announcing this result to the Royal Norwegian Society of Sciences and Letters in
Trondheim, which was published in their Proceedings in 1942.

Question. This became your doctoral dissertation?

That was what I chose for my doctoral dissertation. I had already published
quite a few papers at that time, but I had the idea that a doctoral thesis should
be something weighty, not too short, but something that consisted of many pages,
and my thesis was 70 pages long. So I wrote the result up and handed it in as my
doctoral thesis.

Question. This took place during the war when Norway was occupied by the
Germans. Was the result contained in your thesis communicated to Harald Bohr
in Denmark? It was a sensational result, was it not?

It was Störmer that presented it to the Norwegian Academy of Science and
Letters in Oslo, of course. As opponent Harald Bohr was the obvious choice because
there was nobody in Norway that had any real competence in this field. The second
opponent was Skolem, who had struggled with this material, of course. It was not
really his field, it is safe to say. Harald Bohr could not come to Norway at that
time, since Norway was occupied, and Bohr had already fled from Denmark, which
also was occupied by the Germans.

Question. Did he stay in Sweden?

He was in Sweden. His brother, Niels Bohr, was already in the U.S. at that time.

Question. How did the defense go?

Störmer read Harald Bohr’s report. Skolem had improved on my English writing,
and he was right. In fact, I had just recently changed to writing in English. I had
decided not to continue writing in German, even though German was the language I
mastered best. But I had already started to read more articles in English, especially
Hardy and Littlewood.
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Question. Later Norman Levinson got a better result with respect to the zeros on
the critical line. Did he essentially use your methods and techniques?

He did use the mollifying factor that I had introduced, but he used it on another
function. His proof gives a rather good constant, but the problem is that his
method works only for the zeta function and for the so-called L-functions that have
functional equations that are very simple. If one looks at quadratic number fields,
or L-functions that one gets from modular forms that have Euler products, then one
can prove results by my method which one cannot obtain by Levinson’s method.
The reason is that by Levinson’s method one gets the result in terms of a difference
between two things, and the question becomes whether the thing you subtract is
sufficiently small so that something remains. You need a very good estimate for
that, and this you can only get when the functional equation is very simple.

It does not work for the quadratic number fields, for instance. For higher number
fields one cannot prove anything because the functional equation is too complicated
for one to be able to do something about the relevant integrals that one needs to
compute.

Question. You defended your doctoral dissertation in the autumn of 1943?

Yes, that is correct, the defense was in the autumn of 1943.‖

Question. You, as well as other university students in Oslo, were arrested by the
Germans in the autumn of 1943, just after your doctoral defense took place. But
then you were released from prison. Did your working conditions become more
difficult then?

Yes, especially after the university was closed. I was released after I had been
arrested, and the security police told me that I should not go back to Oslo but
to my hometown, Gjøvik, where my parents lived. So I spent the rest of the war
years there and worked there, except on a few occasions when I went away during
vacation time, but then I did not go to Oslo. A couple of times I did travel down
to Oslo to consult the literature at the university library, which was kept open, but
then I needed special police permission to travel.

Question. During that time you continued to work on the Riemann hypothesis—or
did you change subject?

I did extensive work on the zeta function, but I also worked on certain other
problems. I wrote two long papers of about the same size as my doctoral thesis.
One was about the zeta function, and it dealt with possible zeros off the critical line.
The other treated the corresponding problems for Dirichlet’s L-functions, but not
precisely the same problem, because that I thought was too trivial, but one could
make analogies. There was an English mathematician, Paley, who had started to
consider something that he called “k-analogues”. If one considers all L-functions
that belong to the module k, then there is a certain analogy with what one has for
a single function if one looks at its behaviour when the imaginary part varies on the
critical line. So I wrote up some of these analogies, and I improved some of Paley’s
results and I made use of these improvements. They were sufficiently sharp so I

‖The defense took place October 22, 1943. The University of Oslo was closed by the Germans
on November 30, 1943.
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could make analogies to other results, to those that I had obtained in my doctoral
thesis. If

h =
ϕ(k)
log k

,

where ϕ(k) is a function of k that tends to ∞ when k tends to ∞, and |T | < ka,
where a is a certain positive constant, then “almost all” L-functions belonging to
the module k have a zero on the line s = 1

2 + it in the interval T < t < T + h. This
in turn leads to quite a number of results which I obtained later about the value
distributions of the L-functions, and also about the value distribution of the zeta
function both on and in the neighbourhood of the critical line.

Question. Did you have a new and original way to look at the zeta function, and
that by this you succeeded in proving your remarkable results?

Is it true that nobody else had thought about introducing a mollifying factor in
this way. Something like that had been used in connection with the study of zeros
outside the critical line—this had been done by Bohr and Landau—but it really
was not that interesting. It gave weaker results. There was a Swede, Fritz Carlson,
who proved the really first “density” results about zeros of the zeta function outside
the critical line. He used a section, that is, a finite partial sum, of the Dirichlet
series for (ζ(s))−1, where one had the Möbius function µ(n) as coefficients up to a
certain cut-off bound, and then multiplied this with the zeta function. This forces
it to lie fairly close to 1 on average when the real part of the variable is greater
than 1/2. So Carlson was able to prove some important results about this, and
they were the first so-called “density” results.

There was nobody who had tried to do anything on the critical line itself, that is
when the real part equals 1/2. Firstly, it is considerably more difficult, and secondly,
I guess that nobody thought that it would be particularly useful. I have to say that
I understood fairly soon after I started to look into this that a mollifying factor
could be very effective. It turned out that it could be even more effective than I
initially thought, because I really had not thought that I would be able to obtain
the sharp result that I actually got when I obtained the right order of magnitude
for the zeros on the critical line. I had not believed that the method would lead
so far. It turned out that I did not need to experiment very long before I found
the right mollifying factor, and it did not take me a very long time to complete
this work. However, it became quite complicated to carry out the computations of
all the estimates that were needed. It can be made somewhat simpler if one uses
Fourier analysis, something Titchmarsh did later, after the war, but his proof was
also complicated. He sent it to me, and I made him aware of some simplifications
that he could do. As a consequence, the proof became considerably shorter when he
published it. However, I think that in order to find a good numerical estimate, the
Fourier integral is not the best method. Then one should rather make a modification
of the method I used.

Question. Is it correct to say that your method, perhaps also other people’s meth-
ods, are of an averaging and statistical character, so to say, such that none of these
can lead to a proof of the Riemann hypothesis?

By considering a statistical method one can get quite far, but it will never lead
to a proof of the Riemann hypothesis. I mentioned to you that I could use this
method to investigate the value distribution of the zeta function on the critical line,
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and also in the neighbourhood of the line. I obtained quite a few results in this
area just before and just after I came to Princeton in 1947, but I did not publish
these results at that time. The reason was that I was then more occupied with
what I could do with elementary methods in number theory, which was something
that grew out of my version of the sieve-method.

Question. We talked with you earlier about the talk you gave at the 10th Scandi-
navian Mathematical Congress in Copenhagen in 1946, where you seemed to cast
doubt on Riemann’s conjecture, but you emphatically repudiated that?

