
Advanced Graphics Lecture Notes

Neil Dodgson∗

University of Cambridge Computer Laboratory

Overview

The course is in two halves. The first taught by Prof. Neil Dodgson, the second by

Dr Alex Benton. This first half of the course covers the three industry-standard ways

of representing three-dimensional surfaces: polygon meshes, NURBS, and subdivision

surfaces.

Why Advanced Graphics? The title “Advanced Graphics” dates from the year in

which the course was first proposed. At this time a 16 lecture course on various ad-

vanced topics in graphics was envisaged. The course is now 12 lectures long. This year,

it is mainly concerned with 3D modelling techniques, so the course title is a little mis-

leading.

What’s examinable? Everything except where explicitly noted otherwise. This means

that anything that is covered in the lectures is examinable, even if it is not in the notes,

unless I say otherwise, and that anything that is in the notes is examinable, unless noted

otherwise.

Lecture handouts and supervision material Some of the lecture course material

is available on the web. This material is also printed out to provide these lecture notes.

Other material is bound in with these notes but cannot be put on the web for copyright

reasons. There are exercises at the end of each section (subsections 1.6, 2.3, 4.4, 5.4, 6.2,

7.3). My thanks to Dr Jonathan Pfautz and Dr Andy Penrose for some of the exercises.

Book list and their abbreviations The following books are referred to in the course.

Each is preceded by the abbreviation used in these notes to refer to that book. The

NURBS part of the course is mainly based on material from R&A. You should be able to

find some of these books in your College library.

• R&A Rogers, D.F. & Adams, J.A. (1990). Mathematical Elements for Computer
Graphics. McGraw-Hill (2nd ed.). A good coverage of the mathematics of the 2D

and 3D representation of shape as it was understood in the year of publication.

∗Written 10/99, modifications made 09/00, 10/02, 09/04, 04/06, 03/07, 01/10, 03/12. c©1999, 2000, 2002,
2004, 2006, 2007, 2010, 2012 Neil A. Dodgson

1

http://www.cl.cam.ac.uk/Teaching/current/AdvGraph

2 Advanced Graphics Lecture Notes

Explains Bézier, B-spline, and NURBS curves and surfaces in great detail. Also

covers conics and quadrics.

• FvDFH Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1990). Computer
Graphics: Principles and Practice. Addison-Wesley (2nd ed.). The traditional

“bible” of Computer Graphics. It tends to be terse but it has wide coverage of

all of the basics.

• F&vD Foley J.D. & van Dam, A. (1984). Fundamentals of Interactive Computer
Graphics. Addison-Wesley (1st ed.). The earlier version of FvDFH. It contains

only about half of the material of the second edition, but is still comprehensive

about the basics of computer graphics.

• SSC Slater, M., Steed, A. & Chrysanthou, Y. (2002).
Computer Graphics & Virtual Environments. Addison Wesley. A more recent book

than FvDFH. It covers all the basics and also has sections on Constructive Solid

Geometry (Ch. 18), Quadrics (also Ch. 18), Radiosity (Ch. 15), and an introduction

to Bézier and B-Spline curves and surfaces (Ch. 19).

• Buss Buss, S.R. (2003). 3-D Computer Graphics. Cambridge University Press. A
book that has the best description of radiosity (Ch. XI) that I have ever read. It

also contains chapters on Bézier curves (VII), B-Splines (VIII), ray tracing (IX and

X) and animation (XII).

• Farin Farin, G. (2002, 5th ed.; 1997, 4th ed.). Curves and Surfaces for CAGD. Mor-
gan Kaufmann (5th ed.). Academic Press (4th ed.). An alternative source for in-

formation on Bézier, B-Spline, NURBS, and conics. Requires more fluency with

mathematics than R&A. Regularly updated since its original publication in 1988.

• W&WWarren, J. & Weimer, H. (2002). Subdivision Methods for Geometric Design.
Morgan Kaufmann. The first book devoted entirely to subdivision methods.

• P&R Peters, J. & Reif, U. (2008). Subdivision Surfaces. Springer. The second book
on subdivision. Aimed more at mathematical proof thanW&W.

• GG I-V Graphics Gems volumes I (1990) to V (1995). Academic Press. A collection
of five books containing a wide variety of algorithms for use in computer graphics.

A wide range of tips, tricks and techniques is included.

Note on copyright material I have included, in this handout, an extract from Rogers

and Adams (R&A), which consists of parts of sections 5-8 (Bézier curves), 5-9 (B-splines),

and 5-13 (NURBS). This is provided under the University of Cambridge’s license from

the Copyright Licensing Agency. This allows us to make one copy for each student and

supervisor (“tutor”) on the course within certain limits. These are: no more than three

works and no more than 5% or one whole article or chapter from each work. This mate-

rial is provided solely for the student’s own study. Further copying of this handout is a

breach of copyright.

Be warned: to fit inside these limits I have heavily edited the extracts from R&A. In

particular, I have included none of the worked examples. To thoroughly understand the

http://http://www.booksites.net/slater/
http://www.math.ucsd.edu/~sbuss/MathCG/
http://www.farinhansford.com/books/cagd/
http://www.subdivision.org/
http://www.graphicsgems.org/

Neil Dodgson 3

Figure 1: A basic ray traced model showing refraction and shadowing.

material I suggest that you read this extract and then borrow a copy of R&A in order to

go through the examples.

1 Basic 3D modelling

1.1 Ray tracing vs polygon scan conversion

Ray tracing and polygon scan conversion are the two standard methods of producing

images of three-dimensional solid objects. They were covered in the Part IB course. If you

want to revise them then read through FvDFH sections 14.4, 15.10 and 15.4 or F&vD

sections 16.6 and 15.5. Line drawing is also used for representing three-dimensional

objects in some applications. It is briefly covered in Section 1.4.

1.2 Ray tracing

Ray tracing has the tremendous advantage that it can produce realistic looking images.

The technique allows a wide variety of lighting effects to be implemented. It also permits

a range of primitive shapes that is limited only by the ability of the programmer to write

an algorithm to intersect a ray with the shape. It is considered by many to be the natural

or obvious way to render 3D objects.

Ray tracing works by firing one or more rays from the eye point through each pixel.

The colour assigned to a ray is the colour of the first object that it hits, determined by

the object’s surface properties at the ray-object intersection point, the illumination at

that point, and contributions from any reflection or refraction that occurs at that point.

The colour of a pixel is some average of the colours of all the rays fired through it. The

power of ray tracing lies in the fact that secondary rays are fired from the ray-object

intersection point to determine its exact illumination (and hence colour). This spawning

of secondary rays allows reflection, refraction, and shadowing to be handled with ease.

A simple raytraced image can be seen in Figure 1.

Ray tracing’s big disadvantage is that it is slow. It takes minutes, or hours, to ren-

der a detailed scene. The quality of the images that can be produced is high, compared

4 Advanced Graphics Lecture Notes

Figure 2: A ray traced model of a kitchen design.

Figure 3: A close up of the kitchen sink.

with polygon scan conversion. However, ray tracing is so computationally intensive that

it is not possible to produce images at the same speed as hardware assisted polygon

scan conversion. A Cambridge company (Advanced Rendering Technology) investigated

hardware-assisted ray tracing in the late 1990s and other researchers have used mul-

tiple processors (dozens to hundreds) to do ray tracing, but ray tracing will always be

slower than polygon scan conversion.

Ray tracing therefore is only used where the visual effects cannot be obtained using

polygon scan conversion. Polygon scan conversion uses a variety of tricks to imitate these

special effects, including using parts of the ray tracing algorithm where it proves more

effective than any other solution. This means that, in practice, pure ray tracing is used

by a minority of movie and television special effects companies, advertising companies,

and enthusiastic amateurs.

The kitchen in Figure 2 was rendered in 1990 using the ray tracing programRayshade.

At the time, Rayshade was able to produce images that could not be created efficiently

by polygon scan conversion. However, Rayshade has not been updated since 1992. A

more recent ray tracer is POVray, with which you may like to experiment. It is worth

visiting the POVray website to see the stunning imagery which has been produced using

the ray tracer .

The close-ups of the kitchen scene in Figures 3 and 4 show some of the power of ray

tracing. The kitchen sink reflects the wall tiles. The bench top in front of the kitchen

sink has a specular highlight on its curved front edge. The washing machine door is a

http://graphics.stanford.edu/{~{ }}cek/rayshade/rayshade.html
http://www.povray.org/

Neil Dodgson 5

Figure 4: Close up views of the washing machine door and the grill on the stove.

Figure 5: A scan converted model of a city (courtesy of Jon Sewell).

perfectly curved object (impossible to achieve with polygons). The inner curve is part

of a cone, the outer curve is a cylinder. You can see the floor tiles reflected in the door.

Both the washing machine door and the sink basin were made using computational solid

geometry. The grill on the stove casts interesting shadows (there are two lights in the

scene). This sort of thing is much easier to do with ray tracing than with polygon scan

conversion.

