
Introduction

The concept of function is central to the teaching and learning of mathe-
matics. Indeed it has been variously said that the single most important

concept in modern mathematics is that of the function (National Council of
Teachers of Mathematics (NCTM), 1989; Ferrini-Mundy & Graham, 1991;
Tall, 1996). As a mathematical notion, the concept of function is fundamen-
tal, yet powerful, and is a unifying theme that is found running throughout
most branches of mathematics. Kleiner (1989), in his historical account of the
evolution of the function concept was quick to point out that “in fact, the
concept of function is one of the distinguishing features of “modern” as
against “classical” mathematics” (p. 282).

One particular area where the concept of function finds its raison d’être is
in the so-called special functions (e.g., Lebedev, 1972). The special functions
are those functions that arise most frequently in applications and have been
studied and used for centuries. Prominent examples include the exponential,
logarithmic and trigonometric functions. Because of their remarkable prop-
erties and seemingly limitless applicability, Andrews, Askey and Roy (1999)
suggest that special functions could be more appropriately labelled as “useful
functions”. Not surprisingly therefore, the function concept is found to be
central to senior secondary and beginning tertiary mathematics curricula
(Australian Education Council (AEC), 1991; Ponte, 1992; Tall, 1992; Ryan,
1994; NCTM, 1989, 2000). The idea of function forms a unifying thread that
begins with describing basic functional relationships between two quantities,
thereby underlying much of secondary school algebra; and culminates in the
study of real-valued functions of a real variable, thereby underlying most of
senior secondary and introductory tertiary level calculus. As a case in point,
the current introductory calculus-based senior mathematics syllabus in New
South Wales goes as far as saying that, “much of this course is devoted to the
study of properties of real-valued functions of a real variable” (Board of
Studies NSW, 1982, p. 35). In his overview of this particular course, Pender
(1999) noted that “one of the great changes from Year 10 to Year 11 is that
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functions and their graphs become the centre of attention” (p. 13).
With the study of real-valued functions of a real variable assuming such a

central role in existing mathematics curricula, it is the so-called elementary
functions (e.g., Edwards & Penney, 1990, p. 271) that figure most promi-
nently. While many special functions are known to exist (e.g., Abramowitz &
Stegun, 1972), at the senior secondary and introductory tertiary levels only
the elementary functions are typically encountered. Here the elementary
functions are real-valued algebraic functions (such as polynomials, rational or
power functions), transcendental functions (traditionally thought of as the
exponential, logarithmic, the trigonometric and hyperbolic functions
together with their associated inverses (e.g., Finney, Weir & Giordano, 2001,
p. 499)) or combinations of these under the operations of arithmetic and
function composition. The elementary transcendental functions are the
simplest of the special functions and have the widest applicability; their many
applications lend considerably to their importance.

If senior secondary and introductory tertiary level mathematics curricula
are to reflect mathematics as a constantly evolving and dynamic enterprise,
and provide students with a glimpse of what actually goes on in contemporary
research mathematics, then teachers of mathematics and mathematics educa-
tors need to seek out those areas of mathematics that are currently being
developed and determine how best to appropriate aspects of this “new” math-
ematics into our curricula (Grimison, 1995; AEC, 1991). Certain topic areas
within our existing curricula already have the ability to throw up further ques-
tions and problems that suggest further realms of mathematics.
Appropriating recent developments from those areas where questions and
problems naturally arise in our existing curricula, would challenge students
and extend their existing conceptions by offering the view that mathematics
is a constantly developing and unfolding discipline. For too long mathemat-
ics curricula at these levels have often been presented in ways that suggest
mathematics is closed and complete. Stasis underlies much of school and
introductory tertiary mathematics, particularly in the treatment of special
functions. However, in the past thirty years, driven by discoveries of both new
special functions and by the newer applications that have been found for
existing special functions, mathematicians have witnessed a resurgence of
interest in this area (Andrews et al., 1999).

