
Quantum Theory 2015/16

4. Relativistic Quantum Theory

4.1 Quick Review of Special Relativity

Four-Vector Notation: The coordinates of an object or ‘event’ in four-dimensional space-
time, Minkowski space, form a contravariant four-vector whose components have ‘upper’
indices:

xµ ≡ (x0, x1, x2, x3) ≡ (ct, x)

Similarly, we define a covariant four-vector whose components have ‘lower’ indices:

xµ ≡ (x0, x1, x2, x3) ≡ (ct, −x)

A general four-vector aµ is defined in the same way:

aµ ≡ (a0, a1, a2, a3) ≡ (a0, a)

aµ ≡ (a0, a1, a2, a3) ≡ (a0, −a)

so that a0 = a0 and ai = −ai, i = 1, 2, 3. Upper and lower indices are related by the metric
tensor gµν :

aµ = gµν aν aµ = gµν a
ν

where

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and we use the Einstein summation convention where there is an implicit sum over the
repeated index : ν = 0, 1, 2, 3.

The scalar product in Minkowski space is defined, for general 4-vectors aµ and bµ by

a · b ≡ aµbµ = aµb
µ = aµbνg

µν = aµbνgµν

= a0b0 − a · b

where a and b are ordinary 3-vectors.

NB we do not underline 4-vectors; every pair of repeated indices is implicitly summed
over and each pair consists of one upper & one lower index. An expression with two identical
upper (or lower) indices (eg aµbµ ) is simply wrong!

Lorentz transformations: Lorentz transformations are linear transformations on the
components of 4-vectors which leave invariant this scalar product:

a′
µ

= Λµ
ν a

ν eg x′
µ

= Λµ
ν x

ν

Strictly, these are homogeneous Lorentz transformations – translations are not included.
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The ‘standard’ Lorentz transformation is a ‘boost’ along the x direction

Λµ
ν =


coshω − sinhω 0 0
− sinhω coshω 0 0

0 0 1 0
0 0 0 1


where the ‘rapidity’ ω satisfies

tanhω ≡ β ≡ v/c

coshω ≡ γ = (1− β2)−1/2 = (1− (v/c)2)−1/2

sinhω = γ β

Hence ct′ = γ (ct− (v/c)x) and x′ = γ (x − vt) as usual, relating the time and space co-
ordinates of a given event in two inertial frames in relative motion:

Boost v

S’

x x’

S

Differential operators

∂µ ≡
∂

∂xµ
=

(
1

c

∂

∂t
, ∇

)

∂µ ≡ ∂

∂xµ
=

(
1

c

∂

∂t
, −∇

)

d’Alembertian: ∂µ ∂
µ = ∂µ ∂µ = ∂2 =

1

c2

∂2

∂t2
− ∇2 ( = )

(NB sometimes is called 2, so we will almost always use ∂2.)

Momentum and energy: The conserved 4-momentum is denoted by:

pµ ≡
(
E

c
, p
)

p2 =
E2

c2
− p · p = m2c2 for a free particle

or E2 = |p|2c2 + m2c4

where m is the mass of the particle.

We shall follow the historical development of relativistic quantum mechanics, beginning with
the standard simple-minded approach to making the Schrödinger equation consistent with
special relativity.
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4.2 The Klein-Gordon equation

Recall that the Schrödinger equation for a free particle

ih̄
∂

∂t
ψ(r, t) =

{
− h̄2

2m
∇2

}
ψ(r, t)

can be obtained from the (non-relativistic) classical total energy

E = H =
|p|2

2m

by means of the operator substitution prescriptions

E → ih̄
∂

∂t
and p→ −ih̄∇

The relativistic expression for the total energy of a free particle is

E2 = |p|2c2 + m2c4

Schrödinger (& Klein, Gordon, & Fock) suggested this as a starting point, thus obtaining

−h̄2 ∂
2

∂t2
φ(r, t) = − h̄2 c2∇2φ(r, t) + m2c4φ(r, t) (1)

which is the Klein Gordon (KG) equation for the wavefunction φ(r, t) of a free relativistic
particle.1 We can write this in a manifestly covariant form as(

∂2 +
m2c2

h̄2

)
φ(x) = 0

where x is the four-vector (ct, x1, x2, x3), so the operator prescription in covariant form is

pµ → p̂µ = ih̄

{
1

c

∂

∂t
, −∇

}
= ih̄

∂

∂xµ
= ih̄∂µ

For a massless particle, m = 0, the KG equation reduces to the classical wave equation
∂2φ = 0.