1.3 Polygon scan conversion

This term encompasses a range of algorithms where polygons are rendered, one at a

time, into a frame buffer. The term scan is historic: when the original algorithm was

developed, displays were cathode ray tubes, which display images as a sequence of hor-

izontal scan lines. Examples of polygon scan conversion algorithms are the painter’s

algorithm, the z-buffer, and the A-buffer (see your Part IB lecture notes, FvDFH chap-

ter 15, or F&vD chapter 15). In this course we will assume that polygon scan conversion

refers to the z-buffer algorithm or one of its derivatives, such as the A-buffer. We will

also assume that the algorithm is implemented in hardware on a graphics card.

The advantage of polygon scan conversion is that it is fast. Polygon scan conversion

6 Advanced Graphics Lecture Notes

algorithms are essential for computer games, flight simulators, and other applications

where interactivity is important. To give a human the illusion that they are interacting

with a 3D model in real time, you need to present the human with animation running

at 10 frames per second or faster for passive viewing on a monitor, TV, or movie screen.

Research at the University of North Carolina has experimentally shown that for immer-

sive virtual reality applications this is not high enough and at least 15 frames per sec-

ond is a minimum. Polygon scan conversion is capable of providing this sort of speed

and is capable of being implemented as a parallel algorithm. For example, the NVIDIA

GeForce GTX 680 graphics processing unit (GPU), released in March 2012, has 1536

CUDA cores running at just over 1GHz. It can render up to 128.8 billion textured pixels

per second, and can render animated scenes containing many millions of triangles in

real time. While we might hope that scientific or medical applications were considered

important applications of computer graphics, it is the game industry that is driving the

development of graphics card technology.

One challenge with polygon scan conversion is that the basic algorithms support

only simplistic lighting models, so images do not necessarily look realistic. For example:

transparency can be supported, but refraction requires the use of a texture-mapping

technique called “refraction mapping”; reflections can be supported, at the expense of

rendering a “reflection map” before rendering the scene; shadows can be produced using

“shadow maps”. All of these are more complicated methods than those used in ray trac-

ing. Where ray tracing is a clean and simple algorithm, polygon scan conversion uses a

variety of tricks of the trade to get the desired results. The other limitation of polygon

scan conversion is that it only has a single primitive: the polygon, which means that

everything is made up of flat surfaces. This is unrealistic if you use largish polygons to

model natural objects such as humans or animals. The solution, feasible with today’s

technology, is to use polygons that are no bigger than a pixel. An image generated using

a polygon scan conversion algorithm is usually distinguishable from a photograph, but

it is becoming increasingly possible to produce images indistinguishable from reality, at

least at a first glance.

1.4 Line drawing

An alternative to the above methods is to draw the 3D model as a wire frame outline.

This is obviously unrealistic, but is useful in particular applications, in particular in the

computer software used to design 3D models.

The wire frame outline can be either see through or hidden lines can be removed

(FvDFH section 15.3 or F&vD section 14.2.6). In general, the lines that are drawn will

be the edges of the control mesh of the B-spline or subdivision surface (see Sections 5

and 7).

Line drawing was historically faster than polygon scan conversion. However, modern

graphics cards handle both lines and polygons at about the same speed.

To illustrate the speed with which computer graphics has developed, Compare a mod-

ern computer game with what was possible in the late 1970s. A modern game can pro-

duce near-photo-realistic animated graphics in real time. The first edition of R&A, pub-

lished in 1976, used only line drawing algorithms to illustrate its 3D models. Only one

figure in the entire book did not use line drawing: Fig. 6-52, which had screen shots of a

prototype polygon scan conversion system.

http://www.cs.unc.edu
http://www.nvidia.com/

Neil Dodgson 7

Figure 6: Screen shots from commercial flight simulators, circa 1995. The graphics used

today are better than this, but not as good as you see in video games: most aircraft

cockpits are a long way away from the scenery for most of the time, and pilots spend

most of their time looking at the instruments, rather than looking out the window.

A second illustration of the development of computer graphics is in the movie indus-

try. Star Wars [1977] and Alien [1979] were the first movies to use computer graphics.

In both movies, the “computer graphics” were short sequences of line drawn graphics,

where each frame took several minutes to render. Thirty years later, Avatar [2009] used

real-time 3-D computer graphics during shooting, and non-real-time rendering of photo-

realistic shaded computer graphics for most of the movie.

1.5 Applications of computer graphics

Almost all applications of computer graphics use polygon scan conversion.

Visualisation generally does not require realistic looking images. In science we are

usually visualising complex three dimensional structures, such as protein molecules,

which have no “realistic” visual analogue. In medicine we generally prefer an image

that helps in diagnosis over one which looks beautiful. Such visualisation therefore uses

polygon scan conversion, although some data require voxel rendering.

Simulation uses polygon scan conversion because it can generate images at interac-

tive speeds. Early advances in computer graphics (in the 1970s and 1980s) were driven

by the commercial flight simulator market. At this expensive end of the market, a great

deal of computer power used to be needed to do the graphics. The most expensive flight

simulators are those with full hydraulic suspension and a full field-of-view out of the

cockpit windows. In 1990 such a simulator would cost about £10M, of which £1M went

on the graphics kit. Similar rendering power is available today on a graphics card which

costs a hundred pounds and fits in a PC. A commercial flight simulator today will still

cost you about £10M, but less than £10k will be spent on the graphics kit. Figure 6 shows

screen shots from two commercial flight simulators in the mid-1990s; Figure 7 shows the

simulator’s cockpit, which is an exact physical replica of the cockpit on a real aircraft.

Although the cost of the graphics has dropped dramatically, the cost of the physical kit

has not.

Computer games are a particular form of interactive simulation. They use polygon

scan conversion because it gives interactive speeds.

8 Advanced Graphics Lecture Notes

Figure 7: The real cockpit of a commercial flight simulator: an exact replica of the equiv-

alent aircraft’s cockpit.

The principal uses of ray tracing, in the commercial world, are in producing a small

quantity of super-realistic images for advertising and in producing a small proportion of

the visual effects for film and television. Most visual effects are done using sophisticated

polygon scan conversion algorithms.

The first movie to use 3D computer graphics was Star Wars [1977]. Graphics were

not used for the space ships , animals or sets. You may recall that there were some line

drawn computer graphics toward the end of the movie in the targeting interface on the

X-wing fighter. All of the spaceship shots, and all of the other special effects, were done

using models, mattes (hand-painted backdrops), and hand-painting on the actual film.

Computer graphics technology has progressed incredibly since then. The twenty-fifth

anniversary re-release of the original Star Wars trilogy included a number of computer

graphic enhancements, all of which were composited into the original movie.

Twenty years after Star Wars, we saw computer graphics effects of the kind found

in movies such as Starship Troopers [1997]. Most of the giant insects in the movie were

completely computer generated. The spaceships were a combination of computer graphic

models and real models. The largest of these real models was 18’ (6m) long: so it was

obviously still worthwhile spending a lot of time and energy on the real thing.

Effects are not necessarily computer generated. The movie industry distinguishes

between special effects, which are done on set, and visual effects, which are done in

postproduction on a computer. Compare King Kong [1933] with King Kong [2005]. The

plot has barely changed, but the effects have improved enormously: changing from hand

http://www.starwars.com/
http://www.imdb.com/title/tt0120201/
http://www.imdb.com/title/tt0024216/
http://www.imdb.com/title/tt0360717/

Neil Dodgson 9

animation (and a man in a monkey suit) to computer generated imagery.

Not every effect you see in a modern movie is computer generated. In Starship Troop-

ers, for example, the explosions are real. They were set off by a pyrotechnics expert

against a dark background (probably the night sky), filmed, and later composited into

the movie. In Titanic [1997] the scenes with actors in the water were shot in the warm

Gulf of Mexico. In order that they look as if they were shot in the freezing North At-

lantic, cold breaths had to be composited in later. These were filmed in a cold room

over the course of one day by a special effects studio. Film makers balance quality, ease

of production, and cost. They will use whatever technology gives them the best trade

off. This is increasingly computer graphics, but computer graphics is still not useful for

everything by quite a long way.

In the three Lord of the Rings movies [2001–3], almost anything which could be shot

in live action was shot that way. Computer graphics were used only where they were

easier or cheaper or the only feasible way to do something. For example, in Return of

the King, the lava flowing down Mount Doom was originally to be produced by computer

graphics simulation. When the results were found to be not realistic enough, some of the

shots were re-done using real gunk flowing down a real model of a mountainside. Helms

Deep, in The Two Towers, consisted of some computer graphics, a small-scale model of

the whole thing, a quarter-scale model of the wall and citadel and a full-scale model of

parts of the citadel for real actors to perform on. Compositing all the component of any

given shot is an interesting image processing task. In a typical movie, each frame (at 24

frames per second) will have anything from twenty to over a hundred separate elements

which need to be composited to make the final image.

