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Abstract

We use a Bayesian approach to optimally solve problems in noisy binary search.
We deal with two variants:

• Each comparison is erroneous with independent probability 1− p.

• At each stage k comparisons can be performed in parallel and a noisy answer
is returned.

We present a (classical) algorithm which solves both variants optimally (with re-
spect to p and k), up to an additive term of O(loglog n), and prove matching
information-theoretic lower bounds. We use the algorithm to improve the results
of Farhi et al. [12], presenting an exact quantum search algorithm in an ordered
list of expected complexity less than (log2 n)/3.

1 Introduction
Noisy binary search has been studied extensively (see [25, 26, 22, 2, 11, 5, 13, 3, 19,
20, 21, 23]). In the basic model we attempt to determine a variable s ∈ {1, . . . , n} by
queries of the form “s > a”? for any value a. In the noisy model, we get the correct
answer with probability p, with independent errors for each query. In the adversarial
model, an opponent chooses which queries are answered incorrectly, up to some limit.
Our work focuses on the noisy non-adversarial model.

Generalizing noiseless binary search to the case when k questions can be asked in
parallel is trivial: recursively divide the search space into k + 1 equal sections. This
model, and its noisy variant, are important (for example) when one can send a few
queries in a single data packet, or when one can ask the second query before getting an
answer to the first.
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1.1 Previous Results
The problem of binary search with probabilistic noise was first introduced by Rény
[25], but for a stronger type of queries. Ulam [28] restated this problem, allowing only
comparisons. An algorithm for solving Ulam’s game was first proposed by Rivest et.
al. in [26]. They gave an algorithm with query complexity O(log n) which succeeds
if the number of adversarial errors is constant. Following their results, a long line of
researchers have tried to handle a constant fraction r of errors. Dhagat, Gács and Win-
kler [11] showed that this is impossible for r ≥ 1/3, and gave an O(log n) algorithm
for any r < 1/3. The constant in the O notation was improved by Pedrotti in [21], to
8 ln 2

3
logn

(1−3r)2(1+3r) . Another variant of the adversarial problem is the Prefix-Bounded
model. In this model, any initial sequence of i answers has at most ri adversarial mis-
takes for some constant r. Borgstrom and Kosaraju [5] gave an O(log n) algorithm for
any r < 1/2 fraction of errors for this case.

Assuming probabilistic noise, Feige et. al. showed [13] that one can perform binary
search using Θ(log n/(1 − H(p))) queries, where H(p) is the entropy function. The
algorithm proceeds by repeating every query many times to obtain a constant error
probability, and then traverses the search tree, backtracking when needed. This leads to
constants which are too large for our applications, and has no easy generalization when
multiple queries are made simultaneously (the batch learning model). Aslam showed a
reduction of probabilistic errors to an adversarial Prefix-Bounded model [3]. Aslam’s
algorithm has the same multiplicative factor that arises in the adversarial algorithm,
and might not be applicable to generalizations of noisy search.

Noisy binary search has also been defined in the k-batch model (see Orr [20] for
applications of batch learning in a more general model), but much less is known there.
Cicalese, Mundici and Vaccaro [9] gave an optimal solution for a constant number of
adversarial errors, and two batches of queries. We are not aware of any results regarding
the probabilistic batch model. For an extensive survey on the subject see Pelc [23], who
also states the k-batch model (in probabilistic and adversarial flavors) as an important
open problem.

Quantum Binary Search An equivalent formulation of binary search is giving the
algorithm oracle access to a threshold function fs(x) for some unknown s. Applying
fs(x) returns 1 if x > s, and 0 otherwise. The algorithm can apply the function on
inputs x (in a noisy manner), and its goal is to find s. This model can be generalized
by turning the oracle into a quantum one. Formally, the algorithm is given access to an
oracleOs for some fixed but unknown s, whereOs|x, t〉 = |x, fs(x)⊕ t〉. Determining
the exact complexity of quantum binary search is an interesting open problem.

