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Brownian motion of molecules: the classical theory
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A short review of the classical theory of Brownian motion is presented. A
new method is proposed for derivation of the Fokker-Planck equations, describ-
ing the probability density evolution, from stochastic differential equations. It is
also proven via the central limit theorem that the white noise is only Gaussian.

Methods of the non-equilibrium statistical mechanics are main tools for solving many
theoretical problems of the contemporary physical chemistry. Their aim is to obtain the spatial
and temporal evolution of the macroscopic properties of matter on the basis of the mechanical
laws governing the molecular motion. Historically, this program has been realized in two direc-
tions: the kinetic theory of dilute gases and the theory of Brownian motion. Both of them have
played major role in the development of the statistical mechanics and represent the origin of all
modern statistical methods. The main achievement of the kinetic theory of dilute gases is the
famous Boltzmann equation, which even nowadays is a primary key for understanding of the
behavior of many-particles systems [1, 2]. On its basis one can express all transport coefficients
via molecular characteristics. However, it is a very complex mathematical problem to solve the
Boltzmann nonlinear integro-differential equation even in the case of extremely simple model
systems. In contrast to the kinetic theory of dilute gases the theory of Brownian motion oper-
ates with easier mathematical apparatus and provides elegant solutions of many relaxation
problems. In fact, it is the first attempt for stochastic modeling of the Nature, which determines
it’s very important contribution to the theory of random processes in physics, chemistry and
biology [3-5] as well as in mathematics [6, 7]. On the basis of this theory powerful methods for
solving various relaxation problems have arisen such as the theories of Markov stochastic pro-
cesses [8, 9], of stochastic differential equations, of diffusive random processes [10, 11], etc.
[12-14]. However, the theory of Brownian motion is restricted by two main limitations. First, it
is a phenomenological theory in the frames of which it is not possible to express the involved
kinetic coefficients via molecular characteristics. Second, the theory of Brownian motion postu-
lates a tendency of mechanical systems towards thermodynamic equilibrium with a known
equilibrium distribution, a fact, which a rigorous non-equilibrium theory has to derive by itself.

In 1827 the English botanist Robert Brown noticed an intensive and continuous motion
of small particles immersed in a rested fluid. In his honor this chaotic motion had been named
Brownian. In the beginning of the 20" century Einstein, Smoluchowski and Langevin discovered
the origin of the strange behavior of Brownian particles. Their physical theory explains the phe-



nomenon as a result of interaction between the Brownian particle and continuously moving flu-
id particles. Due to the chaotic nature of this interaction in respect to magnitude, direction and
duration, the behavior of a Brownian particle is quite irregular and can be described only in the
frames of a statistical approach. The development of the theory of Brownian motion initiates a
rise of many new statistical methods, which can be divided generally into two groups: probabil-
istic and stochastic ones.

Probabilistic methods

The basic feature of probabilistic methods is a replacement of the complicate mechani-
cal description of the dynamics of interaction between the Brownian and fluid particles by some
simple probabilistic assumptions about the random motion of the Brownian particle. As a re-
sult, simple linear differential equations for the evolution of the main statistical characteristics
of the Brownian motion are obtained. The founder of the probabilistic methods for description
of non-equilibrium processes in the Nature is Albert Einstein. In his classical paper [15] concern-
ing the theory of Brownian motion Einstein had introduced probabilistic statistical methods for
modeling of non-equilibrium processes and in this way made a start with lay the beginning of
the development and application of the methods of this group. His theory of the Brownian mo-
tion is based on two intuitively clear assumptions about the motion of the Brownian particles.
First, every Brownian particle does not interact with others. Second, the displacements of one
and the same Brownian particle in two separate sufficiently large time intervals are statistically
independent. On the basis of these two assumptions Einstein had derived numerous results be-
coming now classical in the theory of Brownian motion: the evolution of the Brownian particles
density obeys the well-known diffusion equation, the probability density for finding a Brownian
particle in a given place at a given time is Gaussian and its dispersion is proportional to time
multiplied by the diffusion coefficient D of the Brownian particles in the fluid, etc.