Completely computer-generated movies have been with us since 1995. Toy Story

[1995] was the world’s first feature length computer generated movie. Two more were re-

leased in 1998 (A Bug’s Life [1998] and Antz [1998]). These were followed by Toy Story 2

[1999],Dinosaur [2000], Shrek [2001],Monsters Inc [2001], Ice Age [2002], Finding Nemo

[2003], and Shrek 2 [2004]. The genre is now well established and there are many more

recent examples. Note the subject matter of the early movies: toys, bugs, dinosaurs,

monsters, sea life, and fairytale characters. It is very difficult to model humans realis-

tically and research is still being undertaken in the field of realistic human modelling.

Final Fantasy [2001] was the first serious attempt to represent fully human characters

in a fully computer-generated movie. When we look at it today we see that the quality

is not quite up to the standard that we see today in the top video games. Avatar [2009]

successfully produced computer-generated (pink-skinned) humans that looked realis-

tic, though you can still see something “not quite right” in still shots of the computer-

generated human characters, and the majority of the shots of the (pink-skinned) humans

were taken of live humans on a set, rather than depending on the computer.

In terms of computer time, both Toy Story [1995] and Avatar [2009] used about a

century of CPU time for the final rendering. Compare the quality and the complexity of

what is rendered to judge how far the industry moved in the 14 years between those two

movies.

1.6 Exercises

1. Compare and contrast the capabilities and uses of ray tracing and polygon scan

conversion.

http://www.titanicmovie.com/
http://www.lordoftherings.net/
http://www.pixar.com/featurefilms/ts/index.html
http://www.pixar.com/featurefilms/abl/index.html
http://www.imdb.com/title/tt0120587/
http://www.pixar.com/featurefilms/ts2/index.html
http://www.shrek.com/
http://www.pixar.com/featurefilms/inc/index.html
http://www.iceagemovie.com/
http://www.imdb.com/title/tt0173840/
http://www.imdb.com/title/tt0499549/

10 Advanced Graphics Lecture Notes

2. In what circumstances is line drawing more useful than either ray tracing or poly-

gon scan conversion.

3. “The quality of the visual effects cannot compensate for a bad script.” Discuss with

reference to movies that you have seen.

2 The polygon

2.1 Polygon mesh management

In order to do polygon scan conversion (or line drawing of polygon edges) we need to

know how to handle polygon meshes.

2.1.1 Drawing polygons

In order to draw a polygon, you obviously need to know its vertices. To get the shading

correct you also need to know its normal. The direction of the normal tells you which

side is the front of the polygon and which is the back. Many systems assume one-sided

polygons: the front side is shaded and the back side either is coloured matt grey or black

or is not even considered. This is sensible if the polygon is part of a closed polyhedron.

In many applications, all objects consist of closed polyhedra; but you cannot guarantee

that this will always be the case, which means that you will get unexpected results if the

back sides of polygons are actually visible on screen.

The normal vector of a polygon does not need to be specified independently of the

polygon’s vertices because it can be calculated from the vertices. As an example: assume

a polygon has three vertices, A, B and C. The normal vector can be calculated as:

N = (C − B) × (A − B).

Any three adjacent vertices in a polygon can be used to calculate the normal vector

but the order in which the vertices are specified is important: it changes whether the

vector points up or down relative to the polygon. In a right-handed co-ordinate system

the three vertices must be specified anti-clockwise round the polygon as you look down

the desired normal vector (i.e. as you look at the front side of the polygon). If there are

more than three vertices in the polygon, they must all lie in the same plane, otherwise

the shape will not be a polygon.

Thus, for drawing purposes, we need to know only the vertices and surface properties

of the polygon. The vertices naturally give us both edge and orientation information. The

surface properties are such things as the specular and diffuse colours, and details of any

texture mapping which may be applied to the polygon.

An alternative is to have these things specified at the vertices (normal vector, diffuse

colour, specular colour, texture co-ordinates). This is particularly useful for Gouraud

or Phong shading, and particularly when the polygons have been generated from some

curved surface for which we can calculate the true normal vector at each vertex.

2.1.2 Interaction with polygon mesh data

The above is fine for drawing but, if you wish to manipulate the polygon mesh (for exam-

ple, in a 3D modelling package), then it is useful to know more about the connectivity of

Neil Dodgson 11

Figure 8: One version of the winged edge data structure.

the mesh. For example: if you want to move a vertex, which is shared by four polygons,

you do not want to have to search through all the polygons in your data structure trying

to find the ones which contain a vertex which matches your vertex data, you want some

data structure which allows easy access to the relevant information.

The various versions of the winged-edge data structure are useful for handling poly-

gon mesh data. The version shown in Figure 8 is a highly-detailed structure, in that it

contains explicit links for all of the relationships between vertices, edges and polygons,

thus making it easy to find, for example, which polygons are attached to a given vertex,

or which polygons are adjacent to a given polygon (by traversing the edge list for the

given polygon, and finding which polygon lies on the other side of each edge).

The vertex object contains the vertex’s co-ordinates, a pointer to a list of all edges

of which this vertex is an end-point, and a pointer to a list of all polygons of which the

vertex is a vertex. It also has a pointer to the vertex’s surface properties (such as colour

and texture coordinates).

The polygon object contains (a pointer to) the polygon’s surface property information

(such as its texture map), a pointer to a list of all edges which bound this polygon, and a

pointer to an ordered list of all vertices of the polygon.

The edge object contains pointers to its start and end vertices, and pointers to the

polygons which lie to the left and right of it.

Figure 8 shows just one possible implementation of a polygon mesh data structure.

FvDFH section 12.5.2 describes another winged-edge data structure which contains

slightly less information, and therefore requires more accesses than the one shown here

to find certain pieces of information. The implementation that would be chosen depends

12 Advanced Graphics Lecture Notes

on the needs of the particular application which is using the data structure. The trade-

off is between ease of extracting information and ease of updating the data structure.

F&vD section 13.2 and SSC pp. 170–172 also contain some information on polygon

meshes.

In general, we will want a polygon mesh to form a manifold surface. This is where

the surface is what a human would naturally think of as a surface, without any three-

way joins or other peculiar features; a surface which you could flatten onto a plane given

sufficiently many cuts and a bit of stretching here and there. It can be defined by these

rules:

1. A vertex belongs to at least two edges.

2. A vertex is a vertex of at least one polygon.

3. An edge has exactly two end points.

4. An edge is an edge of either one or two polygons.

5. A polygon has at least three vertices.

6. A polygon has at least three edges.

Mathematically, a manifold surface is where the neighbourhood of every point is topolog-

ically equivalent to a disc (except at the edges of the manifold, where it is topologically

equivalent to a half disc). The principal upshot of this is that each edge in the polygon

mesh can be the edge of either one or two polygons, no more and no less.

2.2 Hardware polygon scan conversion quirks

A piece of polygon scan conversion hardware, such as the AMD Radeon and the NVIDIA

GeForce families of graphics cards, can be thought of as consisting of a geometry en-

gine and a rendering engine. The geometry engine handles the transformations of all

vertices and normals, and some of the shading calculations: doing calculations for each

vertex. The rendering engine will implement the polygon scan conversion algorithm on

the transformed data: doing calculations for each pixel. Early graphics cards (1980s and

1990s) were purely for hardware acceleration, with a fixed pipeline and fixed algorithm.

Modern graphics cards allow for user programming. Machine instructions are provided

for the usual operations (addition, multiplication), and also for such necessary things as

taking the dot product of two vectors. The geometry and rendering engines both have

multiple copies of the same hardware to allow for multiple vertices and polygons to be

processed in parallel. These are generally built with a SIMD (single instruction, mul-

tiple data) parallel processor architecture. The architecture is optimised for processing

graphics, so the user is somewhat limited is what he or she can program. However, the

most recent graphics cards allow for a good deal of flexibility. Early generations of pro-

grammable cards allowed a limited number of instructions. For example, the NVIDIA

GeForce 3 card (2001) had a maximum of 256 instructions in the whole program, no

more than twelve working registers, no jumps or loops, no access to general memory.

The NVIDIA GeForce 8 cards (2007) had thousands of registers and allow up thousands

of instructions, with jumps and loops. The introduction of jumps and loops causes inter-

esting issues with the SIMD architecture, requiring different pipes to be able to chose

http://www.amd.com
http://www.nvidia.com/

Neil Dodgson 13

Figure 9: Left: a triangle strip set. Right: a triangle fan set.

whether or not to execute any given instruction. The latest generations of NVIDIA and

AMD graphics engines have progressed (or reverted?) to a unified shader model of pro-

cessing, where any processor can handle either the geometry processing or the pixel

processing. This allows more efficient distribution of the processing load as appropriate

to the objects being rendered on the screen.

Graphics cards are now sufficiently powerful that they are also used as general pur-

pose co-processors for a variety of mathematics-intense computation tasks, using texture

buffers for storing intermediate results.

To give you an idea of the complexity which is possible, on the GeForce4 generation of

NVIDIA cards (2002), the information that was passed to the geometry engine, for a sin-

gle vertex, was position, weight, normal, primary and secondary colour, fog coordinate,

and eight texture coordinates; all sixteen of these are floating-point four-component vec-

tors. The output from the geometry engine is homogeneous clip space position, primary

and secondary colours for front and back faces of the polygon, fog coordinate, point size,

and texture coordinate set; where they are all again floating-point four-component vec-

tors except for the output fog coordinate and the point size1.