Farhi et al. presented in [12] two quantum algorithms for searching an ordered
list. They first presented a “greedy” algorithm with small error probability that clearly
outperformed classical algorithms. However, they could not analyze its asymptotic
complexity, and therefore did not use it. Instead, they devised another algorithm, which
can find the correct element in a sorted list of length 52 using just 3 queries. Applying
this recursively gives a 0.53 log2 n quantum search algorithm. This was later improved
by Jacokes, Landahl and Brooks [17] by searching lists of 434 elements using 4 queries.
Another improvement by Childs, Landahl and Parrilo [7] enables searching lists of 605
elements using 4 comparisons, and gives a query complexity of 0.433 log2 n queries.
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We note that these algorithms are exact. Since Farhi et al.’s greedy algorithm has
small error probability, iterating it on a fixed size list results in a noisy binary search
algorithm. However, without an exact analysis of noisy binary search, the resulting
bounds are not strong enough.

The lower bounds for binary search were first treated by Ambainis, who showed
[1] that quantum binary search has complexity Ω(log n). Using the quantum adversary
method of Ambainis, but applying unequal weights to different inputs, Hoyer, Neerbek
and Shi gave a lower bound of 1

π ln(n) ≈ 0.202 log n queries [16]. Childs and Lee
showed that using the generalized adversary method cannot improve this by much [8].

1.2 Our Results
Intuitively, our algorithm, for the classical binary search problem, always asks the
query which yields the maximal amount of information. This is done using a Bayesian
learner which tries to determine the place of the element we are looking for. Usu-
ally, myopic learning algorithms are not optimal, but in this case we show that greedy
behavior is in fact optimal.

We give an informal description of the algorithm. Assume that s is chosen uni-
formly from the list. Choose an element x in the list such that Pr(x > s) ≈ 0.5.
Compare x and s, and give the updated Bayesian probabilities to all the elements in the
list. Repeat the process until one element has relatively high probability, and then test
its surroundings recursively. Note that if p = 1 then the algorithm performs standard
binary search - after the first step half the elements have probability zero, and the rest
will have uniform distribution.

Letting I(p) = 1−H(p), each noisy query provides at most I(p) bits of informa-
tion. Thus the best time bound we can hope for is (1− ε) log n/I(P ), where the factor
(1− ε) comes from Shanon. We show

Theorem 1.1. There exists a (classical) algorithm which finds s in a sorted list of n
elements with probability 1− δ using an expected

(1− δ)
[

log n
I(p)

+O

(
loglog n
I(p)

)
+O

(
log(1/δ)
I(p)

)]
noisy queries, where each query has (independent) probability p > 1/2 of being an-
swered correctly. This is tight up to an additive term which is polynomial in loglog n,
log(1/δ) and I(p).

We present a similar Bayesian strategy when we are allowed to perform composite
comparisons. In this model, we choose a constant number of consecutive segments,
and the oracle tells us in which segment is the special element (binary search uses two
segments each query). When the answer given by the oracle is noisy, a generalization
of the noisy binary search algorithm remains optimal (see Subsection 3).

A surprising application of this classical noisy search algorithm is a faster quantum
algorithm for binary search. Using the generalized variant, when we can divide the ar-
ray into a set of segments, we can recursively use the greedy quantum binary search of
Farhi et al. [12]. Measuring after r queries in their algorithm corresponds to sampling
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the intervals according to a probability distribution which is concentrated near the cor-
rect interval. If the entropy of this distribution over the k equal probability intervals is
Hr, then the average information is Ir = log(k) − Hr, and the expected number of
queries is r·logn

Ir
. Using this we show:

Theorem 1.2. The expected quantum query complexity of searching an ordered list
without errors is less than 0.32 log n.

We prove a quantum lower bound, which shows that quantum algorithms faced
with a noisy oracle cannot be much better than their classical counterparts, by showing
that they require at least ln(n)

π
√
p(1−p)

≈ 0.202 logn√
p(1−p)

queries. Allowing the quantum

algorithm to err with probability δ reduces the complexity of the upper bound and the
lower bound by the same classical factor (1− δ).