After the classical works of Einstein and Smoluchowski [16] on the Brownian motion
theory lots of powerful statistical methods for solving many complicated problems have arisen.
Nowadays, the most used one is the theory of Markov random processes. The main assumption
of this theory is the possibility the processes in the Nature to be described via a useful idealiza-
tion called stochastic processes without memory. The Markov random processes are second in
respect to complexity after the random processes with independent realizations at different
time moments. A characteristic feature of every Markov process is that the whole information
about its contemporary evolution is contained only by the state at the last previous moment,
which represents a more rigorous formulation of the Einstein assumption concerning the mo-
tion a Brownian particle. In the large variety of Markov processes there is a class of them with
wide application in chemistry and physics, known as diffusive processes. The theory of Markov
diffusive processes states that the time evolution of the probability density p(X,t) of a random

process obeys the following equation



0ip =0, AKX, )p+0, - [D(x,1)p]} (1)

where A(X,t) and ID(x,t) are the drift velocity and diffusion tensor, respectively. Equation (1),
known in physics as the Fokker-Planck equation, is the main tool for modelling kinetic problems
in modern science [9, 10, 14]. It is applied either in mathematics and physics or in chemistry,
biology, radiotechnics, etc.

The application of the theory of Markov diffusion processes to the Brownian motion
provides numerous important results. For instance, the behaviour of a free Brownian particle in
its coordinate space is well described by the Wiener diffusion process. Its main characteristics
are A=0 and D=DI (I isthe unit tensor) and Eqg. (1) reduces to

o,p=Déop (2)

As is seen, Eq. (2) is the classical diffusion equation, a result obtained by Einstein [15] in 1905.
Usually, the application of Eqg. (1) to the Brownian motion is related to a priory postulate that
the equilibrium solution is the well-known Maxwell-Boltzmann distribution. This leads to a rela-
tionship between A and I called fluctuation-dissipation theorem (FDT) [17]. The diffusive
process describing the evolution of a free Brownian particle in the velocity space is called the
Ornstein-Uhlenbeck process [18]. Its characteristics are A=bv and D=Kk,Thl/m, where m

and b are the mass and specific friction coefficient of the Brownian particle, and T is tempera-
ture. FDT is already applied to these expressions. The Fokker-Planck equation for the Ornstein-
Uhlenbeck process above reads

op =00, - (vp+kgTO,p/m) (3)

The equilibrium solution of Eq. (3) is the well-known Maxwell distribution.

The theory of diffusion processes provides also equations for a Brownian particle mov-
ing under the action of an external potential U . In this case the probability density evolution in
the coordinate space obeys the following Fokker-Planck equation

atp = ar ’ (paru + kBTarp) / mb (4)

known after the name of Smoluchowski. Since FDT is already applied to Eq. (4) its equilibrium
solution is the Boltzmann distribution. The juxtaposition of Eq. (4) in the case of absence of the
external potential with Eq. (2) provides the Einstein relation between the diffusion and friction
coefficients



D=k,T /mb (5)

Finally, the evolution of the probability density p(v,r,t) in the Brownian particle phase space
can be described by the following Fokker-Planck equation

op+Vv-0,p—0U-0,p/m=bo,-(vp+k;TO,p/m) (6)

which was derived by Kramers [19]. The equilibrium density provided by Eq. (6) is the Maxwell-
Boltzmann distribution, a result implied in FDT. Starting from the Kramers equation with U =0
one can derive Eq. (3) by integrating only along the Brownian particle coordinate. In the litera-
ture [9, 20] there are methods proposed for derivation of the equation governing the probabil-
ity density evolution in the coordinate space from Eq. (6). The result is a telegraph-like equation

Olp+bo,p=0, (po,U +k,To,p)/ m (7)

which indicates a non-Markov behaviour. Similar equation is used in the description of the tur-
bulent diffusion [21]. In the case of adiabatic exclusion of the quick variables [22, 23] Eq. (7) re-
duces to the Smoluchowski equation (4).