Until quite recently, when it came to the elementary transcendental func-
tions it was commonly perceived that everything there was to know in this
domain had been discovered long ago. Recent research efforts in the field of
special functions (Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996) have
however turned up a seemingly new elementary transcendental function
whose importance had not previously been recognised but which nonetheless
demanded attention. Now going by the name of the “Lambert W function”
(Weisstein, 2003), this function is a notable example of what one can appro-
priate into our curricula with relative ease despite the fact that it is remains a
topic of contemporary research interest.

In this paper I wish to introduce the Lambert W function. In doing so I
hope to raise the profile of the function to a wider audience of teachers and
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educators of mathematics, and will argue for the case of its inclusion into our
curricula. By presenting properties of this particular function and highlight-
ing some of its applications, it will be shown how our existing curricula at the
senior secondary and introductory tertiary levels stand to benefit by its intro-
duction. Acceptance of the Lambert W function as a bona fide elementary
transcendental function equal in importance to that of the well-established,
traditional class of such functions, however, is expected to be no easy task.
The standard set of elementary functions is so deeply and profoundly
ingrained in the minds of most teachers and educators of mathematics that
to even begin to suggest such a set is somehow incomplete is surely to be met
with incredulity.

A question of motivation

As a way of introducing the Lambert W function, I use the historical approach
from where it initially arose; namely as the solution to the transcendental
equation yey = x (Lambert, cited in Corless et al., 1996). Any further historical
references surrounding its development will be deferred to a later section
towards the end of this paper.

Seeking a closed-form solution1 to the transcendental equation yey = x, in
terms of y, we are led to the definition for the Lambert W function; it being
defined as the inverse of the function f(x) = xex. Denoting the Lambert W func-
tion by W(x), we see that it is a solution to the equation

W(x) eW(x) = x.
The above equation is known as the defining equation for the Lambert W

function and it is central to the study of this function.
Before sketching W to assist in establishing some of the properties for this

function, it is instructive to sketch the function f(x) = xex . Its curve is given in
Figure 1. A little calculus reveals a turning point in this function at (–1,–1/e).

Figure 1. Plot of the function f(x) = xex.
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1. A closed form solution is a solution in terms of known constants (π, e, √2, etc.) and
known functions (log, exp, sin, etc.).



Reflecting about the line y = x is the graphical link between a function and
its inverse and enables W to be readily sketched (see Figure 2). Here the
curve is broken up into two separate curves; it is actually two separate func-
tions; since we recall from the definition of a function that for each x there
can be at most only one value for y. These two separate functions are depicted
by the solid and dashed lines in Figure 2.

The number of solutions to the defining equation for the Lambert W func-
tion varies depending on the value for x. From Figure 2 one can readily see
that:
1. if x < –1/e the defining equation has no (real) solutions,
2. if x ≥ 0 the defining equation has one (real) solution, and
3. if –1/e ≤ x < 0 the defining equation has two (real) solutions and is

therefore multi-valued on this domain.

Figure 2. Plot of the Lambert W function f(x) = W(x). 

The Lambert W function is therefore similar to the inverse trigonometric
functions, in that it is a multi-valued function on a given domain, and a prin-
cipal branch needs to be defined. When x is real it has two branches. In
accordance with the practice now in place for naming the branches, the
branch satisfying W(x) ≥ –1 is denoted by W0(x) and is defined to be the prin-
cipal branch while the secondary real branch satisfying W(x) ≤ –1 is denoted
by W–1(x).

Reflecting on the process taken in arriving at the Lambert W function we
notice that this newly named function is defined to be the inverse of a func-
tion that has no special name. Compare this to the case of the exponential
which creates a name for its inverse that has no connection with the original
function’s name, namely the logarithm, or the trigonometric functions whose
inverses either use the general notation of f –1, thus producing sin–1, cos–1 and
so on, or build their new name for the inverse by modifying the original func-
tion’s name, thus producing arcsin, arccos and so on.