What I wanted to emphasize in my talk in Copenhagen was that there did not
exist at that time what one could call numerical evidence for the truth of the
Riemann hypothesis. The computations that had been done did not go very far, so
if there existed zeros outside the critical line, one would not expect them to show up
so early. In fact, at that time the computation of the Riemann-Siegel formula for the
function on the critical line had only been done for the imaginary part a little more
than 1000. There are very few terms that come into play by this, and the function
behaves extremely regularly. One also had the matter of the so-called Gram’s law,
proposed by the Danish mathematician Gram, and as far as the computations went
at that time there were only two exceptions to Gram’s law. Gram’s law would have
implied that Riemann’s hypothesis was true, but it would also have implied too
much regularity for the distribution of the zeros. I knew from the results that I
had obtained earlier that Gram’s law became more and more wrong. Instead of
a few exceptions it would rather be an exception when it was true. As I said, it
was to be expected that the first zeros, if there were some that were not on the
critical line, would occur a long time after the first exceptions to Gram’s law. So
the numerical material at the time did not point to what would be the case and
other results were only of statistical nature. But I must say that if one believes that
there is something in this world that is as it should be, then I think that must be
the truth of the Riemann hypothesis. It gives the best possible distribution of the
prime numbers, and also what one would expect from a statistical point of view,
namely that the deviation from

li(x) =
∫ x

2

dt

log t

is not greater than the square root of x. It would entail an elegance that is striking.
Besides, I must say that I trust Riemann’s intuition very much.

Question. Do you expect that there is some kind of regularity in the distribution
of zeros on the critical line?

There is undoubtedly some kind of orderliness, but how far that goes is hard
to guess. For example, one may ask the question whether the imaginary parts of
the zeros are in any way connected with other mathematical constants that we
are familiar with. Nobody knows anything about this, of course, but it is not
impossible that there is such a connection. In fact, I do not rule out the possibility
that there could be a whole lot of regularity that would be quite unexpected, and
which remains to be discovered. That could very well be the case. I mean, there
is no reason to think that we have come very far towards what can be done some
time in the future. It is certainly possible that there may be novel ways to look
at this, and which would lead to totally unexpected connections to other parts of
mathematics.
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Question. Were you the first that made use of spectral theoretic methods?

I really do not know. For that matter, many people—and this goes way back—
have surmised that perhaps the zeros are connected in some way with a spectral
problem, but nobody had been able to point to something specific. But I think
it is of little use to speculate on how soon someone comes up with a positive idea
on how to attack this problem and obtain new results. It will happen one day, I
believe, but how long we have to wait—or you have to wait!—is hard to guess, of
course.

Question. But if you should guess, would you then think that a core of ideas
centered around a spectral problem on some type of space, which yet is unknown,
will eventually lead to a solution of the Riemann hypothesis?

That is certainly a thought that several people have had. In fact, there have
been some people that have been able to construct such a space, if they assume
that the Riemann hypothesis is correct, and where they can define an operator that
is relevant. Well and good, but it gives us basically nothing, of course. It does not
help much if one has to postulate the results beforehand—there is not much worth
in that.

Question. Have you yourself worked seriously with the Riemann hypothesis for
the last 30 years?

Well, I have thought about it from time to time. Once I had an idea that I
thought perhaps could lead to a proof. I followed it part of the way, but I thought
it unlikely that it would lead all the way to the goal. It would only have given
the proof of the Riemann hypothesis for the zeta function ζ(s) and for some of the
Dirichlet L-functions, but not for all. I have never tried to complete the proof. The
idea depended on the fact that I had found a method to approximate ϕ(s)ζ(s)L(s)
by polynomials, where L(s) is an L-function with quadratic character χ such that
χ(−1) = −1, and ϕ(s) is an entire analytic function that makes the product real
on the line s = 1

2 + it. The fact that the polynomials had the symmetry built into
them gave some hope that something could be achieved following this path. The
question was what one could say about the zeros of these polynomials. After a
while I became more and more convinced that it would not work as I had thought
initially. It just seemed unlikely to me. However, I have now and then seen that
people have attacked a problem in a way that seemed “hare-brained”, to use an
English term, but then it turned out that they could make it work. They have
proven something that would not be easy to prove in another way. On the other
hand, I have seen people have ideas that seemed absolutely brilliant, but the only
problem is that if one follows these to the end one is not able to get anything out
of it after all. So it works both ways: sometimes a good idea does not work, and
what seems like a bad, even idiotic idea, may actually work.

Question. Have you communicated some of these ideas that you have had to
others?

Yes, I have mentioned what I have told you. I told people that I did not partic-
ularly believe that my approach would have led to something if I had followed it
further. It did appeal to me in the beginning, and I tried to follow it for a long time,
but I became more and more convinced that it was unlikely that I could achieve
anything in this way. However, I have not verified that it could not be done.
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Question. Do you have many ideas, or other thoughts, that you would like to leave
for posterity?

No, I cannot say that about the Riemann hypothesis. I have some results of
statistical nature. There have been some people that for the last few years have
talked to me, and have wanted me to publish the details of what I have lectured
about several times, namely about linear combinations of certain Dirichlet series.
These linear combinations have the property that, like the zeta function, they have
functional equations that lead to a real-valued function on the critical line such that
typically a positive portion of the zeros lie on the critical line. I must say that it is
interesting that this can be done, but one cannot use it for anything substantial. It
is not really so many new ideas that enter into this, only old ideas that are combined
in a new way. So I thought it was interesting to work it out and lecture about it,
but I do not know yet if I ought to publish it. It would become considerably longer
than I actually feel like writing up. As I told you earlier, I am by nature somewhat
lazy, and that is my excuse for not having published so much. Many of these things
have been published little by little by others. So even if I should never publish this
myself, then eventually there will be others that will do that, I would think.

Question. You mentioned that other attempts at proving the Riemann hypo-
thesis—like Alain Connes’—essentially, as you see it, only give reformulations?

Yes, that is a new way to arrive at the explicit formulas—a new access, so
to say—but it basically does not give more than what one already had. Connes
undoubtedly believed to begin with that what he was doing should lead towards a
proof, but it turned out that it does not lead further than other attempts. When
I last talked with him he had realized this. This often happens with types of
work that are rather formal. There was, for example, a Japanese mathematician,
Matsumoto, who gave several lectures that made quite a few people believe that he
had the proof.

Question. To put the Riemann hypothesis in some perspective; if we, as non-
experts, asked you the following question, and you should give a short answer:
What does the Riemann hypothesis tell us about the prime numbers?

It tells us that they are very nicely distributed, about as evenly and as good as
altogether possible. One cannot expect a completely even distribution, of course.
But it tells us that at least in mathematics, certainly in number theory, we live
in Leibniz’ “best possible of all worlds”, just as the good Candide in Voltaire’s
Candide is told by his teacher Pangloss that he lives in the best of all possible
worlds. Well, in number theory at least, one has the best relation possible among
primes, even though we cannot prove it yet. It would give me great satisfaction to
see a proof, because it would demonstrate that there are some things that are right
in this world. There are so many other things that do not work as they should, but
at least for the prime numbers, and of course also for the zeros of the zeta function,
they are distributed as well as they could be.