As is seen, the probabilistic methods provide many good results in which, due to some
general assumptions, the main features of the phenomenon reflect. For this reason any theory
of Brownian motion has to reproduce the results obtained above. It has to be noted that the
derivation of these equations can be achieved by methods based on statistical considerations
[3, 19] not included in the theory of Markov diffusion processes. However, the probabilistic
methods have some shortcomings: they are based on debatable presumptions about the char-
acter of the Brownian motion, which could be valid only in limited cases; there are lots of un-
known constants in the kinetic equations obtained by probabilistic methods, which physical
meaning and evaluation are out of this theory; the probabilistic methods are good for the most
general description of Brownian motion but they cannot say anything about the detail process-
es leading to existence of the phenomenon, etc. These facts impose introduction of phenome-
nological constants and using FDT.

Stochastic methods
The main feature of the second group of methods, the stochastic ones, is introduction of
a stochastic approximation of the Brownian dynamics. In the frames of this group a set of sto-
chastic equations is employed to obtain statistical properties of the Brownian motion or to de-
rive equations for the probability density evolution analogous to the Fokker-Planck ones. The
founder of the stochastic methods is Paul Langevin. In his classical work [24] he had introduced



the first stochastic differential equation describing the dynamics of Brownian motion. Langevin
divided the interaction between the Brownian and fluid particles into two parts: a resistance
force, which in the frames of the hydrodynamics is given by the Stokes formula, and a fluctua-
tion force with zero mean value, which is due to the permanent collisions between the Browni-
an and fluid particles. As a result of this separation and the laws of classical mechanics one can
write the following equation

mR +mbR +d.U =f (8)

describing the dynamics of a Brownian particle. Here R(t) is the coordinate of the Brownian
particle. Equation (8) is the famous Langevin equation and every solution of which represents a
separate realization of the random Brownian trajectories. Using relatively simple arguments
about the statistical properties of the fluctuation force f one can obtain measurable average
results for the Brownian motion. Langevin assumed that the fluctuation force and the coordi-
nate of the Brownian particle are statistically independent random quantities and that the
mean kinetic energy of the Brownian particle is equal to the average thermal energy kT . On

the basis of these two assumptions and Eq. (8) he obtained an expression for the dispersion of
free Brownian particles in the coordinate space

<R? >=6k,T{t - [1-exp(-bt)] / b}/ mb

This result is more accurate than that obtained by Einstein. For times larger than the relaxation
time b™ both expression coincide and their comparison leads to the relation (5) between the
diffusion and friction coefficients. In the opposite case the Brownian particle root mean square
displacement is equal to the product of the thermal velocity and time, as expected. In contrast
to the previous considerations the Langevin approach provides expression for the friction con-
stant even if a macroscopic one.

From the Langevin equation (8) one can practically derive all statistical characteristics of
the motion of a Brownian particle if the statistical properties of the fluctuation force are known.
The basic model for f is the well-known random process called white noise, which is delta cor-
related Gaussian process with zero mean value [25, 26]. Attaching it to Eq. (8) the theory of sto-
chastic differential equations has arisen which is of equal worth with the Fokker-Planck equa-
tion method. There are many approaches to derive the latter from stochastic differential equa-
tions [25-27]. Nowadays, the Langevin ideas are developed and enriched by introducing some
contemporary methods of non-equilibrium statistical mechanics. In the literature [17, 28, 29]
an exact stochastic equation is derived which describes the Brownian particle behaviour



mF'e+jG(t—s)-R(s)ds+aRu =f 9)
0

This equation is known as generalized Langevin equation (GLE). It is derived from the many par-
ticles classical mechanics using FDT only. For this reason the following statistical properties

<f>=0 <F(O)F(s) >=k,TG(t—s) <f(R(0) >=0 (10)

are compulsory for any stochastic theory of the Brownian motion.