1.3 Applications of Noisy Binary Search
Practical uses for optimal noisy search can occur (for example) in biology. This is es-
pecially important when each “noisy comparison” is a biological experiment, which is
being used to find the value of some quantity, by comparing it to different thresholds.
Experiments have an error probability, and performing them can be very time consum-
ing. One example for this scenario is trying to determine the supermolecular organiza-
tion of protein complexes and isolating active proteins in their native form [27, 14]. In
both cases, the 3-dimensional conformation of the proteins should be conserved, and
solubilization methods are based on different percentages of mild detergents. Deter-
mining the right percentage can be done by noisy binary search, running a gel for each
query.

The algorithm has theoretical applications as well. For example, it can be used to
achieve the results of Karp and Kleinberg [18]. Our main application is to obtain better
bounds on the query complexity of quantum binary search.

2 Classical Noisy Search

2.1 Problem Setting
Let x1 ≥ . . . ≥ xn be n elements, and assume we have a value s such that x1 ≥ s ≥
xn, and want to find i such that xi ≥ s ≥ xi+1. Comparing xi and s is done with
f(i)→ {0, 1}, which returns 1 if xi > s and 0 if xi ≤ s. Each evaluation of f returns
the correct answer with probability p > 1/2. Note that calculating f twice at the same
place may return different answers.

In this noisy environment, we must let our algorithm err. We bound the error prob-
ability by a given δ > 0.

2.2 Algorithm
The algorithm uses an array of n cells a1, . . . , an, where ai denotes the probability
that xi ≥ s ≥ xi+1. The initialization of the array is ai = 1/n, as if we could assume
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that we have a uniform prior for s. Each step, the algorithm chooses an index i such
that t =

∑i
j=1 aj < 0.5 but

∑i+1
j=1 aj ≥ 0.5 and compares s to xi. According to the

result of the comparison (which could be wrong) the algorithm updates the probabilities
a1, . . . , an. If the result of the comparison was that xi > s, we multiply aj for j ≤ i
by (1− p), multiply aj for j > i by p and normalize so that the values a1, . . . , an sum
up to 1. The normalization depends on the sum t =

∑i
j=1 aj . Assuming the result of

the comparison was xi > s, the normalization is1

aj =

{
(1−p)aj

(1−p)t+p(1−t) , j ≤ i
paj

(1−p)t+p(1−t) , j > i

If the result was that xi ≤ s, the normalization is pt + (1 − p)(1 − t). Note that if
|t − 1/2| is small, as will be the case in our algorithm, the normalization is roughly a
multiplication by 2. In order to use this idea we need to address two technical issues:

1. It is not always possible to find an element such that Pr(xi > s) = 1/2. There-
fore, we use a constant called εpar (“par” stands for partition) which is an upper
bound for |

∑i
j=1 aj − 1/2| = |t− 1/2| ≤ εpar. Its value will be chosen later.

2. Given the bound εpar, we may not be able to partition the array if there is an
element xi such that ai > εpar. However, if aj is not much bigger than εpar for any
j, we can not yet find swith success probability 1−δ, as εpar is too small. Instead,
we show that with high probability, there are at most lsur (for “surroundings”)
elements between xi and s. We can then iterate the algorithm, this time searching
the elements xi−lsur , . . . , xi+lsur . Making sure lsur isO(polylog(n)) gives the right
running time, adding the additive O(loglog n) term.

The exact values for lsur will be chosen later.
1Previous noisy search algorithms have already used weights, see for example [26, 5, 18]. However, we

choose weights optimally, and use information even when p is very close to 1/2 (see for example the usage
of εgood in [18]). This gives us better results, and enables optimal generalization to the batch model.
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1. Halt condition If the number of elements is smaller than O(log log n), search
the array using [13].

2. Let ai = maxj aj , breaking ties arbitrarily. If ai ≥ εpar = (24 log n)−1/2:

• Check using O((log(1/δ) + loglog n)/I(p)) repeated comparisons on
both sides if xi−lsur ≥ s ≥ xi+lsur .