Free particle solutions: By substitution into the KG equation (1) we see it has plane-
wave solutions

φ(r, t) = exp{ik · r − iω t}

provided that ω, k & m are related by

h̄2ω2 = h̄2c2|k|2 + m2c4

Taking the square-root, we get: h̄ω = ±
{
h̄2c2|k|2 + m2c4

}1/2
.

Such solutions are readily seen to be eigenfunctions of the momentum and energy operators,
with eigenvalues p ≡ h̄k and E ≡ h̄ω, respectively.

1The KG equation was first written down by Schrödinger but, due to the problems we will discover below,
he discarded it in favour of the non-relativistic equation that bears his name.
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Thus, if we interpret h̄ω as an allowed total energy of the free particle solution, there is an
ambiguity in the sign of the total energy: there are both +ve and −ve energy solutions, and
these have energy

E = ±
√
|p|2c2 +m2c4

The positive-energy eigenvalues are in agreement with the classical relativistic relation be-
tween energy, mass, and momentum, but what should we make of particles with negative
total energy?

If we define the four-vector kµ ≡ (
ω

c
, k) we can write the solution in covariant form

φ(x) ≡ exp(−ik · x) ≡ exp(−ikµxµ) ≡ exp(−ipµxµ/h̄)

and thus interpret the four-momentum as pµ = h̄kµ.

Continuity equation and probability interpretation

Denote the Schrödinger equation by (SE) and its complex-conjugate by (SE)∗. Considering

ψ∗ (SE) − ψ (SE)∗ ,

gives a continuity equation
∂

∂t
ρ + ∇ · j = 0

where ρ = ψ∗ ψ and j = − ih̄

2m
(ψ∗∇ψ − ψ∇ψ∗)

are the probability density and probability current density, respectively. (Integrate over any
volume, and use the divergence theorem to see why – tutorial.) If we repeat this for the
Klein Gordon equation, we obtain the quantities

ρ =
ih̄

2mc2

(
φ∗
∂φ

∂t
− φ

∂φ∗

∂t

)
and j = − ih̄

2m
(φ∗∇φ − φ∇φ∗)

Note:

1. j is identical in form to the non-relativistic Schrödinger current density (we have chosen
to normalise j so that this is the case.).

2. ρ can be shown to reduce to φ∗φ in the non-relativistic limit.

3. The candidate for the probability density, ρ(x), is no longer positive definite – negative
energy solutions have ρ < 0 (exercise). Therefore there is no obvious probability-
density interpretation.

Summary: The Klein Gordon (KG) equation is the simplest relativistically-covariant gen-
eralisation of the Schrödinger equation. Its solutions have the usual desirable properties for
the description of a relativistic quantum particle, but they also describe particles of negative
total energy, together with negative probabilities for finding them!

Considering the positive energy solutions only, the KG equation with a Coulomb potential
can be solved exactly for the energy levels of the hydrogen atom. The non-relativistic
expansion reproduces exactly the relativistic kinetic energy correction ∆EKE obtained in
time-independent perturbation theory, but it doesn’t account for the spin-orbit correction
or the Darwin term, so something else is required. . .
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4.3 The Dirac Equation

Dirac tried to avoid the twin difficulties of negative energy and negative probability by
proposing a relativistic wave equation which, like the Schrödinger equation, is linear in ∂

∂t
,

hoping to avoid the sign ambiguity in the square-root of E2, and also the presence of time
derivatives in the ‘probability density’. Relativity then dictates that the equation should
also be linear in the spatial derivatives in order to treat space and time on an equal footing.

Following Dirac, we start with a Hamiltonian equation of the form

ih̄
∂

∂t
ψ(r, t) = Ĥ ψ(r, t)

and write

ih̄
∂

∂t
ψ(r, t) = −ih̄c

{
α1 ∂

∂x1
+ α2 ∂

∂x2
+ α3 ∂

∂x3

}
ψ(r, t) + β mc2 ψ(r, t) (2)

=
{
c α · p̂ + β mc2

}
ψ(r, t) = Ĥψ(r, t) (3)

where α · p̂ ≡ αi p̂i = − ih̄αi ∂
∂xi

(
with αi p̂i ≡

3∑
i=1

αi p̂i etc.

)

Initially, we attempt to construct an equation for a free particle, so no terms in the Hamilto-
nian Ĥ should depend on r or t as these would describe forces. By assumption, the quantities
αi and β are independent of derivatives, therefore αi and β commute with r, t, p̂ and E but
not necessarily with each other.