2.2.1 Triangles only

When making a piece of hardware to render a polygon, it is much easier to make the

hardware handle a fixed number of vertices per polygon, than a variable number. Most

hardware implementations thus implement only triangle drawing. This is not a serious

drawback. Polygons with more vertices are simply split into triangles.

2.2.2 Triangle strip sets, triangle fan sets, and the vertex cache

In addition to simple triangle drawing, rendering hardware may also implement some

way of caching vertices that will be used in multiple polygons in order to speed up pro-

cessing through the geometry engine by preventing the engine from processing the same

vertex more than once.

Early versions of this were the triangle strip set and triangle fan (see Figure 9). Each

triangle in the set has two vertices in common with the previous triangle. Each vertex

1You are not expected to remember all of these input and output registers, but they give you an idea of

the complexity of the processing which can go on inside a graphics card.

14 Advanced Graphics Lecture Notes

is transformed only once by the geometry engine, giving a factor of three speed up in

geometry processing.

For example, assume we have trianglesABC,BCD,CDE andDEF. In naı̈ve triangle

rendering, the vertices would be sent to the geometry engine in the order ABC BCD

CDE DEF; each triangle’s vertices being sent separately. With a triangle strip set the

vertices are sent as ABCDEF; the adjacent triangles’ vertices overlapping.

A triangle fan set is similar. In the four triangle case we would have triangles ABC,

ACD, ADE and AEF. The vertices would again be sent just as ABCDEF. It is obviously

important that the rastering engine be told whether it is drawing standard triangles or

a triangle strip set or a triangle fan set.

The vertex cache, introduced around 2000, generalises this idea. Rather than caching

just two vertices, the initial versions of the vertex cache held the twenty most recently

used vertices, hence obviating the need to be explicitly specify fan sets and strip sets. It

still requires you to send the triangles to the card in some reasonably coherent order and

you do need to let the graphics card know that the triangles form a set with the same

surface properties. You also need to index the vertices so that you refer to each by its

index rather than by sending the (x, y, z) coordinates again.

2.3 Exercises

1. Calculate both surface normal vectors (left-handed and right-handed) for a triangle

with points (1, 1, 0), (2, 0, 1), (-1, -2, -1).

2. Work out the algorithm that is required to modify a winged-edge data structure

when an edge is split. You may ignore surface property information for the poly-

gons and you may assume that the edge that is split is split exactly in half. The

algorithm could by called by the function call:

split_edge(vertex_list v, edge_list e,
polygon_list p, edge edge_to_split)

where the winged-edge data structure is made up of the three linked lists of objects

(vertices, edges, and polygons).

3. [2002/7/9]Describe the situations in which it is sensible to use a winged-edged data
structure to represent a polygon mesh and, conversely, the situations in which a

winged-edged data structure is not a sensible option for representing a polygon

mesh. What is the minimum information which is required to successfully draw a

polygon mesh using Gouraud shading? [4 marks]

3 Introduction to splines

While polygons are good for rendering, we need some better way of generating curved

surfaces. A designer cannot be expected to manipulate, directly, the millions of polygons

that comprise the rendered model. We need a general way to specifying arbitrary curved

surfaces, which can then be converted to polygons for rendering. Ideally, we want a

mechanism which allows us to specify any smooth curved surface which we desire. This

Neil Dodgson 15

problem was first faced in the 1960s for the design of aeroplanes and cars. We will look

at three solutions: Bézier surfaces, B-spline surfaces (including NURBS) and subdivi-

sion surfaces. The Computer-Aided Design (CAD) industry uses NURBS surfaces as its

standard definition mechanism. The visual effects industry uses both NURBS surfaces

and subdivision surfaces.

The course handout contains a slide presentation introducing the concepts in this

part of the course. Please look at this before continuing.

4 Bézier curves

Bézier curves were covered in the Part IB Computer Graphics and Image Processing

course.

This section gives some of the mathematical details, as does R&A Section 5-8. An

extract from this Section of R&A is included in the handout. Please read that extract

before continuing.

If you want to experiment with Bézier curves then there are a number of on-line

tutorials. One such is available from the Technion.

A Bézier curve is a weighted sum of n + 1 control points, P0,P1, . . . ,Pn, where the

weights are the Bernstein polynomials:

P(t) =
n
∑

i=0

(

n
i

)

(1 − t)n−itiPi, 0 ≤ t ≤ 1 (1)

The Bézier curve of order n + 1 (degree n) has n + 1 control points. Below are the first
three orders of Bézier curve definitions.

linear P(t) = (1 − t)P0 + tP1 (2)

quadratic P(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2 (3)

cubic P(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3 (4)

4.1 Ways of thinking about Bézier curves

There are several useful ways in which you can think about Bézier curves. Here are the

ones that I use.

Linear interpolation. Equation 2 is obviously a linear interpolation between two points.

Equation 3 can be rewritten as a linear interpolation between linear interpolations

between points:

P(t) = (1 − t)[(1 − t)P0 + tP1] + t[(1 − t)P1 + tP2] (5)

Equation 4 can be rewritten as a linear interpolation between linear interpolations

between linear interpolations between points. This is left as an exercise for the

reader.

Weighted average. A Bézier curve can be seen as a weighted average of all of its con-

trol points. Because all of the weights are positive, and because the weights sum

to one, the Bézier curve is guaranteed to lie within the convex hull of its control

points.

http://www.cs.technion.ac.il/hbox {~{ }}cs234325/Applets/applets/bezier/GermanApplet.html

16 Advanced Graphics Lecture Notes

Refinement of the control polygon. A Bézier curve can be seen as some sort of re-

finement of the polygon made by connecting its control points in order. The Bézier

curve starts and ends at the two end points and its shape is determined by the rel-

ative positions of the n − 1 other control points, although it will generally not pass
through any of these other control points. The tangent vectors at the start and end

of the curve pass through the end point and the immediately adjacent point.

R&A list the properties of the Bézier curve on page 291.

4.2 Continuity

One of the most important problems of using Bézier curves (and surfaces) is getting

different pieces of curve (or patches of surface) to connect smoothly together, that is:

with continuity of position (C0), slope (C1) and curvature (C2). These are continuity
of the function, its first and its second derivatives, respectively. Much of the ensuing

discussions consider how to achieve such continuity.

You should note that each Bézier curve is independent of any other Bézier curve. If

we wish two Bézier curves to join with any type of continuity, then we must explicitly

position the control points of the second curve so that they bear the appropriate rela-

tionship with the control points in the first curve.

Any Bézier curve is infinitely differentiable within itself, and is therefore continu-

ous to any degree (Cn-continuous, ∀n). We therefore only need concern ourselves with
continuity across the joins between curves. Assume that we have two Bézier curves of

the same order: P(t), defined by (P0,P1, . . . ,Pn), and Q(t), defined by (Q0,Q1, . . . ,Qn).
C0-continuity (continuity of position) can be achieved by setting P(1) = Q(0). This gives
a formula for Q0 in terms of the Pis:

Q0 = Pn. (6)

Similarly for C1-continuity, we need C0-continuity and P′(1) = Q′(0), giving:

Q1 − Q0 = Pn − Pn−1 (7)

Combining Equations 7 and 6 gives a formula for Q1 in terms of the Pis:

Q1 = 2Pn − Pn−1 (8)

= Pn + (Pn − Pn−1) (9)

Continuing in this vein, we find that the requirements forC2-continuity (i.e. C1-continuity

and P′′(1) = Q′′(0)) give:

Q2 − 2Q1 + Q0 = Pn − 2Pn−1 + Pn−2 (10)

Combining Equations 10, 7, and 6 gives a formula for Q2 in terms of the Pis:

Q2 = 4Pn − 4Pn−1 + Pn−2 (11)

= Pn−2 + 4(Pn − Pn−1) (12)

Neil Dodgson 17

4.3 Bézier surfaces

We learnt in the IB course that a Bézier surface is constructed as the tensor product of

Bézier curves. A tensor product Bézier surface of order n+1 is defined by (n+1)2 control
points. It is called a Bézier patch.

P(s, t) =
n
∑

i=0

(

n
i

)

(1 − s)n−isi
n
∑

j=0

(

n
j

)

(1 − t)n−jtjPi,j (13)

You can think about this as moving the control points of one Bézier curve along a set of

Bézier curves to sweep out a surface. Continuity across a boundary between two Bézier

patches is only guaranteed if each of the Bézier curves across the join obey the curve

continuity conditions. Again, this was covered in the IB course.

4.4 Exercises

1. Explain what C0-, C1-, C2-, Cn-continuity mean.

2. Equations (7) and (10) give the constraints on control point positions which ensure

that Bézier curves join with C1- and C2-continuity. Derive these equations for
two quartic Bézier curves by using the fact that the end-points must be identical,

Q0 = Pn, and then setting P′(1) = Q′(0) and P′′(1) = Q′′(0).