Question. Does there exist some geometric analogue to the prime numbers as far
as fundamentality is concerned?

If you take a compact Riemann surface with the hyperbolic metric, and consider
the closed geodesic curves, then you can say that their lengths correspond to the
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logarithms of the primes. In the compact case one has that the Riemann hypothesis
is essentially correct, except from a few cases where there are some zeros lying
between real parts 1/2 and 1, which I do not believe can occur for those functions
that we usually consider in number theory. However, I know there are some people
that believe that perhaps some of the L-functions belonging to quadratic extensions
have zeros lying between real parts 1/2 and 1.

Question. Is there anything else you want to say about the Riemann hypothesis
before we leave this subject?

I think it is a good possibility that it will take a long time before it is decided.
From time to time people have been optimistic. Hilbert, when he presented his
problems in 1900, thought that the Riemann hypothesis was one of the problems
that one would see the solution of before too long a time had elapsed. Today it
is a little more than one hundred years since he gave his famous lecture on these
problems. So one must say that his opinion was wrong. Many of the problems
that he considered to be more difficult turned out to be considerably simpler to
solve. There were, for example, some problems about the transcendence of certain
numbers that were decided earlier. There has been great progress in the area of
transcendence results since Lindemann’s original work from 1882. Incidentally, I
have to tell you a story about Lindemann. When I was in Uppsala, Sweden, in
the autumn of 1939, I found in the library two papers by Lindemann which he had
published when he was quite old—certainly more than seventy years of age—where
he claimed to have proven Fermat’s conjecture. In the second paper he said a whole
lot of nasty things about those that had pointed out mistakes in his first paper.
This can happen to the very best. Lindemann was really a great mathematician.
His transcendence results were extremely far-reaching and of very general nature—
he had built on some earlier results by Hermite. It happens that people, also great
mathematicians, become a little senile in their old age. You have to bear with me,
if . . .

Question (Laughter). We have not noticed any sign of that yet!
Were there any discoveries that you made during the war years that led to the

discovery of the Trace Formula?

The Trace Formula came a bit later, and it really had little to do with my work on
the zeta function. It came about after I had seen a paper by Hans Maass, where he
considered the solution of a certain partial differential equation that was invariant
under the modular group, for example. He had left quite a few problems unresolved.
I saw that one could use some ideas that I had pondered on before the war in the
wake of my Master Thesis. At that time I had looked at integral operators, which I
felt much more familiar and comfortable with than differential operators. I preferred
to look at Fredholm type equations instead of differential equations, and I thought
that if one considered the class of all invariants, that is, all the integral operators
that were invariant under the modular group, for example, then that would be a
more natural thing to do than just look at the hyperbolic Laplace operator. So I
started to look into this. Of course, these were integral operators extending over the
upper half-plane, if one uses that representation, but one could use the invariance
under the group to consider integral operators defined only over the fundamental
domain. After I had done this, it felt natural to investigate if one could compute
the trace of an integral operator that acted within the fundamental domain. It
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turned out that by combining the terms in a suitable way, one could give this an
attractive form.

It was fairly easy to do this if I considered instead of the modular group a group
that had a compact fundamental domain in the hyperbolic plane. In 1952 I gave
some lectures on this in the midwest at four universities: Ann Arbor, Purdue,
Chicago and Urbana. It gave me some trouble to carry through the proof for the
modular group which, of course, does not have a compact fundamental domain,
and it gave me even more trouble to do it for groups in the hyperbolic plane
whose fundamental domain have finite area, but have what one calls “cusps”. I
succeeded in completing these proofs. The most difficult part was to get a grip
on the continuous spectrum, involving so-called Eisenstein series. It turned out
that these could be extended analytically even for a general group, not merely
a modular group, but a general group that had fundamental domain with finite
area, but which was not compact. I completed this during the summer of 1953,
and I communicated this result to Siegel. I thought that he would be somewhat
interested, and he was. He asked me if I would come to Göttingen in 1954 and
lecture on this, and I did that. I gave a series of lectures which ended by treating
the non-compact case in general, not only for modular groups, but generally. There
was an assistant present at these lectures that took notes. I was going to write up
the last part of the lectures, but I was not satisfied with the notes of the first part
that I received, so I never sent the first five chapters back to Göttingen. Therefore,
the Göttingen notes start with Chapter 6. Any intelligent person would be able to
complete the Göttingen notes from what was published, partly in the Proceedings
from the meeting in Bombay, and also what later appeared in an Indian journal.

Question. Was Poisson’s summation formula a motivation—maybe of a philosoph-
ical nature—for you when you worked on the Trace Formula?

It was really not a motivation, but it can be viewed as an analogy if one con-
siders Euclidean spaces and commutative groups and their actions. Then Poisson’s
formula, if one looks at it from this point of view, becomes a special case of the
Trace Formula.

Question. Could you write down the Trace Formula for us?

Well, it looks quite complicated in general, but in the simplest case where the
group Γ has a compact fundamental domain, say D, in the hyperbolic plane, then it
becomes considerably simpler. So let λn = 1

4 + r2
n, n = 1, 2, · · · , be the eigenvalues

of the associated Laplace operator, and let h(r) be an even function which is analytic
for |Im(r)| < 1

2 + ε for some ε > 0, and with growth condition h(r) = O( 1
(1+r2)1+ε ).

Let

g(u) =
1
2π

∫ ∞

−∞
h(r)eiur dr

be the Fourier transform of h(r). Then the Trace Formula can be written as

∞∑
n=1

h(rn) =
A(D)
4π

∫ ∞

−∞
rh(r)

eπr − e−πr

eπr + e−πr
dr

+
∞∑

k=1

∑
{P}Γ

log N(P )
N(P )k/2 − N(P )−k/2

g(k log N(P )).
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Here A(D) is the area of D measured with respect to the invariant hyperbolic
measure, {P}Γ denotes a primitive class of hyperbolic transformations, N(P ) is the
norm of P . The P ’s correspond to geodesics on the associated Riemann surface,
with log N(P ) the length of P .†

Question. When you look at the enormous importance and widespread applica-
tions that the Trace Formula has had, do you consider that to be your greatest
discovery?

Well, yes, it probably is. It presumably is the one that has most applications, I
would think, even though I do not necessarily understand some of these applications.
What I mean is, I have heard that the Trace Formula has been put to use in physics,
but I do not know precisely in what way. And, to be honest, I am really not that
interested in knowing how it is applied there.

Question. Are you surprised at the importance and role the Trace Formula has
attained?