Since relativistic invariance must be maintained, ie E2 = |p|2c2 + m2c4, Dirac demanded
that

Ĥ2 ψ(r, t) =
(
c2 |p̂|2 + m2c4

)
ψ(r, t) (4)

From equation (3) we have

Ĥ2 ψ(r, t) =
{
c α · p̂ + β mc2

}{
c α · p̂ + β mc2

}
ψ(r, t)

Expand the RHS of this equation, being careful about the ordering of the, as yet undeter-
mined, quantities αi and β

Ĥ2 ψ(r, t)

=
{
c2
[
(α1)2 (p̂1)2 + (α2)2 (p̂2)2 + (α3)2 (p̂3)2

]
+ m2c4 β2

}
ψ(r, t)

+ c2
{(

α1α2 + α2α1
)
p̂1p̂2 +

(
α2α3 + α3α2

)
p̂2p̂3 +

(
α3α1 + α1α3

)
p̂1p̂3

}
ψ(r, t)

+ mc3
{(

α1β + βα1
)
p̂1 +

(
α2β + βα2

)
p̂2 +

(
α3β + βα3

)
p̂3
}
ψ(r, t)

Condition (4) is satisfied if

(α1)2 = (α2)2 = (α3)2 = β2 = 1

αi αj + αj αi = 0 (i 6= j)

αi β + β αi = 0
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or, more compactly,{
αi, αj

}
= 2 δij the anticommutator of αi and αj{

αi, β
}

= 0 , β2 = 1

1. From these relations it’s clear that the αi and β cannot be ordinary numbers. If we
assume they’re matrices, then since Ĥ is hermitian, αi and β must also be hermitian
(and therefore square) n× n matrices.

2. The matrices αi and β are hermitian so their eigenvalues are all real. Therefore, since
(αi)2 = β2 = I (the unit matrix), all the eigenvalues must be ±1 (exercise).

3. Tr (αi) = Tr (β) = 0.

Proof: Tr (αi) = Tr (β2 αi) = Tr (β αi β) (using Tr (AB) = Tr (BA) )

= −Tr (αi β2) (using αi β = − βαi)
= −Tr (αi) = 0

Since the eigenvalues are ±1, and the trace is the sum of the eigenvalues, n must be even.
It’s not possible to find a set of 4 traceless hermitian 2× 2 matrices which satisfy the anti-
commutation relations; the 3 Pauli matrices σi satisfy {σi, σj} = 2δij, but there is no 4th

matrix.

The smallest representation of αi and β is 4 × 4, and may be constructed using the Pauli
matrices σi as sub-matrices. The standard representation has β diagonal:

β =

(
1 0
0 −1

)
αi =

(
0 σi

σi 0

)
or α =

(
0 σ
σ 0

)

where each element is a 2 × 2 submatrix, and α is shorthand for a ‘three vector’ of 4 × 4
matrices αi.

Writing these out in full gives

β =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 α2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 α3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



Exercise: Check that these matrices satisfy the correct anti-commutation relations.

Since the Hamiltonian is a 4 × 4 matrix, the wave-function ψ(r, t) it acts on is naturally a
4-component column matrix :

ψ(r, t) =


ψ1(r, t)

ψ2(r, t)

ψ3(r, t)

ψ4(r, t)


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Probability Density

The Dirac equation for a free particle is

ih̄
∂

∂t
ψ(r, t) =

(
−ih̄c α · ∇ + β mc2

)
ψ(r, t) (5)

Construction of the probability density is straightforward. Take the Hermitian conjugate of
equation (5) (ie complex conjugate and transpose)

−ih̄ ∂
∂t
ψ†(r, t) = ψ†(r, t)

(
ih̄c α · ←−∇ + β mc2

)
(6)

Note that ψ† is a row vector whose components are the complex conjugates of the components
of ψ. Now multiply (5) by ψ† from the left and (6) by ψ from the right and subtract:

ih̄
∂

∂t

(
ψ† ψ

)
= −ih̄c

(
ψ†α · ∇ψ + ψ†α · ←−∇ψ

)
= −ih̄c

(
ψ†α · ∇ψ +

(
∇ψ†

)
· αψ

)
= −ih̄c∇ ·

(
ψ† αψ

)
This can be written as a continuity equation

1

c

∂ρ

∂t
+ ∇ · j = 0

with
ρ = ψ†ψ and j i = ψ† αi ψ

(
or j = ψ† αψ

)
where ρ = ψ†ψ ≡ |ψ|2 is a positive definite quantity as required of a probability density.