From a pedagogical point of view the Lambert W function presents an
opportunity to work with and further explore inverse functions. Moreover, it
is the first and only elementary transcendental function that provides a non-
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trivial example of branching behaviour on the real domain. The inverse
trigonometric functions, of course, also exhibit branching behaviour for real
arguments, but their branches are trivial in the sense that they are essentially
a shift and possible change in sign of the principal branch that one need not
consider them separately. The Lambert W function therefore acts as an
invaluable link in familiarising the student with a non-trivial example of a
multi-branched function on the real domain, thereby foreshadowing much of
what lies ahead, particularly in the higher-level study of functions of a
complex argument where multi-branching behaviour is the norm.

Simple properties and applications

The Lambert W function turns out to have a surprisingly rich mathematical
structure, which enables students to engage in more insightful mathematical
thinking as a progressively more sophisticated exploration of functions and
their inverses can be entered into. Usually the introduction of a new special
function into mathematics is warranted by its importance and usefulness; and,
in helping to establish the “importance” and “usefulness” of this function,
some of its associated properties and simple applications will be explored in
the following sections.

Fundamental identities
A few fundamental identities for the Lambert W function follow immediately
from its definition:

These identities will prove useful later on, particularly the last two, which
enable, for example, a golden ratio like connection for the Lambert W func-
tion to be made and allow iterative processes to be explored.

Special values
We know from previous experience in working with the more familiar
elementary transcendental functions that for given arguments, special values
are known to exist. The Lambert W function should therefore be no differ-
ent. From inspection of the graph of W (see Figure 2), it is immediately
obvious that

Such values were already noted in the previous section.
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A question that naturally arises is can we find others? Consider W0(e). From
the defining equation for the Lambert W function, setting x = e yields

which on inspection gives W0(e) = 1. In fact, it is not too difficult to recognise
that since the Lambert W function is the inverse of the function f(x) = xex, in
general the following simplification rule must hold

Infinitely many exact values for W can now be generated from this simpli-
fication rule. For example, 

and so on.

Numerical values
The Lambert W function can take on irrational values, W0(1) being one
notable example (Weisstein, 2003). The computation of such values needs to
be performed numerically. One way in which this can be readily achieved is
by the use of Newton’s method. As an excellent application of this method,
an approximate value for W0(1) can be found by finding an approximate
solution to the equation te t = 1, where t = W0(1). If a beginning approxima-
tion of 0.5 is used, one application of Newton’s method gives a next best
approximation of W0(1) ≈ 0.5710. Repeated application of Newton’s method
yields W0(1) = 0.567143290…, the first nine decimal places for this number.

Alternatively, as an illustrative application of the use of technology in the
curriculum, a graphics calculator can be used. On a Texas Instruments TI-89
numerical values for the Lambert W function can be obtained using a user-
defined function in the following manner:

1. For the principal branch of the Lambert W function, W0(x) is created by
entering:

Define w(x) = nSolve(tet=x,t)|t>–1

2. For the secondary real branch of the Lambert W function, W–1(x) is
created by entering:

Define wm1(x) = nSolve(tet=x,t)|t<–1
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In both instances, values for W are calculated by solving the defining tran-
scendental equation for the Lambert W function numerically. A screen shot,
taken off a TI-89 showing some numerical values calculated for the Lambert
W function using the above user-defined functions is given in Figure 3.
Additional values for W are given in Table 1.

Figure 3. Some values for the Lambert W function obtained 
using a user-defined function on a graphics calculator.

Table 1. Some values for the Lambert W function.

x W0(x) W–1(x)

2e2 2 –
e 1 –
2 0.8526… –
1 0.5671… –
1/e 0.2784… –
0 0 –

–1/4 –0.3574… –2.1532
–2/e2 –0.4064… –2
–1/e –1 –1

As the Lambert W function is presently not found on any scientific/graph-
ics calculators, the evaluation of arbitrary values is somewhat more involved
than the now trivial procedure of pushing the appropriate buttons on the
calculator for the familiar elementary transcendental functions. Recall,
however, that it was not that long ago when finding arbitrary values for the
more familiar elementary transcendental functions required the use of tables!
Once the ubiquitous nature of the Lambert W function is duly recognised,
the author believes it will only be a matter of time before we see a designated
button for this function appearing on most scientific/graphics calculators.