(a) If it is in the surroundings, search xi−lsur . . . xi+lsur recursively.
(b) Else (s is not there), restart the algorithm, from scratch, searching n

elements

3. Else, find an index i such that

1/2− εpar ≤
i∑

j=1

aj < 1/2

4. Compare s and xi; update the probabilities. Go to 2.

Algorithm 1, for δ ≤ 1/ log n

Theorem 2.1. The expected query complexity of Algorithm 1 is

log n
I(p)

+O

(
loglog n
I(p)

)
+O

(
log(1/δ)
I(p)

)
(1)

The proof will occupy the rest of this section. We note, in passing, that the lower
bound is very similar to the upper bound; see 2.8.

Assuming Theorem 2.1, we now prove Theorem 1.1.

Proof. Remember Theorem 1.1 gives query complexity of

(1− δ)
[

log n
I(p)

+O

(
loglog n
I(p)

)
+O

(
log(1/δ)
I(p)

)]
If δ < 1/ log n, the difference between the bounds in Theorems 1.1, 2.1 is absorbed

by the big−O notation of the low order terms.
If δ > 1/ log n, we modify the algorithm as follows: with probability c = δ −

1/ log nwe choose a random element (i.e., we fail immediately); with probability 1−c,
run Algorithm 1 with δ = 1/ log n. The failure probability is c+ 1−c

logn < c+ 1
logn = δ

and the expected query complexity is

(1− c)
[

log n
I(p)

+O

(
loglog (n)
I(p)

)
+O

(
log log n
I(p)

)]
=
[
1− δ +

1
log n

] [
log n
I(p)

+O

(
loglog (n)
I(p)

)]
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(1− δ)
[

log n
I(p)

+O

(
loglog n
I(p)

)
+O

(
log(1/δ)
I(p)

)]
Again the O notation in the low order terms gives the bound.

Uniform Prior. In order to simplify the presentation, the statement of the algorithm is
worst case, and does not use any prior information on the place of s. To simplify the
analysis, we show a reduction to the case where the a priori distribution is uniform,
following [12]. Our problem is equivalent to the following: given a monotone nonde-
creasing boolean array A, find its first 1 by querying elements. Pick k randomly and
uniformly between 1 and n. Define a new array B of length n as follows:

B[i] =
{
A[i+ k], i+ k ≤ n
1−A[i+ k − n], i+ k > n

The transition point inB is uniformly distributed, since k is. Apply the algorithm to
the array B (it is easy to see how to translate queries of B into queries of A). From this
we can find the transition point of B, and deduce the transition point of A. Note that B
must be monotone; however, it can be either increasing or decreasing. To distinguish
these two cases, we start with O(log(1/δ)/I(p)) queries of B[1]; this reduces the error
probability sufficiently so as not to impact the overall error probability, and the query
cost is swallowed by the big-O term in Theorem 1.1.

It is also possible to reduce the problem to the uniform prior case using by searching
in an array of length 2n. This is done by extending the functions as in [12]. In this
reduction, we search for a transition point, and the direction is not important.

2.3 Analysis of the Algorithm
The following lemma is immediate:

Lemma 2.2. If the algorithm reached Step (3) then there is an index i such that 1/2−
εpar ≤

∑i
j=1 aj < 1/2.

We now need to prove two main claims—that the algorithm terminates quickly, and
that when it does, s will, with high probability, be near i. The first claim is stated as
Lemma 2.5 and is based on Lemma 2.3 and Lemma 2.4. To state these lemmas we need
to use the entropy function H(a1, . . . , an) =

∑n
i=1−ai log(ai) and the information

function I(a1, . . . an) = log n − H(a1, . . . an). From the convexity of entropy, it
follows that:

Lemma 2.3. If ∀i, ai < εpar then H(a1, . . . , an) ≥ log(1/εpar).

This means that if H(a1, . . . , an) < log(1/εpar) then ∃i : ai ≥ εpar.

