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The Continuum Problem

• Continuum Hypothesis (CH)

If A ⊂ P (N) then |A| ≤ |N| or |A| = |P (N)|

• Generalized Continuum Hypothesis (GCH)

For all infinite sets X, and all sets A ⊂
P (X) either |A| ≤ |X| or |A| = |P (X)|.
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Celebrated Problem in Set Theory

• Posed by Cantor in 1890’s

• Was Problem 1 on Hilbert’s famous list of

problems given to the International Congress

of Mathematics in 1900.

• Recent work of Woodin has raised hope

that there is an imminent solution.

• “Growing Consensus that Woodin has solved

the Continuum Problem”. (Well known set

theorest.)
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Purposes of the talk

• Review the current state of the problem.

• Present various alternatives to the Woodin

work which I think should be seriously con-

sidered.
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The Problem

• Godel: The GCH is consistent with ZFC

(It holds in the canonical model L.)

• Cohen: The C.H. and most instances of

GCH are independent of ZFC.

(They fail in models created by the method

of forcing.)

• Shelah: The phenomenon is mostly a phe-

nomenon involving regular cardinals.

(There is deep combinatorial structure at

singular cardinals that relates the behaviour

at singular cardinals to the behaviour at

regular cardinals.)
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What could it mean to settle the problem?

We will begin by covering some familiar

ground.
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Mathematics = 1st Order Logic + Axioms

• We understand 1st order logic very well.
(complete recursive proof system, L-S The-
orem etc.)

• Isolates the “variable” in the foundational
study as “which Axioms to take.”

• Other alternatives “squeeze the balloon”
to put essentially equivalent foundational
issues elsewhere than the axioms. This
tends to make their study more difficult,
while not providing more insite into prob-
lems like the CH.

• For example, second order logic “settles”
the CH, but doesn’t give any tools for find-
ing the answer.
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What is an Axiomatization?

Why are Axioms adopted/accepted?

• Intuitive Appeal

(e.g. Axiom of Choice or Union Axiom.)

• Pragmatic or Utilitarian Reasons

(e.g. Axiom of Regularity.)

Godel and other proposed strengthening the

axioms to settle independent questions.
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Very Best Situation

The realization of simple, clearly stated axioms

that settle all “interesting” problems and ap-

peal directly to the intuition.
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Minimal Adequate Solution

(From a realist point of view.)

Recursive collection of Axioms that cohere with

known facts and appear to give an accurate

description of the set theoretic universe.
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Problem of Weather Prediction

The mathematical universe may not admit a

simple description.

Euclid’s Axioms, as a simple, poignant axiom-

atization may be misleading. The mathemat-

ical universe may be as complicated and have

as deep a structure as the physical universe.

Indeed Shelah seems to have proposed such a

universe: more or less every possible behaviour

occurs.

(Stuff Happens!)
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Life’s Compromises

Search for some solution that is in between

the ”Very Best Solution” and the ”Minimal

adequate Solution”
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Evaluation of Axiom Systems

1. Primary Considerations

• Content of the Axioms

What do they say?

• Educated intuitions

2. Secondary/Tertiary Considerations

• “Predictions,” True statements ϕ that

are first proved using strong axioms that

are later “verified” in ZFC (or have ana-

logues that are verifiable, e.g. by count-

ing on your fingers.)

• Effectiveness in answering interesting ques-

tions, “completeness”
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Secondary/Tertiary Considerations cont.

• Coherence

• Hierarchy in Consistency Strength (reafica-

tion)
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Case Study: “New Foundations”

Almost all mathematicians working on Founda-

tional issues find Quine’s “New Foundations”

sufficiently unintuitive that is not a serious con-

tender for an axiomatization of mathematics.
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Case Study:

Large Cardinals a successful axiom system

This example is important because it does seem

like there is a near consensus among set theo-

rests to adopt large cardinal axioms.

• Primary Considerations:

– Intuitive Appeal

– An appealing and coherent body of con-

sequences, especially in Descriptive Set

Theory. (Facts about Lebesgue Mea-

surability, etc.)
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Case Study: Large Cardinals

• Secondary Considerations:

– Form an (almost) linear hierarchy of con-

sistency strengths which is very useful

for calibrating the consistency strength

of “all interesting propositions”

(Not Calibrated ⇒ Not Interesting??)