A special number
Interestingly, since W0(1) is the solution to the following equations
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it can be considered a sort of “golden ratio” for exponentials (Weisstein,
2003). From the likeness in this exponential connection to the golden ratio,
the number W0(1) = 0.567143290… is singled out as being a special number
associated with the Lambert W function. It is usual for this special number to
be referred to as the omega constant, Ω (Weisstein, 2003) and is not unlike the
practice of special irrational numbers being associated with the other elemen-
tary transcendental functions, such as e with the exponential and logarithmic
functions and π with the trigonometric functions.

Solution of equations
One area where the Lambert W function would find ready use and applica-
bility in a senior secondary or introductory tertiary level mathematics course
would be in the solution of equations. Many equations that involve exponen-
tials (or logarithms) can be solved in terms of the Lambert W function. The
general strategy to solving such equations is to move all instances of the
unknown to one side of the equation, make it look like the form of the defin-
ing equation, namely f(x)e f(x), at which point the Lambert W function provides
the solution to the equation. Such an exercise reinforces the importance of
form recognition in problem solving while at the same time introduces the
method of implicit solution. Let us look at two examples.

As a first example, consider the solution to the equation x + ex = 0. This
rather innocuous looking equation can not be solved in closed-form in terms
of any of the known elementary (or higher) transcendental functions one is
traditionally familiar with. In the past numerical methods have been required
in order to find an approximate solution for x. If, however, we rewrite this
equation as

x = –ex

and move all instances of the unknown to the left hand side we have

xe–x = –1.

Next, writing the left hand side of the above equation in the form of the defin-
ing equation, namely

–xe–x = 1

enables this equation to be solved in terms of the Lambert W function as

–x = W0(1)
or

x = –W0(1) = –0.567143290…

Here the principal branch is chosen since the argument is greater than zero.
Substituting the numerical value for x into the initial equation can be used to
confirm the validity of this solution.
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One issue is whether or not the number –W0(1) is a closed form solution?
Is it closed in the way sin(2), ln(2), etc., are? Certainly the latter are express-
ible in terms of familiar functions, and after all, it is familiarity that is
important since the solver must regard the function as the final answer and
not simply as another question. Just as the student is unlikely to regard the
exponential function as providing the solution to the equation ln(x) = 2 until
the moment they formally encounter it, the same could therefore be said for
the Lambert W function.

A second interesting example that makes use of the Lambert W function
in its solution comes from solving the equation x2 = 2x. By inspection, two solu-
tions to this equation are x = 2 and x = 4, but are there others? Plotting the
two curves y = x2 and y = 2x on the same diagram reveals that a third solution
exists to this equation as the two curves intersect not only at the points x = 2
and x = 4 but at a third point close to x = –1.

Taking the square root of both sides of the above equation, leaves one with

Two cases therefore need to be considered. Considering the positive case first,
taking the logarithm of both sides and simplifying gives

Exponentiating and moving all instances of the unknown to one side gives

or

Solving for x results in two solutions since the argument –ln2
2 ( 0.346…) lies

between –1
e ( 0.367…) and zero and therefore both branches of the Lambert

W function need to be considered on this domain. The two solutions are

(1)

and

(2)

While the solutions to the positive case of this equation can be written in
terms of the Lambert W function, on evaluation they reduce to the two trivial
solutions, namely that of 2 and 4, which were already known in advance. More
importantly, however, these trivial solutions make the suggestion that a simpli-
fication rule for W exists. This simplification rule will be established in the
next section.