We can write the continuity equation in covariant form as

∂µ j
µ = 0 with jµ = (ρ, j)

This is usually known as probability-current density conservation and it implies that ψ†ψ
transforms like the time-like component of a 4-vector, with ψ† αψ the corresponding space
part, which we identify as the usual probability-current density.

Free Particle Solutions

Let’s look for plane-wave solutions of the form

ψ(r, t) = exp(−ikµ xµ)w(p)

= exp(−ik · x)w(p) = exp(−ip · x/h̄)w(p)

= exp
{
− i
h̄

(
cp0t − p · r

)}
w(p)

where w(p) is a 4-component column matrix.

Substituting into the Dirac equation (5) and dividing out by c exp(−ip · x/h̄), yields

p0w(p) =
(
α · p + βmc

)
w(p) (7)
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which is sometimes called the momentum-space or ‘p-space’ Dirac equation. The trial solu-
tion presumably represents a particle of energy cp0 and momentum p.

Writing out equation (7) by substituting the matrices β and αi gives a set of 4-simultaneous
linear equations which we write in matrix form as:

(−p0 +mc) 0 p3 (p1 − ip2)

0 (−p0 +mc) (p1 + ip2) −p3

p3 (p1 − ip2) −(p0 +mc) 0

(p1 + ip2) −p3 0 −(p0 +mc)



w1

w2

w3

w4

 = 0

The condition for non-trivial solutions for w(p) is that the determinant of the matrix vanishes.
On multiplying out the determinant, we find (slightly laborious exercise){

m2c2 + |p|2 − (p0)2
}2

= 0 (8)

which is the just the square of the required energy-momentum relation. Of course, this
had to happen because we constructed the matrices αi and β so that it would! Taking the
square-root, we have

p0 = ±
{

(m2c2 + |p|2
}1/2

so the negative energy solutions are still with us.

Viewed more formally, equation (7) is an eigenvalue problem which we wish to solve for the
eigenvalues p0 and eigenvectors w(p). The eigenvalue condition, equation (8), is a quartic
equation whose four solutions are

p0 = +
{

(m2c2 + |p|2
}1/2

(twice) and p0 = −
{

(m2c2 + |p|2
}1/2

(twice)

The four eigenvalues p0 come in two degenerate pairs of equal magnitude but opposite sign.

Two-by-two block form of the Dirac equation

The p-space Dirac equation

p0w(p) =
(
α · p + βmc

)
w(p)

can be solved for w(p) by brute force, but we shall introduce a more elegant formalism by
writing the four-component spinor w(p) in terms of two two-component spinors φ(p) and
χ(p):

w(p) =

(
φ(p)
χ(p)

)
The p-space Dirac equation (7), becomes

p0

(
φ
χ

)
=

 mc σ · p
σ · p −mc

( φ
χ

)

Note that the elements of the 2× 2 block matrix are themselves 2× 2 matrices: σ · p is the
2 × 2 matrix

∑3
i=1 σ

i pi, mc is shorthand for mc I, where I is the 2 × 2 unit matrix, and
hence

p0 φ = mcφ + σ · p χ (9)

p0 χ = σ · p φ − mcχ (10)
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Positive energy solutions: Let us first choose p0 > 0.

(From the previous section, we know this will give us

p0 = + (m2c2 + |p|2)1/2 ≡ p0
+ =

E

c
(E > 0)

but we will re-derive this result here.)

Equation (10) can be used to solve for χ in terms of φ

χ =
σ · p

p0 +mc
φ (11)

which we can substitute back into equation (9) to obtain

p0 φ =

{
mc +

(σ · p)2

p0 +mc

}
φ

but (σ ·p)2 = |p|2I (exercise), therefore w(p) is a free particle solution of the Dirac equation
for all two-component spinors φ if

(p0)2 + p0mc = p0mc + (mc)2 + |p|2

which gives us the desired relation between energy & momentum.