5 B-splines

B-splines are covered in some detail below and also in R&A Section 5-9. An extract

from this Section of R&A is included in the handout. Please read that extract before

continuing here. Beware that none of the worked examples are in the handout. You may

find these helpful but you will need to get hold of a real copy of R&A if you wish to work

your way through them.

B-splines are a more general type of curve than Bézier curves. In a B-spline each

control point is associated with a basis function, Ni,k.

P(t) =
n+1
∑

i=1

Ni,k(t)Pi, tmin ≤ t < tmax (14)

There are n + 1 control points, P1,P2, . . . ,Pn+1. The Ni,k basis functions are of order k
(degree k − 1). k must be at least 2 (linear), and can be no more than n + 1 (the number
of control points). The important point here is that the order of the curve (2 [linear],

3 [quadratic], 4 [cubic],. . .) is not dependent on the number of control points (which it is

for Bézier curves, where k must always equal n + 1).

Equation 14 defines a piecewise continuous function. The Ni,k are defined by a knot

vector, (t1, t2, . . . , tk+(n+1)), which we will consider in detail below. The knot vector spec-
ifies the values of the parameter t at which the pieces of curve join, by analogy to knots
joining bits of string. It is necessary that:

ti ≤ ti+1,∀i (15)

18 Advanced Graphics Lecture Notes

The Ni,k depend only on the value of k and the values, ti, in the knot vector. Ni,k is

defined recursively as:

Ni,1(t) =

{

1, ti ≤ t < ti+1

0, otherwise

Ni,k(t) =
t − ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t) (16)

This is essentially a modified version of the idea of taking linear interpolations of lin-

ear interpolations of linear interpolations. Note the convention that 0/0 = 0, which is
justified formally by considering limits as the spacing between knots approaches zero.

At this point it would be instructive for you to work out N1,1, N2,1, N3,1, N1,2, N2,2,

N1,3 for the knot vector [0, 2, 3, 6]. It helps if you draw the graphs for these functions.

There are several things that you should note about these equations:

1. Each Ni,k(t) depends only on the k + 1 knot values from ti to ti+k.

2. Ni,k(t) = 0 for t < ti or t ≥ ti+k so Pi only influences the curve for ti ≤ t < ti+k.

3. P(t) is a polynomial of order k (degree k − 1) on each interval ti ≤ t < ti+1.

4. Across the knots P(t) is Ck−2-continuous.

5. P(t) is continuous in all its derivatives between the knots.

6. A weighted sum of points only makes sense if the weights sum to one. P(t) is
therefore validly defined only where

n+1
∑

i=1

Ni,k(t) = 1. (17)

This is the range tmin ≤ t < tmax where tmin = tk and tmax = tn+2.

Those are the key properties of B-splines. Even more properties are described in R&A

pp. 306–7.

5.1 The knot vector

The above introduction shows that the knot vector is important. The knot vector can be

any sequence of numbers provided that each one is greater than or equal to the preceding

one. There is, however, a limit on how many knots can be coincident. The multiplicity

of a knot is limited to the degree of the curve; since a higher multiplicity would split the

curve into disjoint parts and it would leave control points unused.

Some types of knot vector are more useful than others. Knot vectors are generally

placed into one of three categories: uniform, open uniform, and non-uniform.

Uniform. These are knot vectors for which

ti+1 − ti = constant,∀i (18)

Neil Dodgson 19

For example:
[1, 2, 3, 4, 5, 6, 7, 8]
[0, 1, 2, 3, 4, 5]
[0, 0.25, 0.5, 0.75, 1.0]
[−2.5,−1.4,−0.3, 0.8, 1.9, 3.0]

All of the basis functions, Ni,k for a given k, are just shifted versions of one another
and so implementation is relatively easy.

Open Uniform. These are uniform knot vectors which have k equal knot values at each
end:

ti = t1, i ≤ k
ti+1 − ti = constant, k ≤ i < n + 2

ti = tk+(n+1), i ≥ n + 2
(19)

For example:

[0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4] (k = 4)
[1, 1, 1, 2, 3, 4, 5, 6, 6, 6] (k = 3)
[0.1, 0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.7, 0.7, 0.7, 0.7, 0.7] (k = 5)

This is a simple modification to the uniform case that allows the curve to go through

its two end points. This arrangement of knots at the ends is known as “Bézier end-

conditions.”

Non-uniform. This is the general case, the only constraint being the standard ti ≤
ti+1,∀i (Equation 15). For example:

[1, 3, 7, 22, 23, 23, 49, 50, 50]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7]
[0.2, 0.7, 0.7, 0.7, 1.2, 1.2, 2.9, 3.6]

The shapes of the Ni,k basis functions are determined entirely by the relative spacing

between the knots. Scaling (t′i = αti,∀i) or translating (t′i = ti + ∆t,∀i) the knot vector
has no effect on the shapes of the Ni,k nor on the shape of the actual curve P(t).
The above gives a description of the various types of knot vector but it does not

give you any insight into how the knot vector determines the shape of the curve. The

following subsections look at the different types of knot vector in more detail. However,

the best way to get to feel for these is to derive and draw the basis functions yourself.

5.1.1 Uniform knot vector

For simplicity, let ti = i (this is allowable given that the scaling or translating the
knot vector has no effect on the shapes of the Ni,k). The knot vector thus becomes

[1, 2, 3, . . . , k + (n + 1)] and Equation 16 simplifies to:

Ni,1(t) =

{

1, i ≤ t < i + 1
0, otherwise

Ni,k(t) =
t − i

k − 1
Ni,k−1(t) +

i + k − t

k − 1
Ni+1,k−1(t) (20)

20 Advanced Graphics Lecture Notes

You should be easily able to graph the first few of these for yourself. The principle thing

to note about the uniform basis functions is that, for a given order k, the basis functions
are all simply shifted versions of one another. See R&A Figure 5-36.

With a uniform B-spline, you obviously cannot change the basis functions (they are

fixed because all the knots are equispaced). However you can alter the shape of the curve

by modifying a number of other things:

Moving control points. Moving the control points obviously changes the shape of the

curve.

Multiple control points. Sticking two adjacent control points on top of one another

causes the curve to pass closer to that point. Stick enough adjacent control points

on top of one another and you can make the curve pass through that point (R&A,

Figure 5-45).

Order. Increasing the order k increases the continuity of the curve at the knots, in-
creases the smoothness of the curve, and tends to move the curve farther from its

defining polygon. (R&A, Figure 5-44).

Joining the ends. You can join the ends of the curve to make a closed loop. Say you

have M points, P1, . . . ,PM . You want a closed B-spline defined by these points.

For a given order, k, you will need M + (k − 1) control points (repeating the first
k − 1 points): P1, . . . ,PM ,P1, . . . ,Pk−1. Your knot vector will thus haveM + 2k − 1
uniformly spaced knots.

5.1.2 Open uniform knot vector

The final paragraph in the previous section tells you that uniform B-splines can be used

to describe closed curves: all you have to do is join the ends as described above. If you

do not want a closed curve, and you use a uniform knot vector, you find that you need

to specify control points at each end of the curve which the curve does not go near (e.g.

R&A, Figure 5-44, the order 4 curve).

If you wish your B-spline to start and end at your first and last control points then you

need an open uniform knot vector (e.g. R&A, Figure 5-41). The only difference between

this and the uniform knot vector being that the open uniform version has k equal knots
at each end.

An order k open uniform B-spline with n+1 = k points is the Bézier curve of order k.
It would be a useful exercise for you to prove this for k = 3. For ease of calculation take
the knot vector to be [0, 0, 0, 1, 1, 1].

5.1.3 The difference between uniform and open uniform

It may help, at this stage, to compare a particular uniform and an equivalent open

uniform knot vector. This is a uniform knot vector for n + 1 = 7, k = 3:

Neil Dodgson 21

1 2 3 4 5 6 7 8 9 10P1

P2

P3

P4

P5

P6

P7

overall

The lines show the range of t over which each Ni,k is non-zero. The B-spline itself (the

overall line in the diagram) is defined over the range t3 ≤ t < t8, i.e. over the range
3 ≤ t < 8.
By comparison an open uniform knot vector for n + 1 = 7, k = 3 is:

1 1 1 2 3 4 5 6 6 6P1

P2

P3

P4

P5

P6

P7

overall

The B-spline itself is defined over the range t3 ≤ t < t8, i.e. over the range 1 ≤ t < 6. By
the definition of a open uniform knot vector t3 = t1 and t8 = t10 and so an open uniform
B-spline is defined over the full range of t from t1 to tk+n+1.

5.1.4 Non-uniform knot vector

Any B-spline whose knot vector is neither uniform nor open uniform is non-uniform.