The third solution to this equation must come from a consideration of the
negative case. Solving, then, for the negative case in an analogous manner to
that used for the positive case, we arrive at the third solution of
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(3)

Admitting the Lambert W function to the standard set of known elemen-
tary transcendental functions permits a larger class of equations to be solved
in closed-form. In fact, one could argue that the examples given above illus-
trate that the Lambert W function is the simplest example of a root (or roots)
to what can be thought of as an exponential polynomial, which is a “polynomial”
of sorts in that it contains an exponential term. Exponential polynomials have
been said to give rise to the next simplest class of functions after the polyno-
mials (Corless & Jeffrey, 2002). So, for example, we have seen that the
exponential polynomial E(x) = x + ex has as its root x = –W0(1) while the expo-
nential polynomial E(x) = x2 – 2x has as its roots x = 2, 4 and

A simplification rule for W

The two rational solutions to the equation x2 = 2x for x > 0 (see solutions (1)
and (2) in the previous section) suggest the solution to the more general
equation of

xy = yx for x, y > 0

ought to be considered. This equation was first considered by Euler in 1748
(Euler, cited in Knoebel, 1981) and subsequently by many others (e.g. Sved,
1990; Churchhouse, 1995; Bennett & Reznick, 2004). In solving this equation
we acknowledge the solution y = x. The equation can also be solved in terms
of the Lambert W function. Taking the natural logarithm of both sides of this
equation and rearranging gives

Exponentiating both sides and rearranging yields

or

after multiplying both sides of this equation by . 
Upon solving for y we have

where k = –1,0 denotes the two real branches for the Lambert W function.

17

A
 new

 elem
entary function for our curricula?

A
ustralian S

enior M
athem

atics Journal 1
9
 (2

)



From the y = x solution the following simplification rule for the Lambert W
function then follows:

(4)

By replacing x with 1x the negative signs in the above simplification rule can
be removed resulting in the more compact result of

(5)

Observe how solving a far simpler problem, namely x2 = 2x, leads to a
general simplification rule for W being found. Arriving at the above simplifi-
cation rule therefore provides the student with an excellent characterisation
of the nature of mathematics. It illustrates how the solution to a simpler
problem can lead to a more general result being discovered and therefore is
representative of a mathematical process often exploited by mathematicians
in arriving at interesting new results.

Iteration

Iteration, or the repeated application of some mathematical process (be it a
computation, construction, algorithm, etc.) on some initial state, shows up
across many areas of mathematics. It can be an extremely important tool in
problem solving or as the subject of investigation. For example, in the senior
secondary or introductory tertiary level curricula, iteration makes its appear-
ance in Newton’s method, which utilises this process in an essential way. The
Lambert W function readily lends itself to the process of iteration, and it is
therefore natural to explore iterative processes further within this context.

It should be apparent, from the last two fundamental identities for W, that
the function is defined in an iterative way. Starting with

and iterating indefinitely by back substituting W on the left hand side for W
on the right hand side, the following continued fraction-like formula for W
begins to emerge
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Likewise, if we start with

iterating gives

These two curious looking formulae are sure to arouse the interest of
teacher and student alike, and they highlight the inherently iterative nature
of this function. The iterative formulae for W couple iterative processes to the
Lambert W function, in an intriguing way, at a level that is readily accessible
to the student.

One other example connected with the process of iteration and that
makes use of the Lambert W function is iterated exponentiation, a perennial
problem that has attracted the attention of mathematicians since the time of
Euler (e.g., Knoebel, 1981; de Villiers & Robinson, 1986).

Consider the iterated exponential of Euler fame

The equation consists of an infinite power tower of x-s such that the powers
are read from the top down. Euler was the first to prove that this iteration
converges on the interval 

(Euler, cited in Knoebel, 1981). If we take the natural logarithm of both sides
of the iterated exponential, we can write

Upon exponentiating both sides of the above equation we have

h(x) = e h(x) lnx

which upon rearranging gives

h(x)e –h(x) lnx = 1

On multiplying both sides of the above equation by –lnx we have

–h(x) lnxe–h(x) lnx = –lnx
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which can be solved for h(x) in terms of the Lambert W function to give

–h(x) lnx = W0(–lnx)

so that

(6)

The Lambert W function therefore provides a neat, closed-form expres-
sion to the problem of iterated exponentiation and I should mention that it
was on seeing this result in the paper by Corless et al. (1996) that my interest
in the Lambert W function was initially aroused.