The Dirac spinors w(1),(2)(p) corresponding to the two positive-energy plane-wave solutions
can then be written as

w(1),(2)(p) =


φ(1),(2)

( c σ · p
E +mc2

)
φ(1),(2)


It is conventional to choose the two linearly-independent two-spinors

φ(1) =

(
1
0

)
and φ(2) =

(
0
1

)

Negative energy solutions: Now choose p0 < 0 [which will again give us

p0 = − (m2c2 + |p|2)1/2 ≡ p0
− = − E

c
(E > 0) ]

It is conventional to write down the two negative energy solutions for negative spatial mo-
menta −p, ie for pµ− = (p0

−,−p). By solving equation (9) for φ in terms of χ we obtain
(exercise):

w(3),(4)(−p) =


( c σ · p
E +mc2

)
χ(1),(2)

χ(1),(2)


For the negative energy solutions, it is conventional to choose the two linearly-independent
two-spinors

χ(1) =

(
0
1

)
and χ(2) =

(
1
0

)
The reason for the (apparently perverse) choice of negative momenta and two-spinors will
become clearer when we try to interpret the negative energy states.
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Summary: With the above conventions, the two positive energy solutions with four mo-
menta pµ+ = (E/c, p) have components

w(1)(p) =



1

0

cp3

E +mc2

c(p1 + ip2)

E +mc2


and w(2)(p) =



0

1

c(p1 − ip2)

E +mc2

−cp3

E +mc2


and the two negative energy solutions with spatial momenta−p, ie pµ− = (−E/c, −p) = −pµ+,
have components

w(3)(−p) =



c(p1 − ip2)

E +mc2

−cp3

E +mc2

0

1


and w(4)(−p) =



cp3

E +mc2

c(p1 + ip2)

E +mc2

1

0


Note: Recall that we defined the quantity E > 0 in all equations above. Beware: conven-
tions in labelling the spinors w(i) differ widely.

Rest-frame solutions, spin and angular momentum: When p = 0 we have

w(1) =


1
0
0
0

 w(2) =


0
1
0
0

 w(3) =


0
0
0
1

 w(4) =


0
0
1
0


and the positive-energy solutions reduce to

ψ(1) = exp(−imc2t/h̄)


1
0
0
0

 and ψ(2) = exp(−imc2t/h̄)


0
1
0
0


which are degenerate in energy. Therefore, by the compatibility theorem, there must exist
some other operator which commutes with the Hamiltonian (for p = 0) and whose eigenvalues
label (and distinguish) the two states. One such operator is

Σ3 ≡
(
σ3 0
0 σ3

)
=


1
−1

1
−1


The rest-frame four-component spinors w(i)(0) are eigenvectors of Σ3 with eigenvalues ±1.

The appearance of the Pauli spin matrix σ3 suggests that we interpret the Dirac equation
as describing a spin 1/2 particle. If we introduce the three 4× 4 matrices

Σi ≡
(
σi 0
0 σi

)
or, in vector notation, Σ ≡

(
σ 0
0 σ

)
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Then
(

1

2
h̄Σ

)
·
(

1

2
h̄Σ

)
=

3

4
h̄2 1̂ = s(s+ 1) h̄2 1̂ with s =

1

2

and
1

2
h̄Σ3 has eigenvalues ± 1

2
h̄

 ⇒ ŝ =
1

2
h̄Σ

We therefore interpret
1

2
h̄Σ as the spin operator for the Dirac particle, which necessarily has

an intrinsic spin, s = 1/2, that isn’t related to ordinary orbital angular momentum.

However, Σ does not commute with the Hamiltonian cα ·p + βmc2 in any frame other than
the rest frame, p = 0, so the expectation value of Σ is not a conserved quanity for p 6= 0.

Similarly, the operator L̂ = r̂ × p̂ does not commute with the Hamiltonian in any frame
other than the rest frame, so orbital angular momentum isn’t a conserved quantity either.

However, the operator

Ĵ = L̂ +
1

2
h̄Σ

does commute with the Hamiltonian in all frames. This strongly suggests that Ĵ should be
interpreted as the operator for the total angular momentum, and this is conserved (tutorial).

Helicity: As we have seen, there are two degenerate linearly-independent states for any
given four-momentum. A different (p-space) operator which commutes with cα · p + βmc2,
and which can be used to label, and therefore distinguish, the states is the helicity operator

ĥ(p) =


σ · p
|p|

0

0
σ · p
|p|


which has eigenvalues ±1; these give the projection of the particle’s spin along its direction
of motion p/|p|. Plane wave states with p 6= 0 can be chosen to be eigenstates of the helicity
operator (see tutorial.)