Well, as I said, I am surprised that it has got applications in physics. Mathe-
matically speaking, I have always thought that the Trace Formula was a significant
result. It contains a whole lot of information, and the problem itself encompasses
and raises many questions to be explored in future research. This is especially true
in higher dimensions where one encounters continuous spectra of more than one
dimension, so to say. That complicates things. So there is a whole lot more to be
done there, but that must be done by others since I have no intention of writing
anything more about the Trace Formula. I gave some lectures in the 1980s, and
also a few times later, about what I decided to call the “hybrid trace formula”. The
simplest example of that is, one may say, if you take the hyperbolic plane and an
algebraic Riemann surface mapped into the hyperbolic plane (all this is intimately
tied up with the uniformization theories) then—how shall I express it?—you can
deduce quite a few classical results as special cases of the Trace Formula, for ex-
ample the Riemann-Roch formula. You have to use some special kernels. Well,
analogous things can be done in higher dimensions, too, but there it is somewhat
more difficult to find the right kernel functions. It can be done, for instance, for all
so-called “bounded symmetric domains”, and for certain classes of functions. There
you find similar things, especially if you have a product of several of these, where
some of these functions give by themselves what corresponds to a Riemann-Roch
formula. But the other component of the kernel is of a more general nature and
that is what I referred to as a “hybrid trace formula”. From some of these one can
obtain quite interesting results. One simple case is the so-called Hilbert modular
group that is associated to a real algebraic number field. If it is of degree n, then
you have a product of n hyperbolic planes. You can choose a kernel there, which
is what one could call the singular kernel, and which leads to the Riemann-Roch
formula for, let us say, n− 1 of these variables. For the last variable you can take a
general kernel and then you get formulas that lead to the Dirichlet series that you
can construct from the Hilbert modular group. For one thing you get the interest-
ing case that when n is even you get a series of something that corresponds to a
zeta function and a series of L-functions—that is one way to express it—that are

†The above question and answer are taken from another context, but we feel it was natural to
include it here.
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associated to the group, and the zeta function has a pole at s = 1. In the classical
situation, if you only have one hyperbolic plane, or if you have an odd number
of hyperbolic planes, then the same problem would lead to something that has a
zero at s = 1. For n an even number you therefore have something that is more
analogous with the zeta function and Dirichlet L-series. As I told you, I gave some
talks on this in the 1980s, but I have never published this. I do not know for sure if
somebody else has published some of this by now. I have not really followed what
has happened in this area over the last decade or so. I know that a whole lot of
stuff has appeared in the literature, but I do not read as much as I did before.

Question. Do you think that anything essentially new was added in the later
extensions and generalizations of the Trace Formula?

Well, the viewpoint was changed somewhat, of course, after one started to look
at group representations. At the time this started I was not thinking so much
about it, in fact, I have never really read much about these things. It was only
much later that I began to take a closer look at it. In the hyperbolic plane it is not
necessary to consider group representations, everything can be achieved by looking
at automorphic functions and automorphic forms—they are all scalars, so to say,
just one component. In the higher dimensional symmetric spaces the situation is
more complex. If you have a discrete group whose fundamental domain has finite
volume, then you can look at automorphic functions, of course. But in most of the
cases there is nothing that corresponds to the scalar automorphic forms. Even for
bounded complex symmetric domains, where the scalar forms always exist, they do
not tell the whole story. In the higher dimensional case one also has to consider
vectors of functions that are transformed under the group action, as a matrix. It
is only in the hyperbolic plane that we get everything by looking at automorphic
functions and scalar forms. It leads to more generality by considering all group
representations, but I have to admit that I have really not studied this field in
any detail. I have never read much mathematical literature. I operated mostly by
looking at certain papers to see what various people were up to, and to see what I
could understand, and then to build on this in my way. I have read very few books
in mathematics, but those that I have read have meant a lot to me. But I have
mostly looked at papers, more than at textbooks. However, one textbook that has
meant very much for me was Erich Hecke’s “Algebraische Zahlentheorie”. From
that book I learned a lot. That book is a gem.

Question. Are there other books than the one by Hecke that have been important
for you?

As far as algebraic number theory is concerned, there were many other books
that I tried to read, but none of them had my way of looking at things. I found
Hecke’s book very understandable, for instance the way he introduced and treated
the ideal concept. Hermann Weyl had written a book on algebraic number theory,
a fairly short one, and Landau had also written a book on the same topic. I never
felt comfortable with their books. I preferred Hecke’s way of looking at things.
It worked very well for him, and he was the first that could make any significant
progress with respect to the zeta functions and L-functions associated to algebraic
fields of higher degrees, and he was able to prove the functional equation.
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Question. Aside from algebraic number theory, were there other books, for in-
stance Titchmarsh’s book on Riemann’s zeta function, that have been important
for you?

Titchmarsh’s book contained quite a few nice things. But it also had things that
were not so good. As for the latter, there is no good reason to include something
about almost periodic functions and regard the zeta function as an almost periodic
function. That point of view is not very useful. It may be of some interest per
se, but one has never been able to deduce anything that is of any value about the
zeta function, or some of the other number theoretic series that one studies, using
this approach. So that chapter in the book could be deleted. But Titchmarsh’s
book contained a lot of good things. I must admit I did not read all his proofs. By
and large I must say, concerning many of the proofs that one finds in these books
treating analytic number theory, things are done in an unnecessarily complicated
way. In fact, when one considers the explicit formulas, it really is one particular
formula that one is primarily interested in, and where the series does not converge
absolutely. In all these cases it is much simpler to use the integrated formulas.
One can always obtain convergence by integrating a couple of times, then the series
becomes absolutely convergent. The fact of the matter is that one can obtain
equally good results by working with these absolutely convergent series, and then
taking derivatives. It is totally unnecessary to consider something that does not
converge absolutely.

Question. We have now talked about several of your discoveries—we have talked
about the Riemann hypothesis and the Trace Formula. However, sieve-methods are
also something that you have an affinity for, and where you have made fundamental
contributions.

Well, that is so. That came as a by-product of my work on the zeta function.

Question. After your doctoral defense?

Yes, after I finished my doctoral defense. I realized that I could utilize some of
the things I had used in connection with working on the Riemann zeta function. I
could use it to find upper bounds, and it worked in a more general context than I
had earlier. It was only then that I really understood what the sieve-method was all
about. I had looked at Viggo Brun’s papers, but I never really understood them.
He extensively applied some kind of geometric presentation. He depended upon
seeing things in a geometric way with figures and diagrams, et cetera. I looked at
all this, but it just did not make much sense to me, so I never got anything out of
it. There existed other presentations that avoided this. For instance, Rademacher’s
presentation was more accessible for other mathematicians. Rademacher had, so
to say, translated Brun’s work into another language. So it became more and more
Rademacher’s presentation of Brun’s sieve-method that was used, and which made
the theory accessible to a larger group of mathematicians. I also took a look at
Landau’s three-volume lecture series on number theory, which did contain a section
on Brun’s work, but he followed, to a large extent, Rademacher’s presentation. I did
not think that was so good, either. In order to find upper bounds, I discovered that
I could use squares of

∑
d|n,d<z λd, and that worked very well. In fact, for all the

problems that could be attacked by Brun’s sieve-method, I could find better upper
estimates using my method. Not only that, but the estimates were much easier
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to find. Also, the constants involved became simpler and more natural, because
I ended up with something that was an integer multiple of what presumably was
the correct value. So then the only question that remained was to find something
which gave lower bounds. One can achieve that by putting in front of these squares
a factor that takes a negative value as soon as n has more than one prime factor,
provided it lies under a certain bound.