The main difficulty in the application of GLE (9) is the definition of the memory function
G, which accounts for the influence of previous states on the present behaviour of the Browni-
an particle. There are many models for G . Forster [29] has shown that in the case of a Browni-
an particle much heavier than the fluid particles the memory kernel can be well approximated
by a Dirac delta-function, G(t) =2mbd(t)I. Hence, in this case GLE (9) reduces to Eqg. (8). In
general, GLE describes non-Markov stochastic processes if the memory kernel differs from a
delta-function. Some authors [13, 30] have proposed an exponentially decaying model for the
memory function. For a brief review of other G -models one can see Refs. [31, 32].

Correspondence between the methods

As is seen, the stochastic methods describe better the Brownian motion but their appli-
cation still needs FDT and phenomenological models. The work with stochastic differential
equations is very helpful but not easy and acquires lots of skill and erudition. As mentioned be-
fore there are ways [25-27] starting from the stochastic equation (8) to obtain the correspond-
ing Fokker-Planck equation (1) the use of which is much easier and transparent. There are also
some methods [12, 13, 30, 33] to derive a generalized Fokker-Planck equation from GLE. Forster
[29] has discussed the transition of the latter to Eq. (1) in the limit when the memory time is
negligible compared to the relaxation time of the Brownian particle. Hereafter, we propose a
new approach [34] for derivation of equations governing the probability density evolution. This
approach is based on a special operator constructed by stochastic power expansion.

The probability density in the Brownian particle phase space {r,V} is given by (see for

instance Ref. [10]) p(r,V,t) =<8(r —R)8(V—R) >, where the brackets <-> indicate statistical

average over R -realizations. Another useful statistical quantity is the characteristic function
v(9,u,t) =<exp(ig-R +iu-R) > (11)

The relation between y and the probability density p is a standard Fourier transformation and

the use of one of these quantities is a matter of convenience. In the following derivation of the



equation of the probability density evolution in the phase space one needs always to provide
expressions for the following average product < X8(r —R)3(v—R) >, where X is an arbitrary

random quantity. The Fourier image of this product can be presented in the form
< Xexp(iq-R+iu-R) >=< Z%< X[ig-(R-R)'[iu-(R-R >exp(ig-R'+iu-R" >
jlk!

In fact the right hand side of this equation is a power expansion of the trajectory R around an-
other realization R"' of the same random process, which is the essence of the proposed meth-
od. Taking inverse Fourier transformation of this equality results in

< X8(r—R)3(v—R) >= P(X)p(r, v,t) (12)

where the operator FA’(X) is defined via the relation

P(X)p = Zm(a )1(0,) < (r=R)' (v=R)*X>p]

This operator possesses an important property: if the quantity X satisfies the following corre-
lation properties

j! K o
I -DIKI(k=K)!

<RR¥X >= I <RIPRYK S REX >

for j>J and k=K, and <R'R*X>=0 for j<J and k < K, then its corresponding operator

reduces to

J+K

P(X) = (l) <X(R6)(R8) > (13)

Analogically one can introduce operators in the coordinate and velocity space, respectively. For
instance, the coordinate operator reads

R(X)p(r. 1) {%(a-)ik (r=R)'X>p(r,t)] = [ P(X)p(r, v, t)dv

—00



and as is seen it is simply related to the operator I3(X) .

The first demonstration of the proposed method is a derivation of the equation describ-
ing the evolution of the probability density in the phase space of the Brownian particle. Taking a
time derivative of the characteristic function (11) and using Eq. (8) yields the following equation

o =<[ig-R —iu-(mbR + .U —f)/m]exp(iq-R +iu-R) >

Applying the inverse Fourier transformation to this equation and using definition (12) one de-
rives the evolution equation for the probability density p(r,V,t) in the phase space

d,p+V-0,p—0U-0,p/m=bd, -[vp—P(f)p/ mb] (14)

Equation (14) is exact but requires knowledge about the statistical properties of the Langevin
force. First, one can suppose [24] that the force f is not correlated with the position of the
Brownian particle, i.e. J =0. The second presumption is more intuitive and says that the fluc-

tuation power f-R is not correlated to the velocity of the Brownian particle. This assumption,
combined with the relation <f >=0, leads to accept the value K =1. Finally, if the average en-

ergy of a Brownian particle is stationary it follows from Eq. (8) <fR >=mb<RR >= bk TI.