Having a closed-form expression for the iterated exponential allows for
some competition-type questions to be readily answered. For example, if
x = , then

where use of the first of the simplification rules given by equation (4) has
been made. As a second example, if x = 1

4 , then

where use of the second of the simplification rules for W as given by equa-
tion (5) has been used.

Note that in the above two examples the value for x chosen lies within the
interval

for which the iterated exponential converges. Other iterated exponentials
whose final solutions are no longer rational are expressible in terms of the
Lambert W function and follow from the closed-form expression given by
equation (6).
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A little calculus

The calculus of the Lambert W function provides a useful exercise in the
application of techniques that one often employs in the symbolic differentia-
tion and integration of functions.

The derivative of the Lambert W function is found by implicitly differenti-
ating the defining equation with respect to x (Corless et al., 1996). So

Upon solving for W'(x), the following expression for the derivative of W is
obtained

Higher-order derivatives for W then follow using the quotient rule for
example (see, e.g., Corless et al., 1996).

From Figure 2 it appears as though the principal branch for the Lambert
W function is an increasing function on the domain x > –1

e . Recall that a func-
tion f(x) is said to be increasing if f'(x) > 0 holds for all values of x in its
domain. Geometrically the curve of an increasing function slopes upwards so
that a tangent drawn to the curve has a positive gradient. Using the above
expression for the derivative of the Lambert W function we can show that
W0(x) is a monotonically increasing function for x > –1

e .
If W0(x) is to be an increasing function, it must satisfy W'0(x) > 0 on some

interval for x. Thus from the expression for the derivative of W we have

Since exp(W0(x)) > 0 and W0(x) > –1, provided x > –1
e , this ensures the

denominator of the above inequality is always positive for x > –1
e . The princi-

pal branch of the Lambert W function is therefore a monotonically increasing
function on its domain except at the branch point x = –1

e .
Symbolic integration of the Lambert W function is also possible (Corless

et al., 1996). A specificity of the Lambert W function is that it is defined as an
inverse function, thus the problem of integrating expressions containing the
Lambert W function is a special case of integrating expressions containing
inverse functions. It relies on a substitution, followed by the method of inte-
gration by parts. This approach is not too dissimilar to the method used for
integrating expressions that contain the logarithmic function.

Starting with the defining equation for the Lambert W function and using
the change of variable w = W(x), the defining equation becomes wew = x such
that dx = (w + 1)ewdw. Thus
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The integral on the right is now integrated readily by parts. We obtain

Many other expressions that contain W can be integrated in this way. For
example,

and

Since expressions containing W can be symbolically integrated, we expect
this to account for some of the applications of the Lambert W function. For
example, a simple mathematical model for combustion (e.g., O’Malley, 1991)
is

where ε is a positive constant. Since the equation is separable, the model
problem can be solved using the method of separation of variables. The
following implicit solution in y is obtained

The above logarithmic equation can be solved explicitly for y in terms of the
Lambert W function. We leave it as an exercise to show that when this is done

Eliminating the constant of integration by substituting for the initial condi-
tion, we finally get
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A brief historical account of the Lambert W function

The evolving realisation that the Lambert W function, whose origin can be
traced back to the mid-eighteenth century, was an elementary transcendental
function in its own right can be said to consist of anticipations and near
misses. Best remembered today for his proof of the irrationality of π and his
early treatment of the hyperbolic functions (Barnett, 2004), the work of
Johann Heinrich Lambert in 1758 foreshadowed the modern day definition
of this function (Lambert, cited in Corless et al., 1996). Lambert himself did
not provide any special notation or name for this function as he did not
recognise nor see the need in defining it as a separate function. Subsequent
work by the great Leonard Euler in 1779 (Euler, cited in Corless et al., 1996)
led to some of the mathematical properties of this function being worked out,
at least indirectly, but again its importance went unrecognised. Since that
time it appears as though many authors working in disparate fields discovered
and rediscovered this function, but its existence as a special function in its
own right was not formally established until quite recently.