Question. The so-called Selberg’s sieve-method, that was your first main result in
this area?

I published a note in the summer of 1946, and I continued to work on it further.
When I came to Princeton in 1947 I made a discovery that put me on a path to
what I call parity, and which is quite important for what one can do—and can
not do—with sieve-methods. I tried to show the existence of prime numbers in
intervals—relatively small intervals—by considering a quotient of two quadratic
forms. I considered

(1)

∑
x<n<x(1+ε)

d(n)
(∑

d|n
λd

)2

∑
x<n<x(1+ε)

(∑
d|n

λd

)2 , d ≤ z, λ1 = 1,

where d(n) denotes the number of divisors of n. One usually chooses z ≤
√

x. I
looked at the quotient in (1). It is obvious that if you can make this quotient (one
may restrict to square-free numbers that will yield the same), if you can make the
quotient less than 4, you will essentially have shown that there exist prime numbers
in the interval between x and x(1 + ε), where ε is a small positive constant. One
has the quotient of two quadratic forms in the λ’s, and we want to minimize this,
of course. You cannot really diagonalize the whole quadratic form by introducing
new variables. I found that if I only tried to make the dominating part of the
numerator as small as it could be if the λ’s are free, except λ1 = 1, then I could
make the quotient as close to 4 as I wanted, namely as 4 + O( 1

log x ). It seemed to
me that there was no reason to believe that I had found the right minimum by only
taking the minimum of the dominating part of the numerator, and then inserting
the λ values I had thus found. In fact, the remaining part of what I had found
above is of the same order of magnitude, and it seemed clear to me that since I
was not at the right minimum, then I should be able to make it a little less than 4
by adjusting it a little. But it turned out that that was not the case. I also tried
with other expressions, and after a while it became clear to me that the numbers
that have an even number of prime factors and those that have an odd number of
prime factors will contribute about the same, so that the quotient can indeed not
be made less than 4. The fact that it can be made as close to 4 as one may wish
shows in reality that numbers with exactly two prime factors will contribute vastly
more than all the others that have an even number of prime factors. In other words,
those numbers with an even number of prime factors higher than two will give a
contribution of a smaller order of magnitude. This phenomenon showed up in quite
a number of other situations as well, so I realized that apparently whatever I did
with these methods I would get the same asymptotic contribution from numbers
with an even and an odd number, respectively, of prime factors. It then dawned

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



640 NILS A. BAAS AND CHRISTIAN F. SKAU

upon me that it should be possible to construct an expression where I would get
approximately the same contribution from the primes and products of two primes,
and that was what led me to this formula that forms the basis for the elementary
proof of the prime number theorem. I refer to this problem as parity: that in
these various formulas the contributions from the numbers with an odd number of
prime factors and those with an even member of prime factors are asymptotically
the same. The sieve-method cannot distinguish between these two contributions. I
mentioned this already in Trondheim in 1949, where I gave a talk, and I elaborated
in more detail on the fact that one has this limitation in my talk at the IMU
Congress in Cambridge, Massachusetts, at Harvard in 1950. This limitation also
gives you an idea of what one can do, and the fact is that one can find an infinite
number of formulas where the only contribution comes from primes and products
of two primes. These two parts have the same weight and there are some different
functions of the two that appear in these formulas. The formula that I presented
in my published paper on the elementary proof of the Prime Number Theorem is
actually the simplest. That formula emerges if one first considers the formula

(2)
∑
n<x

∑
d|n

µ(d) log2 x

d
= x

∑
d<x

µ(d)
d

log2 x

d
+ O

(∑
d<x

log2 x

d

)

(µ is the Möbius-function).
Here one easily sees that the inner sum on the left-hand side always is zero if n

has more than two different prime factors. By looking at the values for n = 1 and
n = pa, where a > 0 and n = paqb, with p �= q and a > 0, b > 0, the left-hand side
of (2) becomes

(3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log2 x +
∑

pa<x

(
log2 p + 2 log p log

x

p

)
+

∑
paqb<x

p�=q

2 log p log q

=
∑
p<x

log2 p +
∑
pq<x

log p log q + O(x).

At the right-hand side of (2) one can estimate the two sums, and one gets that the
right-hand side is

2x log x + O(x).

Taken together this yields

(4)
∑
p<x

log2 p +
∑
pq<x

log p log q = 2x log x + O(x).

Question. So is it formula (4) that is the key to the elementary proof of the Prime
Number Theorem?

Yes, that is so.

Question. It is very important for us to establish this: It was in fact the sieve-
method, and in a certain sense the simplest application of the sieve-method, that
led to the asymptotic formula (4)?

Well, yes. It is some kind of sieve, it is a local sieve. You see, when one uses these
methods in general one always finds that the λ’s that one ends up with, depending
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upon what type of coefficients that appear, always are of the form

(5) λd = µ(d)
logk z

d
logk z

,

where z is a bound for how large d can be, and the exponent k depends upon the
problem one considers.

Question. Is it some sort of Lagrange multiplicator method that you use to min-
imize these expressions?

Well, I have a method of introducing new variables that diagonalize the expres-
sions, so that it is very easy to find the minimum of such a formula after you have
done that, at least for the dominating part of the formula. Actually, it is a little
more complicated. The optimal λd’s , when we are able to determine them exactly,
appear as µ(d) multiplied with a quotient of two sums. If one estimates these sums
one gets an asymptotic formula of the form (5). Usually, one must be satisfied with
obtaining an approximation.

Question. So this was a great major discovery, in fact?

Well, it takes some time before you are able to draw further inferences from
it. It took me some time to get it in the way I wanted it, and it went through
several phases. One of these I had not planned for. To put it this way: there came
an “interloper in the way”. Before we get to that, I have to tell you that I used
something similar in connection with something I had already finished, and which
was ready for publication. It was an elementary proof of Dirichlet’s theorem about
the existence of prime numbers in arithmetic progressions. I did not use (4) then,
but something that may be deduced from the analogue of (4) for an arithmetic
progression kn + l, where (k, l) = 1, namely

(6)
∑
p<x

p≡l(mod k)

log2 p

p
+

∑
pq<x

pq≡l(mod k)

log p log q

pq
=

1
ϕ(k)

log2 x + O(log x),

where ϕ(k) is Euler’s number theoretic function.
It is then not so difficult to get a contradiction if you assume that there are

not infinitely many prime numbers in progressions. I went through this proof with
Turán who was here in Princeton then, the summer of 1948. He had asked some
questions in connection with this, and I had come to mention the formula (4)—in
the proof itself only the formula (6) entered. I believe what caused me to mention
the formula (4) was that he, Turán, had asked how sharp one could make certain
estimates. He had been here for the spring term and he was about to travel back
to Hungary, and he would probably have left before I returned from Canada. I was
about to travel up to Montreal to get a permanent visa, because I wanted to take
a job at Syracuse, New York, for a year. I had been offered another year at the
Institute here in Princeton, but I thought it would be interesting to see what it
would be like to be at a different American university.