Non-uniform knot vectors allow any spacing of the knots, including multiple knots (ad-

jacent knots with the same value). We need to know how this non-uniform spacing af-

fects the basis functions in order to understand where non-uniform knot vectors could be

useful. Owing to the knot vector being scale- and translation-invariant, there are only

three cases to consider: (1) multiple knots (adjacent knots equal); (2) adjacent knots

more closely spaced than the next knot in the vector; and (3) adjacent knots less closely

spaced than the next knot in the vector. Obviously, case (3) is simply case (2) turned the

other way round.

Multiple knots. A multiple knot reduces the degree of continuity at that knot value.

Across a normal knot the continuity is Ck−2. Each extra knot with the same value

reduces continuity at that value by one. This is the only way to reduce the conti-

nuity of the curve at the knot values. If there are k − 1 (or more) equal knots then
you get a discontinuity in the curve.

Close knots. As two knots’ values get closer together, relative to the spacing of the

other knots, the curve moves closer to the related control point.

Distant knots. As two knots’ values get further apart, relative to the spacing of the

other knots, the curve moves further away from the related control point.

22 Advanced Graphics Lecture Notes

Standard procedure is to use uniform or open uniform B-splines unless there is a

very good reason not to do so. Moving two knots closer together tends to move the curve

only slightly and so there seems little point in doing so. However, there are some who

advocate using some form of non-uniform knot spacing where knots are spaced relative

to the spacing of the associated control points. Having said that, the main use of non-

uniform B-splines seems to be to allow for multiple knots, which adjust the continuity of

the curve at the knot values.

However, non-uniform B-splines are the general form of the B-spline because they in-

corporate open uniform and uniform B-splines as special cases. Thus we will talk about

non-uniform B-splines when we mean the general case, incorporating both uniform and

open uniform.

5.1.5 What can you do to control the shape of a B-spline?

• Move the control points.

• Add or remove control points.

• Use multiple control points.

• Change the order, k.

• Change the type of knot vector.

• Change the relative spacing of the knots.

• Use multiple knot values in the knot vector.

5.1.6 What should the defaults be?

If there are no pressing reasons for doing otherwise, your B-spline should be defined by:

• k = 4 (cubic);

• no multiple control points;

• uniform (for a closed curve) or open uniform (for an open curve) knot vector.

5.2 B-spline patches

We generalise from B-spline curves to B-spline surfaces in the same way as we did for

Bézier patches. Take a tensor product of two versions of Equation 14.

P(s, t) =
m+1
∑

i=1

n+1
∑

j=1

Pi,jNi,k(s)Nj,l(t), smin ≤ s < smax, tmin ≤ t < tmax (21)

where it is usual for the patch to have the same order (i.e. k = l) in both directions.
Patches are thus defined by a quadrilateral grid of control points of size (m+1)× (n+1).

Neil Dodgson 23

5.3 Why B-splines?

B-splines have many nice properties when compared to other families of curves which

could be used. They:

• minimise the order of the polynomial pieces (order k)

• maximise the continuity between pieces (continuity C(k − 2))

• minimise the number of control points controlling a piece (k points)

• have positive basis functions

• have basis functions which partition unity, implying that each piece lies inside its
control points’ convex hull

• are invariant with respect to affine transforms

5.4 Exercises

1. How many control points are required for a quartic Bézier and how many for a

quartic B-spline?

2. Why are cubics the default for B-spline use?

3. Explain the difference between Uniform, Open Uniform, and Non-Uniform knot

vectors. What are the advantages of each type?

4. Work out N1,1, N2,1, N3,1, N1,2, N2,2, N1,3 for the knot vector [0, 2, 3, 6]. Draw the
graphs of these functions. [This is the exercise on page 18.]

5. [2000/9/4] (b) A B-spline has knot vector [1, 2, 4, 7, 8, 10, 12]. Derive the first of the
third order (second degree) basis functions, N1,3(t), and graph it.
If this knot vector were used to draw a third order B-spline, how many control

points would be required? [7 marks]

6. [2001/8/4] (a) For a given order, k, there is only one basis function for uniform B-
splines. Every control point uses a shifted version of that one basis function. How

many different basis functions are there for open-uniform B-splines of order k with
n + 1 control points, where n >= 2k − 3? [6 marks]
(b) Explain what is different in the cases where n < 2k−3 compared with the cases
where n >= 2k − 3. [3 marks]
(c) Sketch the different basis functions for k = 2 and k = 3 (when n >= 2k − 3). [4
marks]

(d) Show that the open-uniform B-spline with k = 3 and knot vector [0, 0, 0, 1, 1, 1]
is equivalent to the quadratic Bézier curve. [7 marks]

7. [2002/7/9] (d) Derive the formula of and sketch a graph of N3,3(t), the third of the
quadratic B-spline basis functions, for the knot vector [0, 0, 0, 1, 3, 3, 4, 5, 5, 5]. [6
marks]

24 Advanced Graphics Lecture Notes

6 NURBS

NURBS are covered below and in some detail in R&A Section 5-13. An extract of this

Section of R&A are included in the handout. Please read that before continuing here.

Non-uniform rational B-splines are the industry-standard for computer-aided design

(CAD). In most cases, you would actually use the special case of non-rational B-splines

(those described in the previous section) but it is useful to have the more general rational

versions available for certain types of curve and surface.

NURBS surfaces are usually rendered by converting them to lots of small polygons

and then using polygon scan conversion. They can also by ray traced, but a general

analytic ray-NURBS intersection algorithm is a nightmare, so numerical techniques are

used to find the intersection point.

NURBS curves incorporate – as special cases – uniform B-splines, non-rational B-

splines, Bézier curves, lines, and conics. NURBS surfaces incorporate planes, quadrics,

and tori. Note that this does not quite mean what it says. It is tricky to get NURBS

to represent infinite surfaces, but they can certainly represent finite sections of infinite

surfaces such as planes, paraboloids, and hyperboloids.

If you want to experiment with NURBS curves then there are a number of on-line

tutorials. One such is available from the Technion.

Rational B-splines have all of the properties of non-rational B-splines plus the fol-

lowing two useful features:

• They produce the correct results under projective transformations (while non-rational
B-splines only produce the correct results under affine transformations).

• They can be used to represent lines, conics, non-rational B-splines; and, when gen-
eralised to patches, can represent planes, quadrics, and tori.

In this case rational means “one polynomial divided by another” (see Equation 22).

The antonym of rational is non-rational (i.e. a non-rational B-spline is just a polynomial,

see Equation 14). Non-rational B-splines are a special case of rational B-splines, just

as uniform B-splines are a special case of non-uniform B-splines. Thus, non-uniform

rational B-splines encompass almost every other possible 3D shape definition. Non-

uniform rational B-spline is a bit of a mouthful and so it is generally abbreviated to

NURBS.

We have already learnt all about the the B-spline bit of NURBS and about the non-

uniform bit. So now all we need to know is the meaning of the rational bit and we will

fully understand NURBS.

Rational B-splines are defined simply by applying the B-spline equation (Equation 14)

to homogeneous coordinates, rather than normal 3D coordinates. We discussed homo-

geneous coordinates in the IB course. You will remember that these are 4D coordinates

where the transformation from 4D to 3D is:

(x′, y′, z′, w) →
(

x′

w
,
y′

w
,
z′

w

)

(22)

Last year we said that the inverse transform was:

(x, y, z) → (x, y, z, 1) (23)

http://www.cs.technion.ac.il/hbox {~{ }}cs234325/Applets/applets/bspline/GermanApplet.html

Neil Dodgson 25

This year we are going to be more cunning and say that:

(x, y, z) → (xh, yh, zh, h) (24)

Thus our 3D control point, Pi = (xi, yi, zi), becomes the homogeneous control point,
Ci = (xihi, yihi, zihi, hi).
A NURBS curve is thus defined as:

PH(t) =
n+1
∑

i=1

Ni,k(t)Ci, tmin ≤ t < tmax (25)

Compare Equation 25 with Equation 14 to see just how easy this is!

We now want to see what a NURBS curve looks like in normal 3D coordinates, so we

need to apply Equation 22 to Equation 25. In order to better explain what is going on, we

first write Equation 25 in terms of its individual components. Equation 25 is equivalent

to:

x′(t) =
n+1
∑

i=1

xihiNi,k(t) (26)

y′(t) =
n+1
∑

i=1

yihiNi,k(t) (27)

z′(t) =
n+1
∑

i=1

zihiNi,k(t) (28)

h(t) =
n+1
∑

i=1

hiNi,k(t) (29)

Equation 22 tells us that, in 3D:

x(t) = x′(t)/h(t) (30)

y(t) = y′(t)/h(t) (31)

z(t) = z′(t)/h(t) (32)

Thus the 4D to 3D conversion gives us the curve in 3D:

P(t) =

∑n+1
i=1 Ni,k(t)Pihi
∑n+1

i=1 Ni,k(t)hi

, tmin ≤ t < tmax (33)

This looks a lot more fierce than Equation 25, but is simply the same thing written a

different way.

So now, we need to define an additional parameter, hi, for each control point, Pi. The

default is to set hi = 1,∀i. This results in the denominator of Equation 33 becoming one,
and the NURBS equation (Equation 33) therefore reducing to the non-rational B-spline

equation (Equation 14).