Hence, the operator F3(f) from Eq. (13) acquires the form
P(f) = bk, T2, (15)

The combination of Egs. (14) and (15) is the Kramers equation (6).

The derivation of Eq. (3) by the present method is obvious. It is more interesting how
the evolution of the probability density in the coordinate space could be described. The corre-
sponding characteristic function is y(q,0,t). Taking a first derivative in respect to time of this

function and inverting the Fourier image yields

0,p=-0, [R(R)p]

This equation is the well-known continuity equation. By appropriate modelling of the operator
IQ(F'Q) =—-D0, one can derive the diffusion equation (2). However, more detailed considerations

require the use of the second time-derivative of the characteristic function and the stochastic
differential equation (8). The result is



02%(9,0,t) =ig- < (ig-RR —bR -9 U / m+f / m)exp(iq-R) >

and applying the inverse Fourier transformation one can derive in a general form the differen-
tial equation governing the evolution of the probability density in the coordinate space

Op+bdp =0, {pd,U /m+3, -[R(RR)p] - R(F)p/ m} (16)

This equation requires some modelling of the included operators. As a consequence of the sta-

tistical properties of the Langevin force it follows from Eq. (15) that RA’(f) =0. Regarding the

operator Ii(RR) it is reasonable to accept that the kinetic energy is not correlated to the tra-
jectory of the Brownian particle, i.e. J =0. Therefore, this operator acquires the simple form
IQ(RR) —<RR >= KsTI/m and Eq. (16) reduces to Eq. (7). Considering now the case of a free

Brownian particle (U =0) Eq. (7) can be rewritten as
atp = Dop

where O is a d’Alembert operator with specific velocity being the thermal velocity of the
Brownian particle. The presence of the second time-derivative here is an indication for a limit in
the speed of the process. In the diffusion the thermal velocity is the highest possible one for the
particle transport and plays a restrictive role for the process like the velocity of light is the max-
imal one for energy transfer in the world.

Appendix
This appendix is added to the printed paper to show via the central limit theorem that
the white noise is compulsory Gaussian due to its continuity, stationarity and constant spectral
density. In the recent years the interest to non-Gaussian white noises has increased as a tool for
description of more complex stochastic systems. The present appendix proves that the white
noise is only Gaussian and, hence, non-Gaussian white noises are oxymora.
The white noise is a stationary stochastic process f(t), which is zero centred < f >=0

and delta-correlated < f(t) f (t,) >=3(t, —t,) . Its probability distribution is not specified. A typ-
ical example for a white noise is the classical Langevin force [24]. One can present f(t) by its

Fourier image g(v) via the standard integral relation

f(t) = T g(v)exp(2rivt)dv (A1)



Using the inverse Fourier transformation of Eg. (A1) and the white noise mean value and auto-
correlation function, it follows that < g >=0 and < g(v,)g(v,) >=3(v, —V,) [9], i.e. the Fourier

image is also a white noise. Thus, according to these expressions and Eq. (A1) the white noise
f represents an integral sum of infinite number uncorrelated Fourier components possessing
zero mean value and the same dispersion. Note that the Fourier images are not correlated for
any stationary stochastic process but only for the white noise they possess equal dispersions
[9]. Hence, the necessary conditions for application of the central limit theorem are fulfilled and
the conclusion is that the white noise is compulsory Gaussian. The main reason for that is the
equal weight of the Fourier components in Eq. (A1), which is the reason for calling the noise
f (t) white in analogy to the white light.
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