Question. Did you have to travel to Canada to get a visa?

You could not do this inside the U.S., you had to travel to another country,
and Canada was the closest place. So I went up to Montreal, and I returned to
Princeton nine days later. In Montreal I did not talk with the consul himself, but
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with the vice-consul. I had been advised to go to Montreal by Hua, a Chinese
mathematician who had been here in Princeton and whom I got to know. He had
travelled to Canada to change his visa in order to take a position at Urbana, Illinois.
So I mentioned the Hua case to the vice-consul to encourage him to do the same for
me. He told me after having looked at the files related to Hua that it seemed obvious
to him that Hua should not have received a visa. After some days had elapsed,
he did make the visas ready for us. However, before we got them he had second
thoughts and withdrew them. So it took a few days more, and we had to have some
documents translated. It was particularly complicated with some documents that
my wife Hedi had in Romanian, but we found a translator who was able to give an
official attestation that the documents had been correctly translated. We finally
got our visas, and we travelled back by train, entering the U.S. at St. Albans in
Vermont. When I came to the Institute next day, this was on Thursday, July 15,
it turned out that Turán, to my surprise, was still there—he left and went back
to Hungary the next day, I believe. He had gone through my proof for arithmetic
progressions, which I had told him about, and he had also mentioned in passing
the formula (4). In the meantime, while I was in Montreal, Erdős had also arrived
in Princeton, and he had been one of the listeners to Turán’s presentation. Erdős
told me on that same Thursday that he was interested in this formula (4), which he
called an inequality. I always called it an equality—it was an asymptotic formula.
Well, one can say it is an inequality since it is greater than an expression if you
multiply x with a negative constant, and smaller if you multiply with a positive
constant. But I have always called such a formula an asymptotic equation, not an
inequality. But he called it an inequality. He wanted to try to see if he could use
it to show that there existed prime numbers between x and x(1 + ε), where ε is
arbitrarily small, if x was sufficiently large. Well, I told him that I had nothing
against that. I was not working on something like that at that time. In fact, I had
left this problem after I discovered what I called parity, and had realized that what
I had tried to do with the quotient in (1) would not succeed; that is, I could not
make it less than 4.

Question. So you did not have the Prime Number Theorem in your thoughts then?

Oh yes, I had the Prime Number Theorem in my thoughts, that was my goal
based upon formula (4) that I had obtained. I told him that I did not mind that
he try to do what he said he wanted to do, but I made some remarks that would
discourage him. I told him that he should not be too confident that it would be
possible to deduce so much from my formula. But then, a couple of days later—I
believe it was on Friday evening or it may have been on Saturday morning—Erdős
told me that he had found a proof for the existence of primes between x and
x(1 + ε), and he gave me some of the details of how his proof went. I had much
earlier obtained a few other results. For example, if one takes the function ψ(x),
which is the sum of the logarithms of the prime numbers less than x, that is

(7) ψ(x) =
∑
p<x

log p,

and considers lim sup and lim inf of ψ(x)
x , call this A and a, respectively, then I

had deduced that A + a = 2. This fits very nicely, of course, with the supposition
that both of them should be 1, and that would give a proof of the Prime Number
Theorem. One easily observes that it is highly unlikely that they are different from
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each other, since this would imply a very peculiar distribution of the numbers that
have an even number of prime factors and those that have an odd number of prime
factors, as well as a very peculiar distribution of the primes themselves. Well, I
discovered that I could incorporate his result, which actually said more than the
existence of prime numbers between x and x(a + ε)—that result in itself would
not have been sufficient for me—in what I had been working on, and this led me
to a proof that A and a are equal. Then they have to be equal to 1, of course,
and that is equivalent to the Prime Number Theorem, namely that ψ(x)

x tends to
1 as x goes to infinity. So I told Erdős the next day that I could use his result
to complete the proof, an elementary proof, of the Prime Number Theorem. We
talked somewhat more about this, and it turned out that one could avoid using his
result, but use some of the ideas he had used, to get a more direct and shorter proof.
I really did not have in mind starting a collaboration with him. He asked me if we
should go through this proof, and I thought he meant that we should go through
the proof with a few other people here at the Institute that were interested in
number theory. Among these were Chowla from India and Ernst Straus, who was
Einstein’s assistant and who was somewhat interested in number theory. Turán
had already left—I believe he left on Friday, while this was taking place on the
following Monday. I said okay, and I came over to the Institute in the evening to go
through the proof. It turned out that Erdős had announced this at the university
so instead of the small informal gathering that I thought this was supposed to be,
the auditorium was packed with people. I went through the first parts that I had
done earlier. Then Erdős went through what he had done. Finally, I completed the
proof of the Prime Number Theorem by combining his result with mine.

After a few days I travelled up to Syracuse to look for an apartment. Besides,
I had promised them that I would teach at the summer school and take care of
engineering students in what they called “advanced calculus”. In Syracuse they
would pay me somewhat more. They also promised to provide a job for Hedi,
something she would appreciate. So we went there. It took some time before
I found an apartment, so we lived with a colleague of mine in the meantime. I
started to hear from different sources that they only mentioned Erdős name in
connection with the elementary proof of the Prime Number Theorem, so I wrote a
letter to Erdős and told him how I would proceed. He had in the meantime given
several talks about this in the U.S., but I must admit that I did not give a talk
on this since the one time in Princeton. I had to take care of teaching, and then
there was the matter of finding an apartment, which took a lot of time. After some
time had elapsed, I began to type my proof of the arithmetic progression result,
and I tried to simplify the proof of the Prime Number Theorem simultaneously. I
found fairly soon a proof that I liked which did not use upper and lower limits, and
which was more direct. The proof was constructive, and it was this proof I wrote
up at the same time as I typed the one for the arithmetic progression.† I wrote to
Erdős that we could publish each separately, and that I would let his paper appear
first, if he would publish the result that I had used originally to prove the Prime
Number Theorem. Then I would publish a paper where I first sketched the proof
that used his result, and afterward I would give the proof that I was more satisfied

†Selberg sent a handwritten, eight-page letter in Norwegian, dated September 26, 1948, from
Syracuse to his brother Sigmund in Norway, outlining the elementary proof of the Prime Number
Theorem.
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with and which did not use any of his things. But he insisted upon being involved
more directly in this.

Question. What else did Erdős say in his reply to your letter?