Covariant form of the Dirac equation

In most applications of the Dirac equation, a covariant notation is used. Defining the ‘nat-
ural’ system of units, h̄ = c = 1, the Dirac equation for a free particle is

i
∂

∂t
ψ(r, t) = (−i α · ∇ + β m)ψ(r, t)

If we multiply by β

iβ
∂

∂t
ψ(r, t) = (−i β α · ∇ + m)ψ(r, t) (12)

and introduce the matrices

γ0 ≡ β

γi ≡ β αi

we may rewrite equation (12) as{
i

(
γ0 ∂

∂x0
+ γi

∂

∂xi

)
− m

}
ψ(x) = 0

11



where x = xµ (µ = 0, · · · , 3). More compactly,

(iγµ ∂µ − m) ψ(x) = 0

or (i/∂ − m) ψ(x) = 0

where we have introduced the Feynman slash notation:

/a ≡ γµ aµ = γµ a
µ

is ‘a-slash’ (pronounced to rhyme with ‘hay-slash’). Similarly, /∂ is pronounced ‘dee-slash’.

Positive energy plane-wave solutions of the type ψ(x) = exp(−ip · x)u(p, s) satisfy

(γµpµ − m) u(p, s) = (/p − m) u(p, s) = 0

where the positive energy spinors u(p, s) ≡ w(s)(p) for s = 1, 2. Similarly, negative energy
(negative four-momentum) solutions ψ(x) = exp(+ip · x) v(p, s) satisfy

(γµpµ + m) v(p, s) = (/p + m) v(p, s) = 0

where v(p, s) ≡ w(s+2)(−p) for s = 1, 2.

It is easy to verify that the gamma matrices satisfy the anticommutation relations known as
the Clifford algebra

γµ γν + γν γµ ≡ {γµ, γν} = 2 gµν

In the standard representation of αi and β

γi =

(
0 σi

−σi 0

)
and γ0 =

(
1 0
0 −1

)

so that γ0 is hermitian γ0† = γ0, the γi are anti-hermitian γi
†

= −γi, thus (γ0)2 = 1 and
(γi)2 = −1.

It is also convenient to work with

ψ ≡ ψ† γ0

and similarly u ≡ u† γ0 , etc

where ψ is pronounced ‘psi-bar’.

The new notation treats space and time on an (even more) equal basis, and is known as the
covariant formulation. One can derive the properties of the Dirac wave-function ψ(x) under
Lorentz boosts and use them to verify explicitly that the conserved current

jµ ≡
(
ψ†ψ, ψ† αψ

)
= ψγµψ

does indeed transform as a 4-vector under Lorentz transformations. Similarly, one can show
that the quantity ψψ is invariant under Lorentz transformations, ie it’s a Lorentz scalar.

Note: Since ∂µ is a 4-vector operator, and ∂µ j
µ = 0, then jµ is a 4-vector by the quotient

theorem. (See Symmetries of Classical Mechanics.)
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General solutions for a free particle

The general solution of the Dirac equation for a free particle is a linear superposition of
plane-wave solutions with both positive and negative energies

ψ(x) =
∑
s=1,2

∫ d3p

(2π)3

1

2Ep

[
as(p)u(p, s) e−ip·x/h̄ + b†s(p) v(p, s) eip·x/h̄

]

This is just a linear sum (integral) over solutions with momenta±pµ, and spin polarisations s.

The normalisation factor Ep ≡ +
√
|p|2c2 +m2c4 in the denominator is a convention, and the

(arbitrary) coefficient functions as(p) and b†s(p) will play a crucial role in quantum field
theory – see RQFT.

The general solution of the Klein-Gordon equation may similarly be written as

φ(x) =
∫ d3p

(2π)3

1

2Ep

[
a(p) e−ip·x/h̄ + b†(p) eip·x/h̄

]

4.4 The Klein-Gordon and Dirac equations in an external electromagnetic field

The classical Hamiltonian for a free non-relativistic particle is

H = E =

∣∣∣ p ∣∣∣2
2m

(13)

The Hamiltonian for a particle of charge q interacting with an electromagnetic field is

Hem =

∣∣∣ p− qA/c ∣∣∣2
2m

+ qΦ

in Heaviside-Lorentz units. (The Hamiltonian in SI units is the same, but without the factor
of c.)

Clearly, the interacting Hamiltonian may be obtained from the free Hamiltonian by sub-
tracting the term qΦ from the LHS of equation (13), and making the replacement

p→ p− qA/c

on the RHS. In other words we let

E → E − qΦ and p→ p − qA/c

This is known as the minimal coupling prescription.