– “Complete” for ThL(R). In the pres-

ence of large cardinals, the theory of

L(R) cannot be changed by forcing.
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Main Weakness of Large Cardinals

Large Cardinals can say (almost) nothing about

the questions “low down”, i.e. in the vicinity

of the ℵn’s that are not effective or that involve

the Axiom of Choice.

In particular, large cardinals say nothing at all

about the CH.

(Theorems of Levy and Solovay make this as-

sertion rigorous.)
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A typical Large Cardinal

There is an elementary embedding

j : V → M

such that

1. j moves certain ordinals certain places

2. M is a sufficiently robust transitive subclass

of the universe V .

Note that there are two parameters that de-

termine the strength of the embedding: where

ordinals go and the closure properties of M .

(Variations: ∀f : κ → κ∃j . . .)
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There are various technical obstacles to over-

come with this definition: it is clearly not first

order.

The definition given does, however, give a suf-

ficiently precise heuristic to allow first order

definitions that can be shown equivalent using

metamathematical means.

A typical statement would be:

There is a normal, fine, κ-complete ultrafilter

on [λ]κ.
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Case Study: The axiom “V = L”

This axiom is interesting because there is a
near consensus among set theorests rejecting
this axiom.

Advantages:

• The theory of L is completely forcing ab-
solute; in fact it is absolute between mod-
els of set theory with the same ordinals, a
much stronger property.

• The structure of L is well understood and
we know the answers to essentially all set
thoeretic questions.

• The study of L has given rise to many
techniques that are important in set the-
ory, such as ♦ and �. (methadological pre-
dictions, see below)
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Advantages of L, continued

• The theory V = L has made predictions

later “verified” by ZFC: In L there are com-

binatorial “morasses” on all regular cardi-

nals. It was later shown in ZFC that there

are morasses on ω1.
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Why was “V = L” rejected?

The exact reasons vary, but all seem to have

to do with objections to the consequences of

L. Some typical examples:

• An intuition that L is somehow “too small”;

that the axiom V = L is intolerably limiting

to the notion of “set”.

• Consequences of “V = L”, particularly in

descriptive set theory are counterintuitive.

For example, in L it is easy to define sets

that are not Lebesgue measurable.

• There is a competing, more intuitively suc-

cesful theory that contradicts V = L. (Large

Cardinals)
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The Moral:

The considerations of completeness and ab-

soluteness are secondary when considering ax-

ioms.

The main criterion is what the axioms SAY.
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Woodin’s Work

Woodin’s work is exposited extensively in two

articles in the Notices of the American Math

Society. (For a correct and more complete ex-

planation, the reader is referred to this primary

source.)

Very Roughly:

New logic, termed Ω-logic. This “logic” makes

sense in the presence of large cardinals. It is

not a logic in the sense that it has a syntax,

or that the validities are enumerable. “Proofs”

are witnessed by weakly homogeneous trees.

25



The results

• There is a theory that is Ω-complete for Σ2

statements in H(ω2). Morever this Σ2 the-

ory of H(ω2) cannot be changed by forcing.

This is viewed as the correct analogue of

the invariance of the theory of L(R) under

forcing (in the presence of large cardinals.)

• Any such theory implies that the contin-

uum in ω2.
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Forcing Axioms:

• (Foreman/Magidor/Shelah ’84)

Martin’s Maximum ` 2ℵ0 = ω2

• (Todorcevic)

Proper Forcing Axiom ` 2ℵ0 = ω2

• (Todorcevic)

Bounded Martin’s Maximum ` 2ℵ0 = ω2.
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What does Woodin’s canonical theory say?

The example of a canonical Σ2 theory of H(ω2)

given by Woodin includes Bounded Martin’s

Maximum.

As far as we know this is the combinatorial

content of what any canonical theory “says”.

Moral:

An evaluation of the theory on “primary con-

siderations” should be of BMM.
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To summarize

Woodin’s solution of the continuum hypothe-

sis is a very sophisticated utilitarian argument,

based more on the desirability of generic ab-

soluteness than on what the content of the

theory is.