He answered that he reckoned we should do as Hardy and Littlewood. But we
had never made any agreement. In fact, we had really not had any collaboration.
It was entirely by chance that he became involved in this—it was not my intention
that he should have access to these things. It is clear that Hardy and Littlewood
had an agreement that when they worked together on something they should both
get equal credit for the results they obtained. It is all well and good that they had
an agreement, and they worked together. Erdős and I had really not collaborated
on anything. The only thing was the discussion we had after I had found the first
proof of the Prime Number Theorem by using his result. That was perhaps the
only thing that could be called some kind of collaboration, but we did not have
any agreement that we would “share alike everything”. I must say that I never
had any thought of collaborating with anybody. I have one joint paper, and that
was with Chowla, but I must say that it was Chowla that first came to me with a
question. He was interested in computing the L-function that belongs to the largest
discriminant of an imaginary quadratic number field, the largest discriminant that
has class number 1. That discriminant equals 163, and he would like to find a way
to evaluate the L-function that belongs to the quadratic character for this module
at the point 1/2, and to see if this gave a positive or negative value. If it came out
negative it would imply that there was a zero which was not on the line 1/2, but
somewhere between 1/2 and 1. It so happened that I had, incidentally, a formula
which should make it fairly simple to make a numerical computation, and which
could be used for any zeta function associated to a positive quadratic form in two
variables. I gave that formula to Chowla, and he came back a short time later and
said he had found that it gave a negative value at the point 1/2. This implied that
there must be a zero that was not on the line 1/2. I pondered a little over this and
looked into the details. As a matter of fact, there existed two theories of quadratic
forms, that is, binary forms, long time back. One of these has a mid-coefficient
with a 2 in front, that is, of the form Ax2 + 2Bxy + Cy2, while the other is of the
form Ax2 +Bxy+Cy2. What one calls the discriminant gets a different expression,
depending upon which of these forms one considers. In the one case it equals
AC − B2, and in the other it equals 4AC − B2. My formula had been developed
with respect to the smaller discriminant, while Chowla had put into the formula a
discriminant that was too big. It turned out that when he made the change to the
smaller, the formula yielded a very small, but positive value. So there was no zero
after all. By looking closer at this we came across a whole lot of other things. In
particular, by not considering the point 1/2, but rather the point 1, and looking at
the residue there after one has removed the associated Epstein zeta function we got
some interesting results. The Epstein zeta function is in reality the zeta function of
the quadratic field when the class number is 1. Then it has an Euler product that
has a zeta function and an L-function with a quadratic character. If you remove the
zeta function you are left with the value of the L-function at the point 1. We had an
expression for this from the formula I had, and it turned out that it actually gave
access to a rather interesting result about the periods of elliptic functions that have
complex multiplication, in the classical form, that is. One considers the periods. If
you use the old Jacobi form, which was also used by Abel, then you get that the
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periods can always be expressed as an algebraic number multiplied with a product
of gamma functions. This was only known in two special cases before, namely, if
you take elliptic integrals of the form∫

dx√
1 − x4

which correspond to arcs of the lemniscate. The other known case, where complex
multiplication also occurs, comes from considering the integral∫

dx√
1 − x3

.

Both of these cases were classically known. The integrals from 0 to 1, for example,
could be expressed by gamma functions evaluated at certain rational values. But
our result was more general. If the class number was 1, we got a rather simple
expression. But I generalized the result somewhat so that it also encompassed
the case when the class number was larger than 1. Then the formula became
more complicated, but it still had the form of an algebraic number multiplied
with a product of gamma functions evaluated at rational points. This was a rather
interesting result. I wanted Chowla to put his name first, but he refused vehemently,
so the paper was published under the names Selberg and Chowla, in that order. It
is completely illogical, of course, instead of having it in alphabetical order. I got
him to write it up; except that I wrote up the part that treated the case when the
class number was greater than 1, since he was not that familiar with some of the
things that was needed to treat this case. He computed some examples where the
class number was 1, where he also determined the algebraic factor explicitly. One
knows that it is in general an algebraic factor. One can express it in terms of a
radical expression, but it can be quite complicated.

Question. This is the only paper you have published with anyone else?

Yes, but the first impulse came from Chowla. If he had not come and told me
what he tried to do, and if I had not remembered the formula that I had found
on another occasion, then nothing would have come out of it. It could also very
well have happened that if we had got a negative value at the start, then we would
have been satisfied with that and not gone any further, just registered that we had
disproved the Riemann hypothesis for this particular L-function.

Question. Let’s get back to Erdős. Is it correct to say that it was an unintended
accident that he saw your fundamental formula?

Well, yes. You have to understand that Turán had become a good friend of mine
while he was in the U.S., and I knew that he would soon go back to Hungary. I
thought that he would have left when I returned from Montreal, but it turned out
that he was still here. Erdős had arrived in the meantime, and he got to know
about this via Turán. As I told you, I had gone through my proof of the arithmetic
progression with Turán and he had posed a question which caused me to mention
formula (4) that I had obtained.

Question. So you did not tell Turán not to mention this formula to others?

No, I did not do that. Firstly, Erdős was not there when I talked with Turán,
and besides I thought Turán would have gone back to Hungary before I returned
from Montreal. I had no inkling that Erdős would arrive in Princeton for a visit
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of several weeks duration. But these two, Turán and Erdős, knew each other from
Hungary, mostly from before the Second World War. Erdős was not in Hungary
during the war, but Turán was there.

Question. Did Turán express some sort of regret for what happened later?

No, but you must understand that Erdős was his friend, and he would be un-
willing to offend him. I kept good relations with Turán afterwards, but we avoided
talking about these matters later. As I said, Erdős answered my letter and referred
to Hardy and Littlewood, something I thought was irrelevant in this case—we were
not anything like Hardy and Littlewood. I do not know which of us he thought was
Hardy and which was Littlewood!

Question. You said earlier that when Erdős talked with you, you tried to “dis-
courage” him. Can you specify that a little more?

I told him at that time that one could give a counterexample, namely that an
analogous formula to (4) would imply something else. Let us look at the continuous
analogue. Let’s say that one has a formula like

(8)
∫ x

1

log t df(t) +
∫ x

1

f
(x

t

)
df(t) = 2x log x + O(x).

If one has such a formula it is not necessarily so that f(x) is asymptotical to x. I can
construct a counterexample. However, the function f(x) I used is not everywhere
monotonely increasing. On the other hand, the function in (7), ψ(x) =

∑
p<x log p,

is a monotone function, and it is monotone functions that are relevant for number
theoretic applications. I kind of tried to scare him away from the Prime Number
Theorem itself. It was, one may say, a little dishonest that I did not tell him that
my counterexample was based on a non-monotonic function.

Question. We understand the psychology very well. You know you are close to a
proof of the Prime Number Theorem, and you do not want any meddling?

I did not want any interference in this matter. Anyway, I suggested to Erdős that
each of us could publish separately what we had done. He could have the priority
to publish his result, so that would appear before my result—which actually did
not need his—but I would give a full sketch of how I first had used his result to
obtain my first proof of the Prime Number Theorem. That was also what I did.†

Question. Hardy believed that it was not possible to give an elementary proof of
the Prime Number Theorem?