The same prescription works in the relativistic case. In terms of four-vectors

pµ → pµ − q

c
Aµ where Aµ = (Φ, A)

so the relativistic energy momentum relation becomes

(E − qΦ)2 = c2
(
p − q

c
A
)2

+ m2c4 .
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If we perform operator substitution á la Klein-Gordon, we obtain(
ih̄
∂

∂t
− qΦ(x)

)2

φ(x) = c2
(
−ih̄∇ − q

c
A(x)

)2

φ(x) + m2c4 φ(x)

If the potentials are time-independent, then separable solutions of the form

φ(r, t) = u(r) exp(−iEt/h̄)

are possible, giving

(E − qΦ)2 u(r) =
{
−h̄2c2∇2 + 2iqh̄c A · ∇ + iqh̄c∇ · A + q2 |A|2 + m2c4

}
u(r)

Similarly, the Dirac equation for a particle of charge q interacting with an EM field Aµ may
be obtained using the minimal coupling prescription:{

ih̄
∂

∂t
− qΦ

}
ψ(x) =

{
c α ·

(
p̂ − q

c
A
)

+ β mc2
}
ψ(x) (14)

or ih̄
∂

∂t
ψ(x) =

{
c α ·

(
p̂ − q

c
A
)

+ β mc2 + qA0
}
ψ(x) (15)

where A0(x) ≡ Φ(x). The covariant form is (exercise)

iγµ (∂µ + ieAµ)ψ(x)−mψ(x) = 0 . (16)

The operator Dµ = ∂µ + ieAµ(x) is called the covariant derivative, whereupon the Dirac
equation becomes simply

(i /D − m) ψ(x) = 0 (17)

4.5 Interpreting the negative energy solutions

As we saw, the plane wave solutions of the Dirac equation satisfy the energy-momentum
relation

p0c = ±
√(
|p|2c2 + m2c4

)
therefore

either p0c ≥ mc2 or p0c ≤ −mc2

ie, there is a continuum of positive energy states starting at p0c = mc2, and a continuum of
negative energy states going down from p0c = −mc2.

Since the Dirac equation appears to describe spin-half particles, let’s assume these particles
are electrons, and let’s take the negative energy solutions seriously. The problem we must
address is the following:

What is to prevent a positive energy electron from making transitions under the
influence of a perturbation to negative energy states?

A solution to this problem was suggested by Dirac in 1930.
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The Dirac Sea: Dirac proposed that all negative energy states are filled, each energy
level holding two electrons with opposite spins. Since electrons are fermions, he then evoked
the Pauli exclusion principle to prevent any transition of a positive energy electron to a
negative energy state. In this picture the ground state or ‘vacuum’ is an infinite sea of
negative energy electrons – the Dirac sea. He then argued that the infinite negative energy
and infinite negative charge of this ‘vacuum’, are unobservable – we can only measure finite
changes of charge and energy relative to this vacuum.

O

+mc

cp0

2

2−mc

Hole

Particle
+E

−E

1

2

Radiation

Pair Production: An important consequence of this picture is that we can excite a neg-
ative energy particle from the ‘sea’ into a positive energy state.

Suppose an electron in the ‘sea’ absorbs photons2 with sufficient energy (> 2mc2) to make a
transition to a state in the positive energy continuum. What we will observe is an electron
of charge −e and energy +E1, say, together with a ‘hole’ in the sea. The ‘hole’ which is the
absence of an electron with charge −e and energy −E2 would be interpreted by an observer
as a particle of charge +e and energy +E2, in other words as a positive energy anti-particle
or positron. Furthermore, the threshold for this process is just 2mc2, the size of the gap in
the energy eigenvalue spectrum, and we have arrived at a model for electron-positron pair
production. Thus Dirac predicted the existence of antiparticles.

Notes:

• Although we started with a single-particle wave equation, the Dirac theory forces us
into a many-particle interpretation, for which quantum mechanics with a fixed number
of particles is inadequate.

• The absence of a negative energy particle with spin ‘up’ in its rest-frame is equivalent
to the presence of a positive-energy particle with spin ‘down’. This is one reason for
the ‘apparently perverse’ choice of negative-momentum solutions and two-component
spinors we made on page 9.

• The Dirac-sea picture provides a model for how a many-particle relativistic quantum
theory could work. The full multi-particle theory requires Relativistic Quantum Field
Theory (RQFT).

2At least two photons must be absorbed to conserve 4-momentum.
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• The Dirac sea picture doesn’t work at all for bosons. There is no Pauli principle, there-
fore nothing can seemingly stop the positive energy particles decaying into oblivion.
This is one of the reasons that lead Dirac to discard the Klein-Gordon equation for
spinless particles. The problem is solved in RQFT, wherein there is no problem using
the Klein-Gordon equation to describe bosons in RQFT. Indeed, if we multiply the
troublesome putative probability density ρ by the particle charge, we can reinterpret
it as the electric charge density which can of course be +ve or −ve.