In the mid-1990s, Corless and co-workers (Corless et al., 1996) became
sufficiently convinced that what many others had previously been dealing
with in isolation, was in fact a too often overlooked elementary transcenden-
tal function waiting to be named. Having hit upon this initial realisation,
Corless et al. (1996) went ahead and named it as a special function and gave
a systematic account of many of its properties. If what we now know as the
Lambert W function had not been provided with a convenient and standard
name of its own, its wide-ranging applicability would continue to go unno-
ticed. Most people, when coming across it, would think they were dealing with
an isolated transcendental equation rather than a simple elementary tran-
scendental function on par with the existing well-known elementary
transcendental functions of mathematics. In a relatively short period of time
after having received its name, the usefulness of the function in various fields
beyond mathematics, such as in physics and engineering, was quickly estab-
lished (Barry, Parlange, Li, Prommer, Cunningham, & Stagnitti, 2000). Such
apparent general applicability rapidly established the Lambert W function as
one of the important elementary transcendental functions of mathematics.
Part of its initial popularity seems to have stemmed from its early inclusion in
certain computer algebra systems such as Maple, where initially it was simply
called “W” (Corless, Gonnent, Hare, & Jeffrey, 1993). Despite the apparent
lack of association that the initial choice in the name “W” seemed to have to
“anyone” or “anything”, quite fortuitously an English mathematician by the
name of Edward M. Wright had studied the complex values of this function
in the late nineteen forties (Wright, cited in Corless et al., 1996) and it is
probably through such work that this function acquired its “W” epithet. The
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function itself is named after Johann Lambert in honour of the initial work
he performed in pre-empting its definition. An entry for the Lambert W func-
tion can now to be found in Eric Weisstein’s weighty encyclopedic tome of
mathematics (2003, pp. 1684–1685) and reflects its nascent recognition, as it
is included alongside the more familiar elementary transcendental functions.

Conclusion

In this paper I have introduced the recently defined Lambert W function and
have argued the case for its inclusion into our curricula. It is a simple yet
accessible function which could be purposefully introduced into either the
senior secondary or introductory tertiary level mathematics curricula, relying
on little more than the concept of an inverse function having been properly
prepared beforehand.

The Lambert W function, which is rapidly emerging as one of the impor-
tant elementary transcendental functions of mathematics, has a surprisingly
rich mathematical structure and arises in many applications due to its simplic-
ity — simple functions occur often. Using examples that are readily accessible
to the senior secondary or introductory tertiary level student, it has been
shown how analytic solutions to a variety of equations involving exponentials,
iterated exponentiation, and a simple combustion model, can be solved in
terms of W. Despite its growing applicability, its presence often continues to
go unrecognised. Of intrinsic mathematical interest, it was shown how the
Lambert W function has properties that are akin to those of the golden ratio
and how expressions containing this function can be symbolically integrated
and differentiated. Pedagogically, its introduction could be a means for
consolidating and reinforcing work on inverse functions, and use of it would
go some way towards preparing the student for future work on multi-valued
functions.

The teacher of mathematics is not often presented with the opportunity to
introduce and discuss “new” mathematics from the current mathematical
literature that is even remotely accessible to our students. I maintain that the
Lambert W function is one surprising exception. Whilst I concede that any
attempt to change long ingrained thinking towards the apodictic set of famil-
iar elementary transcendental functions is to be regarded as largely a quixotic
endeavour, I encourage you to think otherwise.
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