Increasing hi pulls the curve closer to point Pi. Decreasing hi pushes the curve far-

ther from point Pi. Setting hi = 0 means that Pi has no effect on the curve at all. See

R&A Figure 5-58 for an example, and play with an on-line NURBS tutorials such as the

one mentioned above.

26 Advanced Graphics Lecture Notes

6.1 An example: a circle defined by NURBS

This subsection provides an example of a shape which cannot be represented by non-

rational B-splines: a circle. A non-rational B-spline or a Bézier curve cannot exactly

represent a circle. An interesting exercise is to place a cubic Bézier curve’s end points at

(0, 1) and (1, 0), with the other control points at (α, 1) and (1, α). Now see how close this
“quarter circle” comes to the real quarter circle defined by x2 + y2 = 1, i.e. what is the
value of α for which the Bézier curve most closely matches the quarter circle. You will
find that you can get a match which is almost, but not quite, circular.

NURBS can be used to represent circles, and all of the other conics. NURBS surfaces

can be used to represent quadric surfaces. As an example, let us consider one way in

which NURBS can be used to describe a true circle. R&A cover this on pages 371–375.

The ways in which this is done require the designer to specify several things correctly at

the same time, as we shall see. The details are so complicated that I would not expect

you to remember it in an exam but I would expect you to remember that it can be done

and have some idea of where to look it up if you needed it.

The method is as follows. Construct eight control points in a square. Let P1, P3, P5,

and P7 be the vertices of the square. Let P0, P2, P4, and P6 be the midpoints of the

respective sides, so that the vertices are numbered sequentially as you proceed around

the square. Finally, you need a ninth point to join up the curve, so let P8 = P0.

Use a quadratic B-spline basis function with the knot vector

[0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4]. This means that the curve will pass through P0, P2, P4, P6

and P8, and allows us to essentially treat each quarter of the circle independently. That

is, we can just examine P0, P1, and P2, along with the knot vector [0, 0, 0, 1, 1, 1]. If this
makes a quarter circle then the other three quarters will also be correct.

We finally need to specify the homogeneous co-ordinates. As a circle is symmetrical

it should be obvious that that h1 = h3 = h5 = h7 = α and h0 = h2 = h4 = h6 = h8 = β. As
we would like the curve to pass through the even numbered points, the easiest thing to

do is set β = 1. All we therefore need to determine is α, the value of the odd numbered
homogeneous co-ordinates.

If α = 1 then the NURBS curve will bulge out more than a circle. If α = 0, it will bow
in. This gives us limits on the value of α. To find the exact value we take the NURBS
curve definition for the quarter circle:

P(t) =
(1 − t)2P0 + 2αt(1 − t)P1 + t2P2

(1 − t)2 + 2αt(1 − t) + t2
, 0 ≤ t < 1 (34)

Assume now that P0 = (0, 1), P1 = (1, 1), and P2 = (1, 0). Insert Equation 34 into the
equation for the unit circle (x(t)2 + y(t)2 = 1). The resulting equation is:

((1 − t)2 + 2αt(1 − t))2 + (2αt(1 − t) + t2)2

((1 − t)2 + 2αt(1 − t) + t2)2
= 1, 0 ≤ t < 1 (35)

Now solve this for α. Equation 35 is essentially:

aN t4 + bN t3 + cN t2 + dN t + eN

aDt4 + bDt3 + cDt2 + dDt + eD

= 1, 0 ≤ t < 1 (36)

From this we can conclude that we require aN = aD, bN = bD, cN = cD, dN = dD, and

Neil Dodgson 27

eN = eD. The first three all solve to give the result that α = 1/
√

2, while the last two
cancel out totally to give the tautology 0 = 0. Thus2 α = 1/

√
2.

An alternative way to calculate α is to realise that it is the only degree of freedom.
Therefore, you need simply find the value of α that makes the curve pass through a fixed
point on the circle, such as the intersection of the circle with 45 degree line.
This derivation is not at all intuitive and similar cleverness is required to handle

representations of other conics. The beauty of NURBS is that they allow us to do this

sort of thing and unify all shapes into a single representation. The difficulty is that, in

order to achieve this unification, we need to have this rather complicated but general

mathematical mechanism.

6.2 Exercises

1. Review from IB: What are homogeneous coordinates and what are they used for in

computer graphics?

2. Explain how to use homogeneous coordinates to get rational B-splines given that

you know how to produce non-rational B-splines.

3. What are the advantages of NURBS over Bézier curves? (i.e. why have NURBS, in

general, replaced Bézier curves in CAD?)

4. Show that you understand why NURBS includes Uniform B-splines, Non-Rational

B-splines, Béziers, lines, conics, quadrics, and tori.

5. [1998/7/12] Consider the design of a user interface for a NURBS drawing system.
Users should have access to the full expressive power of the NURBS representa-

tion. What things should users be able to modify to give them such access and what

effect does each have on the resulting shape? [6 marks]

6. For each of the items (in the previous question) that the user can edit: (i) Give sen-

sible default values; (ii) Explain how they would be constrained if a ‘demo’ version

of the software was to be limited to cubic Uniform Non-rational B-Splines.

7. [1999/7/11] (c) Show how to construct a circle using non-uniform rational B-splines
(NURBS). [8 marks]

Note: this question is challenging unless you remember and follow the worked

example in these notes or R&A pages 371-375.

(d) Show how the circle definition from the previous part can be used to define a

NURBS torus. [4marks]

Note: you need explain only the general principle and the location of the torus’

control points.

7 Subdivision

Subdivision schemes work by taking a coarse polygon mesh and introducing new vertices

to create a finer mesh. Iterating this process several times creates a very fine mesh of

2If we had not set β = 1 above, then we would find that α = β/
√

2.

28 Advanced Graphics Lecture Notes

polygons. In computer graphics, we are interested in drawing things only to a certain

level of accuracy: there is no point in having polygons that are much smaller than pixels.

This means that subdivision need only iterate until the polygons are about pixel-sized.

Subdivision schemes have been around for a long time. Subdivision methods for

curves were first mathematically analysed in 1947. Their use in computer graphics

dates from 1974 when Chaikin used them to derive a simple algorithm for generating

curves quickly. In 1978 Doo & Sabin and Catmull & Clark generalised Chaikin’s work

from curves to surfaces.

Subdivision schemes are now the industry-standard modelling approach in com-

puter animation and visual effects. NURBS remain the industry-standard approach

in computer-aided design. The two approaches have the same foundations. The princi-

pal subdivision scheme used in practice is the Catmull-Clark scheme, invented in 1978,

by Ed Catmull and Jim Clark, and commercialised in 1998 by Tony DeRose’s team at

Pixar. In the limit, as we subdivide infinitely finely, the Catmull-Clark scheme produces

exactly the same surface as the uniform cubic B-spline, except around the so-called ex-

traordinary points of the surface.

W&W and P&R both survey the field and the related mathematical tools.

The course handout contains a slide presentation that presents the concepts from

this Section of the notes.

7.1 Subdivision curves

Take an arbitrary control polygon, comprised of a set of vertices connected in sequence.

We use the positions of the current vertices to determine the location of the new vertices

in a new, refined, more detailed, control polygon (see Figure 10). The standard approach

is for each old vertex to give rise to two new vertices. For example, you could place new

vertices one-quarter and three-quarters of the way between each adjacent pair of old

vertices. Connecting all the new vertices together, in the appropriate order, produces a

more refined control polygon. Repeat this process several times and you produce a good

approximation to the curve that you would get if you were able to subdivide infinitely

many times. For practical purposes, we need subdivide only a sufficient number of times

that we cannot tell the refined polygon from a curve. For computer graphics, that is

when the polygon segments have become a little smaller than a pixel.

Let the initial control polygon be defined by the sequence of control points:

Pi = (. . . ,pi
−1,p

i
0,p

i
1,p

i
2, . . .)

Subdivision maps this sequence of control points to a new sequence, Pi+1 by applying

subdivision rules. This process doubles3 the number of points, and there is one rule for

the odd numbered points and one for the even.

Chaikin’s corner-cutting method introduces new points one-quarter and three-quarters

of the way between each adjacent pair of old vertices. Informally, it “cuts the corners off”

the original control polygon. Mathematically, it can be described thus:

pi+1
2j =

3

4
pi

j +
1

4
pi

j+1 (37)

3It doesn’t quite double the number of points when the sequence is open and of finite length. If we are

dealing with a finite-length vector Pi = (pi

1,p
i

2, . . . ,p
i

m), then the subdivided vector, using the rules in
equations 37 and 38, would have 2m − 2 points.

Neil Dodgson 29

Figure 10: Chaikin’s corner-cutting method. The first three diagrams show an original

polygon with the subdivided version superimposed. The output polygon from the left

hand diagram becomes the input to the second diagram, and its output becomes the

input for the third. The right hand diagram shows all four polygons superimposed. The

final two are very similar.

pi+1
2j+1 =

1

4
pi

j +
3

4
pi

j+1 (38)

Figure 10 shows a polygon defined by four points subdivided three times using Chaikin’s

corner cutting. The difference in the polygons in the final two iterations is already small.