For the rest of the talk I outline what I view

as a potential alternative to Woodin’s theory

that is much closer in content to conventional

large cardinals.
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Generic Elementary Embeddings

Typical Statement:

There is an elementary embedding

j : V → M

where:

1. j moves certain ordinals certain places

2. M is a sufficiently robust transitve subclass

of a generic extension V [G].

The only difference with large cardinals is that

model M and j are defined an generic exten-

sion.
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3 parameters control the strength

1. Where ordinals go.

2. the closure properties of M .

3. The nature of the forcing P that produces

G.
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First Order Equivalents

These typically take the form:

There is a normal fine κ-complete ideal on Z ⊂
P (X) which is:

• Precipitous or

• Saturated or

• has a small dense subset

• etc.

(important names involved in discovering these
are Ulam, Jech, Solovay, Kunen and many oth-
ers)

Consider these axioms in the light of the cri-
teria put forth.
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Axioms fall into two incompatible classes

• Generalized Large Cardinals: This is a large

coherent family of Axioms including such

axioms as generic huge embeddings with

critical point ω1.

• An apparently isolated example: The state-

ment “the non-stationary ideal on ω1 is ω2-

saturated” (and close variations).

As far as we know, the latter class is is

limited to results about sets of hereditary

size ω1. It does not have analogues at ac-

cessible cardinals such as ω2 or ω3 or in

conventional large cardinals.

33



Generalized Large Cardinals

The exact properties are far from being exten-

sively worked out, but the following results are

known:

• Form a directed 3-parameter family of ax-

ioms under the ordering of implication.

• Contain various hierarchies of consistency

strength, e.g.

Theorem(Foreman) The statements that “ω1

is generically n-huge when forcing with Col(ω, ω1)”

is a strict hierarchy of consistency strength.
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Properties of Generalized Large Cardinals

• Generalized large cardinals intertwine with

large large cardinals in consistency strength,

e.g.

Theorem(Foreman) The statement: “There

is a cardinal κ that is κ+-supercompact” is

equiconsistenty with the statement that “ω1 is

the critical point of a well determined generic

ω2-supercompact embedding.”

Similar statements hold for your favorite large

cardinal: generic huge cardinals, or ...
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The range of Strength

At the weaker end, the Generalized Large Car-

dinals take the form of stationary set reflection

properties; at the stronger end various Chang’s

Conjectures.
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Primary Criterion:

Content

I contend that “Generalized Large Cardinals”

are straightforward generalizations of conven-

tional large cardinals. Moreover, that whatever

the direct or indirect evidence for large cardi-

nals is, when suitably viewed does not distin-

guish between conventional large cardinals and

generic large cardinals.

This includes “educated intuitions”.

Note that arguments for cardinals such as inac-

cessible or Mahlo cardinals, that are based on

the height or magnitude of the ordinals don’t

seem to apply to generic large cardinals. How-

ever they do not seem to suffice for even mod-

erately strong large cardinals either.
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Secondary Criterion:

Effectiveness in answering questions

Theorem(Foreman early 1980’s)

If there is a j : V → M ⊂ V [G] where:

a.) crit(j) = ω1

b.) Mω1 ∩ V [G] ⊂ M

c.) G ⊂ Col(ω, ω1) is generic

Then the CH holds and 2ω1 = ω2.

Note: Jech showed that if there is a saturated

ideal on ω1 then the CH implies 2ω1 = ω2.
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Woodin improved this result:

Theorem: If there is a countably complete,

uniform ω1-dense ideal on ω2 then the CH holds

and 2ω1 = ω2.
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A major strength of these axioms is that they
generalize to to any cardinal. Thus e.g. Woodin’s
Theorem easily generalizes to show:

Theorem Suppose that κ = λ+, λ regular and
there is a λ-complete, uniform ideal on κ+ such
that P (κ+)/I has a dense set isomorphic to
Col(λ, κ). Then 2κ = κ+.

or one can appeal to the following theorem to
deduce the GCH from the CH and 2ω1 = ω2:

Theorem (Foreman) Suppose that 2κ = κ+

and there is a generic elementary embedding
j : V → M such that:

a.) crit(j) = κ, j(κ) = λ, j(κ+) = (λ+)V

b.) j“λ+ ∈ M .