Yes, but that is not so strange, actually. But there were some people that made a
great fuss about this. Erdős created a whole lot of propaganda for himself. I was in
Syracuse, and I did not lecture on this anywhere. In fact, I have never really given
a talk about the elementary proof of the Prime Number Theorem. I have given
talks a couple of times about an elementary proof of the essential part of the results
Beurling obtained for so-called generalized prime numbers. The elementary proof
gives a somewhat weaker result than Beurling’s. I do not know if it is possible, but
I would think it should be, to give an elementary proof that would give a sharper
form, like the one Beurling had.

†For the full detailed account of this, including two letters of Hermann Weyl, see http://www.

math.ntnu.no/Selberg-interview/.
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Question. Can you explain to us what a generalized prime number is?

Beurling lectured on this at the Scandinavian Congress in Helsingfors in 1938,
and I later looked at his published paper. So you have a sequence of real numbers
1 < p1 < p2 < p3 < · · · , and you form all possible products {nk}k of these and
order them according to size, 1 ≤ n1 ≤ n2 ≤ n3 ≤ · · · . You denote the number of
p’s less or equal to x by π(x), and the number of nk’s less or equal to x by N(x).
The question is, if you assume that N(x) is asymptotic to a constant multiplied
with x plus a remainder term of the form O( x

logα x ), that is

(9) N(x) = Ax + O
( x

logα

)
,

what can you say about π(x)? Beurling proved that if α > 3/2, then π(x) is
asymptotic to x

log x , and so it corresponds to the Prime Number Theorem. He
proved more than that: If (9) holds for all α, then he could prove sharper estimates.
In fact, then you get that π(x) is equal to the logarithmic integral of x plus o( x

logβ x
)

for all β; that is

(10) π(x) = li(x) + o
( x

logβ x

)
.

The logarithmic integral can be defined in different ways, but let us say that li(x) =∫ x

2
dt

log t .

Question. Does Beurling’s proof use the Prime Number Theorem?

No, the proof does not use the Prime Number Theorem. Beurling’s proof is an
analytic proof. I was able to find an elementary proof, but I had to assume that
the remainder term is o(x/log2 x)—only then could I obtain a proof.

I have often wondered if it is possible to improve my proof so it is valid for
α > 3/2 , but I have not had the patience to work it out. But I cannot conceive
that it should not be possible to do so.

Question. You have received the Fields Medal in 1950. You also have received the
Wolf Prize in 1986. Three years ago the Abel Prize in mathematics was established.
What are your thoughts on these types of prizes in general—do you think they have
a positive effect?

It does not advance science. No one does scientific work because there exist
prizes—I cannot imagine that. A prize will make one or more persons happy, but
it also gives rise to disappointment among many people, I would imagine.

Question. But do you believe it serves mathematics in the sense that it creates
publicity and thus raises the awareness of the public?

Whether it serves mathematics to get publicity is an open question.

Question. Coming back to the Abel Prize: what are your thoughts on the awards
so far?

I proposed Serre and Grothendieck as candidates for the first award in 2003, as
some people I would have preferred. I thought that Serre would get it, and that
also happened. Since then I have not made any proposals. Concerning the Abel
Prize, I have a somewhat ambivalent attitude. Let us consider the Nobel Prize:
I think it has caused some unintended harm by creating a strong distinction in
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prestige between those that get the prize and others, who certainly deserve it, but
do not get it. There are, of course, some people that so clearly outshine others
that the award is uncontroversial; in physics, for example, you have Einstein, Bohr,
Heisenberg, Dirac, and a few others. However, since the prize is awarded yearly, it
is inevitable that the distinction will not be so clear. The same problem is bound
to happen with the Abel Prize. There are mathematicians that outshine others
and so clearly deserve the prize—I mentioned Serre and Grothendieck above as two
such people—but in the long run one cannot expect that the recipients of the Abel
Prize will be of the same calibre.

Question. One of the reasons you did not get the Abel Prize is perhaps that you
are Norwegian?

I am a little too old, I think. One should perhaps have an age limit.

Question. You did receive a so-called honorary Abel Prize in 2002, at the Abel
Bicentennial Meeting in Oslo. You were not able to be present to receive this prize.
However, you sent a thank you letter where you referred to Abel’s two-page short
note in Crelle’s journal in 1829, which appears as number XXVII in his Oevres
Complètes, where he proves the most general from of the addition theorem for
abelian differentials. You wrote: “It still stands for me as pure magic. Neither
with Gauss nor Riemann, nor with anybody else, have I found anything that really
measures up to this.” Can you make some further comments on this?

I want to make it clear that I never have read in detail Abel’s so-called Paris
Memoir, which for a long time disappeared before it was recovered and published
long after Abel’s death. But it is that little note, upon which the results of the Paris
Memoir rest, which is so extremely elementary. There really is no comparison in
the mathematical literature, I think. Such a fundamental and far-reaching theorem
proved by so simple and elementary methods—it is pure magic. I cannot imagine
anything that quite compares to this.

Question. A famous problem that was solved a few years back was Fermat’s Last
Theorem. Many will hail this achievement as a victory for modern mathematics,
that one needed a huge machinery of modern tools to accomplish this. We have a
question for you in this connection. Do you think that there will appear, as time
goes by, a simple proof, or do you think that this is the future, namely that one
will need big machineries to solve apparently elementary problems à la Fermat?

It is certainly possible that one will find a simpler proof some time in the future.
I am not able to say from what direction this will come. There are two issues here:
one may be able to find a great simplification of the present proof, which relies on
the connection to the cubic curve that must exist if there is a solution to Fermat’s
equation; but it could also happen that one may be able to find a proof that avoids
that connection. I do not think one will be able to rediscover Fermat’s original
proof.

Question. If it existed?

One cannot doubt Fermat, can one? He was a very intelligent man, Fermat. No
doubt about that.
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Question. But you do not really believe he had the proof?

Either he had it, and he could not find sufficient space to write it down, or he
discovered later that it was not entirely correct as he had thought. But it is not
likely that he had a proof because one knew too little about algebraic numbers at
that time. If every algebraic ring had a nice Euclidean algorithm, then it would
have been possible for him to construct a proof, but Euclidean algorithms seldom
exist, in fact.

Question. We want to end our interview with you by asking the following question:
What in your opinion is it that characterize mathematicians of high and exceptional
quality?

Imagination, resourcefulness and a feeling for relations and patterns are impor-
tant ingredients. It is also very important to have a whole lot of perseverance,
combined with patience. Needless to say one needs a lot of energy as well. Finally,
I think that quite simply some luck is part of it. Yes, some people are lucky many
times, and others are lucky only one time, while some perhaps are not lucky any
time. What I mean is that I have seen good ideas, even brilliant ideas, that some
people have had, but which in the end did not lead anywhere. And I have also
seen examples of people with ideas that did not seem good or exciting, but which
strangely enough led to interesting results. I have known people that seemed to
have lots of ideas and that knew a lot of mathematics, but that never obtained really
exciting results. I have also met people, whom I did not consider to be particularly
intelligent when I talked to them, but who came up with things, often in a clumsy
and inelegant way, which turned out to lead to results of great importance. No, I
dare not define what is the essence of a mathematical talent. It is too multifaceted
and of such great variety.
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