Figure 11(a) shows a larger example with four levels of subdivision.

In the limit, after infinitely many steps of subdivision, Chaikin’s corner-cutting method

produces a curve identical to the quadratic uniform B-spline. As you will notice from Fig-

ure 11(a), it does not take many steps to produce a curve that is extremely close to the

limit curve. In practice, therefore, we might need to take five or six steps of subdivision

to produce a curve that looks smooth on a computer screen (say 100 dpi), and only three

or four more steps to produce a curve that looks smooth on a printout (say, 1200 dpi).

Chaikin’s corner-cutting method can be generalised to surfaces, producing the Doo-

Sabin surface subdivision scheme (see Section 7.2).

The industry-standard surface subdivisionmethod isCatmull-Clark subdivision. The

curve subdivision rules on which the Catmull-Clark surface method is based are only

slightly more complicated than the ones we have seen above. They are:

pi+1
2j =

1

8
pi

j−1 +
6

8
pi

j +
1

8
pi

j+1 (39)

pi+1
2j+1 =

4

8
pi

j +
4

8
pi

j+1 (40)

30 Advanced Graphics Lecture Notes

(a) (b)

Figure 11: (a) An example of Chaikin’s corner-cutting method, whose limit curve is the

quadratic uniform B-spline. (b) An example of the subdivision method whose limit curve

is the cubic uniform B-spline. In both cases, the original polygon is blue and there are

four levels of subdivision: red, green, yellow, grey.

An example of a polygon subdivided by these rules can be seen in Figure 11(b). The limit

curve generated by these rules is the cubic uniform B-spline.

As is the way with much mathematics, we can write it in a more compact, more

general, but less obvious, form as:

pi+1
j =

∞
∑

k=−∞

α2k−jp
i
k (41)

where the αj are coefficients depending on the subdivision rules. Note that the index

2k − j alternately selects the even indexed αj and the odd indexed αj . So, the two

schemes given above, can be compactly described as:

α =
1

4
(. . . , 0, 0, 1, 3, 3, 1, 0, 0, . . .) (42)

and

α =
1

8
(. . . , 0, 0, 1, 4, 6, 4, 1, 0, 0, . . .) (43)

respectively. You will recognise the sequences in parentheses as being two rows from

Pascal’s triangle.

7.2 Subdivision surfaces

The above subdivision methods can be easily extended from a control polygon to a

quadrilateral mesh. This is a mesh where every polygon is a quadrilateral and every

vertex is connected to four other vertices.

Neil Dodgson 31

Figure 12: Doo-Sabin subdivision. On left a mesh (solid dots and solid lines) that has

been refined (open dots and dashed lines). At right the weights used to generated one of

the refined vertices.

The Doo-Sabin subdivision method for surfaces is a generalisation of Chaikin’s cor-

ner cutting method for curves. It introduces four new vertices in each quadrilateral,

and connects up vertices accordingly. The new vertices are blended mixtures of the old

vertices in the proportions 9 : 3 : 3 : 1 (derived from the tensor product of the univariate
case: 3 × 3 : 3 × 1 : 1 × 3 : 1 × 1). This is illustrated in Figure 12.

This all works beautifully for quadrilateral meshes. In this case it produces a limit

surface that is identical to the uniform quadratic B-spline surface, defined with the same

control points. The surface has C1-continuity everywhere, as this is a property of the

uniform quadratic B-spline surface.

Now, suppose we have a quadrilateral mesh that contains extraordinary polygons,

that is, polygons that are not quadrilateral, such as the pentagon in Figure 13. The

Doo-Sabin scheme copes with meshes that have such polygons. For a k-sided polygon,
the weights, αk on the k vertices need to be chosen. Doo and Sabin demonstrated that
good results are achieved if we let:

α0 =
1

4
+

5

4k
(44)

αi =
1

4k

(

3 + 2 cos
2iπ

k

)

(45)

The resulting limit surface can be shown to be C1 everywhere.

Now consider extraordinary vertices, that is, vertices with other than four immediate

neighbours. You will see in Figure 13 that such vertices become extraordinary polygons

in the first step of subdivision. It is impossible for the Doo-Sabin to introduce new

extraordinary vertices: every vertex in the subdivided mesh has four neighbours. It is

also impossible for the Doo-Sabin method to introduce new extraordinary polygons after

the first step. At each step, every extraordinary polygon shrinks to a smaller polygon

of the same type. All the new polygons are quadrilaterals. As we subdivide further,

every extraordinary polygon becomes surrounded by a “sea” of quadrilaterals. Thus you

32 Advanced Graphics Lecture Notes

Figure 13: A Doo-Sabin mesh before (blue points, thin lines) and after (red points, thick

lines) one level of subdivision. Notice that every polygon produces a smaller polygon

of the same type (quadrilaterals produce quadrilaterals, pentagons produce pentagons),

every edge generates a new quadrilateral, every vertex generates a polygon of the same

valency, and that every new vertex is of valency four.

Neil Dodgson 33

Figure 14: Catmull-Clark subdivision. Above: a mesh (solid dots and solid lines) that

has been refined (open dots and dashed lines). Below: the weights used to generated

each type of refined vertex: centre, edge, and modified old vertex.

can see that the limit surface is the uniform quadratic B-spline defined by all of these

quadrilaterals, except at the centres of the extraordinary polygons, where additional

mathematical analysis is needed to demonstrate that the limit surface is also C1 at

these points.

Catmull-Clark subdivision is a surface method that generalises the 1
8(1, 4, 6, 4, 1) sub-

division curve method. It is similar in spirit to Doo-Sabin, with some important differ-

ences. The first difference is that is there are three types of new vertex in the normal

regions of the mesh: a vertex is introduced in the centre of each quadrilateral (a face

vertex), in the centre of each edge (an edge vertex), and near to each old vertex (a vertex

vertex). Each of these three types of vertex has a different set of weights as illustrated

in Figure 14.

Catmull-Clark subdivision needs special rules for extraordinary vertices. The edge

vertex and face vertex rules remain unchanged, but we need a new rule for the vertex

vertex generated by the extraordinary vertex. Catmull and Clark solved this by creating

a new set of weights, one set of weights for each vertex valence (the valence of vertex is

a number of other vertices to which it is connected). There has since been considerable

work on finding the optimal weights to give the best result. For example, instead of

weights of 1/64, 6/64, and 36/64 you can use Denis Zorin’s weights of 1/4n2, 3/2n2, and

1 − 7/4n, where n is the valence of the vertex.

34 Advanced Graphics Lecture Notes

The limit surface of the Catmull-Clark scheme is C2 almost everywhere. It is, how-

ever, only C1 at the limit positions of the extraordinary vertices. It has been proven that

the only way to make a Catmull-Clark limit surface C2 at the extraordinary vertices is

for its curvature to be zero at those points. This produces unsightly “flat spots” that we

would rather avoid. This means that we either have to accept “flat spots” or have to

accept that the surface is not everywhere C2.

There are other subdivision schemes. The most notable are the Butterfly scheme,

which interpolates the control points and the Loop scheme (named after Charles Loop),

which works on triangular meshes.

7.3 Exercises

1. Draw an arbitrary control polygon and perform a couple of subdivision steps us-

ing the first of the two subdivision schemes above. Once you feel happy that you

understand what is going on, you may like to try the second scheme.

2. Draw an arbitrary control polygon and consider what happens if you try to use

the previous row from Pascal’s triangle 1
2(1, 2, 1). You will find that 1

2(1, 2, 1) has a
minimal effect on the shape of the control polygon.

3. What happens if you try to use the next row of Pascal’s triangle, 1
16(1, 5, 10, 10, 5, 1)?

Which uniform B-spline do you think this produces in the limit?

4. Explain how Doo-Sabin subdivision works for an arbitrary polygon mesh.

5. Explain how the Catmull-Clark scheme handles extraordinary polygons.

	Basic 3D modelling
	Ray tracing vs polygon scan conversion
	Ray tracing
	Polygon scan conversion
	Line drawing
	Applications of computer graphics
	Exercises

	The polygon
	Polygon mesh management
	Drawing polygons
	Interaction with polygon mesh data

	Hardware polygon scan conversion quirks
	Triangles only
	Triangle strip sets, triangle fan sets, and the vertex cache

	Exercises

	Introduction to splines
	Bézier curves
	Ways of thinking about Bézier curves
	Continuity
	Bézier surfaces
	Exercises

	B-splines
	The knot vector
	Uniform knot vector
	Open uniform knot vector
	The difference between uniform and open uniform
	Non-uniform knot vector
	What can you do to control the shape of a B-spline?
	What should the defaults be?

	B-spline patches
	Why B-splines?
	Exercises

	NURBS
	An example: a circle defined by NURBS
	Exercises

	Subdivision
	Subdivision curves
	Subdivision surfaces
	Exercises