Then 2λ = λ+.
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The theory determined by
Generalized Large Cardinals

• GCH: Yes

• Suslin Trees on Successors of regular car-
dinals: Yes

• Kurepa Trees: No

• �κ: No

• Chang’s Conjectures: (κ+, κ) →→ (λ, λ′): Yes

• Stationary set reflection at regular cardi-
nals (in the various possible forms): Yes

• Strong partition properties at successor car-
dinals such as ω2: mostly open, but signif-
icant results in the “Yes” direction.

41



Descriptive Set Theory

Since the generalized large cardinals include

conventional large cardinals (taking the forcing

to be trivial), all of the descriptive set theoretic

consequences of Large Cardinals remain.

Many consequences are implied immediately by

generalized large cardinals axioms just involv-

ing ideals on ω1 or ω2.
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Metaconjecture

All “standard” set theoretic problems are set-

tled by generalized large cardinals.
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Secondary Criterion:

Predictions

Godel’s suggestion of predictive capacity of ax-

ioms is fraught with various kinds of dangers.

In particular, the criterion is inherently socio-

logical, rather than mathematical because it

seems to necessarily involve a temporal ele-

ment. I’ll consider three kinds of “predictions”.
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Version 1

A prediction is when there are theories Σ0 ⊃ Σ1

a proposition ϕ such that Σ1 ` ϕ, but a proof

that Σ0 ` ϕ was found first.

45



Standard example given for large cardinals:

The Wadge Hierarchy for Borel Sets is Well-

ordered.
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Examples From Generalized Large Cardinals

Silver’s Theorem about the Singular Cardinals

Hypothesis:

Magidor proved that if there is a precipitous

ideal on ω1 and the GCH holds below a singular

cardinal λ of cofinality ω1 then 2λ = λ+.

A short time later, Silver, originally using simi-

lar techniques, eliminated the assumption of a

precipitous ideal on ω1.
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There is a technical example of a metrizability

property for Moore Spaces that was shown by

Tall using generic huge embeddings and later

proved in ZFC by Dow.

A more doubtful example:

The proof of

• “A normal fine ℵ1-dense ideal on [ℵ2]
ℵ1 im-

plies the CH”

preceded Woodin’s Theorem that

• “A uniform, countably complete ℵ1-dense

ideal on ω2 implies the CH.”
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A still more dubious example of “prediction”:

• (Woodin) The existence of an ℵn-saturated

normal fine ideal on [ℵω]ℵω implies that the

CH fails.

• (Foreman) There is no ℵn-saturated nor-

mal fine ideal on [ℵω]ℵω
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Version 2: Methadolical Predictions

Techniques that arise from the use of an Axiom

collection Σ0 ⊃ Σ1 have natural analogues that

are discovered to work in Σ1.
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A clear example of this

• (Foreman) If there is a j : V → M ⊂ V [G]
where

a.) crit(j) = ω1, j(ω1) = |R|

b.) j“|R| ∈ M

c.) G ⊂ Col(ω, ω1) is generic.

Then every set of reals in L(R) is Lebesgue
Measurable, has the Property of Baire etc.

• Large Cardinals imply that every set is LM,
has POB etc.

The latter was proved by technique heavily in-
volving generic elementary embeddings. (That
there are now proofs that don’t use generic el-
ementary embeddings may also be viewed as a
“prediction”.)
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Version 3: Gradation of Consequences

Stronger Axioms have stronger natural conse-

quences.

This appears to be less like a “prediction” but

has the advantage of not being temporal.

52



Example of gradations

• (Erdos-Rado) CH implies that

ω2 → (ω1 + 1, ω2)

• (Laver, later Kanamori) CH + there is an

(ω2, ω2, ω)-saturated ideal on ω1 imples that

ω2 → (ω1 × 2 + 1, ω2)

• (Foreman and Hajnal) CH + there is an

ℵ1-dense ideal on ω1 implies:

ω2 → (ω2
1 + 1, ω2)
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Another example

• (Woodin) If there is an ω2-saturated uni-

form ideal on ω2 then (Θ)L(R) < ω2

• (Woodin) If there is an ℵ1-dense, uniform

ideal on ω2 then the CH holds.

Here it is easy to see that the first hypothesis

is not sufficient for CH.
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Conclusion

There are viable alternatives to the Woodin

“Solution” of the CH and these should be con-

sidered and explored before we rush to cele-

brate.
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         The End
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