• Dirac’s ideas weren’t universally popular at the time. Heisenberg once wrote:

The saddest chapter of modern physics is and remains the Dirac theory. I regard the
Dirac theory as learned trash which no one can take seriously.

• The positron was discovered four years later, thus confirming Dirac’s prediction.

4.6 Quantum Field Theory (QFT) – non-examinable

Quantum Field Theory requires a lecture course of its own. It’s surely impossible to give an
idea of its flavour in a few minutes, but a fool can can try. . .

Motivation: The classical equation of motion for the electromagnetic field Aµ(x) (in the
Lorenz gauge, ∂µA

µ = 0), is(
1

c2

∂2

∂t2
− ∇2

)
Aµ(x) = ∂2Aµ(x) = 0

Quantisation of the electromagnetic field using the operator formalism in the Heisenberg
picture follows the standard route:

• Identify the fields Aµ(x) as the dynamical degrees of freedom, i.e. the equivalent of the
generalised co-ordinates of particle mechanics.

• Identify the canonical momenta – these turn out to be simply the three components of
the electric field E.

• Impose equal-time commutation relations between the operators Âµ and Ê. Choosing

axial gauge, Â0 = 0, we impose [Âi(r, t), Êj(r′, t)] = ih̄ δij δ(3)(r − r′). These are the
quantum field theory analogs of [x̂(t), p̂(t)] = ih̄.

• Construct raising and lowering operators as in the harmonic oscillator, and use them
to show that the physical states of the system are photons of energy E = h̄ω. One can
then construct states of arbitrary many photons.

In order to treat radiation and matter on the same footing, we do the same with the Dirac
and Klein-Gordon equations, which we now regard as classical field equations. In natural
units h̄ = c = 1:

(iγµ ∂µ − m) ψ(x) = 0 ,
(
∂2 +m2

)
φ(x) = 0

A Lagrangian approach is usually employed. We first define the action S and Lagrangian L
of the free Dirac field in terms of the Lagrangian density L:

S =
∫
dtL =

∫
dt
∫
d3xL =

∫
d4xψ(x) (iγµ ∂µ − m) ψ(x)
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By applying Hamilton’s principle δS = 0 to variations in ψ, we get the equation of motion:

∂L
∂ψ

= ∂µ

(
∂L

∂(∂µψ)

)
→ (iγµ ∂µ − m) ψ(x) = 0

i.e. the Dirac equation is the classical equation of motion for the Dirac field ψ(x). (The
RHS is zero because L doesn’t depend on ∂µψ.) A similar equation holds for ψ.

In canonical quantisation, the fields Aµ, φ, ψ and ψ̄ all become quantum operators. We
must identify the canonical momentum for each field, and impose the appropriate equal-time
commutation relations – commutators for the electromagnetic and Klein-Gordon (bosonic)
fields, and anticommutators for the Dirac (fermionic) field. When the dust settles, we find
that the negative energy solutions of the Dirac and Klein-Gordon equations become negative
‘frequency’ solutions of the quantum field theory, whereas the eigenvalues of the field-theory
Hamiltonian are all positive, and are identified as free particles and their anti-particles.

Finally, we may construct the Lagrangian density for Quantum Electrodynamics using min-
imal substitution ∂µ → ∂µ + ieAµ:

LQED = ψ(x) (iγµ (∂µ + ieAµ)−m)ψ(x) − 1

4
(∂µAν − ∂ν Aµ)2

where the last term is the Maxwell Lagrangian density (E2−B2)/2, which gives a Hamilto-
nian density (E2 +B2)/2, i.e. the usual energy density for the electromagnetic field.

Canonical quantisation proceeds as sketched above.

Path-integral quantisation proceeds in much the same way as in ordinary quantum theory.
The action is

SQED =
∫
d4xLQED

and we quantise by integrating over all field configurations in the path integral

Z =
∫
DψDψ̄DAµ eiSQED/h̄ .

Expanding this in powers of the electron-photon coupling, e, gives Feynman perturbation
theory. The Feynman diagrams for electron-positron elastic scattering

e+ + e− → e+ + e−

are

e-

e+

e-

e+

x2

x1
e- e-

e+ e+

x1x2

See RQFT for details.
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