Lemma 2.4. Let a1, . . . , an be the probabilities before the comparison in step 4, and
b1, . . . , bn be the updated probabilities after the comparison. Then:

E[I(b1, . . . , bn)]− I(a1, . . . , an) ≥ I(p)− 4ε2par(1− 2p)2

and taking εpar = (1/24logn)−1/2, this is at least I(p)(1− 1
3 logn ).
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Proof. Assume that the partition was between k and k + 1. Call the result of the
comparison r, i.e., r = 0 if the result was that xk > s, and r = 1 otherwise. Define
t =

∑k
i=1 ai, and let α = 1

pt+(1−p)(1−t) be the normalization constant used by the
algorithm if r = 0. We look at the information in this case:

I(b1, . . . , bn|r = 0) = log n+
k∑
i=1

αp·ai log(αp·ai)+
n∑

i=k+1

α(1−p)·ai log(α(1−p)·ai)

Analyzing the first sum:

k∑
i=1

αp · ai log(αp · ai)s =

αp log(αp)
k∑
i=1

ai + αp

k∑
i=1

ai log(ai) = αpt log(αp)− αpH(a1, . . . , ak)

Substituting into the original equation:

I(b1, . . . , bn|r = 0) =
log n+ αpt log(αp)− αpH(a1, . . . , ak) +
α(1− p)(1− t) log(α(1− p))− α(1− p)H(ak+1, . . . , an)

To analyze the expected information gain, we need to know the distribution of r. For-
tunately, Pr(r = 0) = pt + (1 − p)(1 − t) = 1/α. When r = 1 the calculation is
similar, but the normalization factor changes to β = 1

p(1−t)+(1−p)t . Thus,

E[I(b1, . . . , bn)] = I(b1, . . . , bn|r = 0)/α+ I(b1, . . . , bn|r = 1)/β

Calculating:

I(b1, . . . , bn|r = 0)/α
= log n/α+ pt log(α)− tp log(p)
+pH(a1, . . . , ak) + (1− p)(1− t) log(α)
+(1− t)(1− p) log(1− p)− (1− p)H(ak+1, . . . , an)

Noting the normalization sums to one,

1/α+ 1/β = tp+ (1− p)(1− t) + p(1− t) + (1− p)t = 1

We have:

I(b1, . . . , bn|r = 0)/α+ I(b1, . . . , bn|r = 1)/β
= log n−H(p)−H(a1, . . . , an) + pt log(α)
+(1− p)(1− t) log(α) + p(1− t) log(β) + (1− p)t log(β)
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So the expected information increase after the query is

pt log(α) + (1− p)(1− t) log(α) + p(1− t) log(β) + (1− p)t log(β)−H(p)

We will soon simplify this further and choose a value for εpar to make it close enough
to I(p). However, we already showed that expected increase does not depend on the
actual values of a1, . . . , an, or on the information before the query, other than how
balanced the partition is (given by t). Now:

pt log(α) + (1− p)(1− t) log(α) + p(1− t) log(β) + (1− p)t log(β)
= (pt+ (1− p)(1− t)) log(α) + (p(1− t) + (1− p)t) log(β)
= −(1/α) log(1/α)− (1/β) log(1/β) = H(1/α)

We now need to boundH(1/α). For an ideal partition t = 1/2 we will haveH(1/α) =
1, and the expected information increase in each query would be I(p), which is optimal.
However, t deviates from 1/2 by at most εpar, and we should now choose εpar small
enough to get the desired runtime. As t ≥ 1/2− εpar, we have

H(1/α) ≥ H(p+ 1/2 + εpar − 2p(1/2 + εpar))
= H(1/2 + εpar(1− 2p)) ≥ 1− 4ε2par(1− 2p)2

where the last inequality follows from the fact that for x ∈ [−1/2, 1/2] we have 1 −
2x2 ≥ H(1/2 + x) ≥ 1− 4x2. Manipulating this inequality gives x2 < 1−H(1/2+x)

2 .
Using this and substituting εpar ≤ (1/24 log n)−1/2,

4ε2par(1− 2p)2 = 16ε2par(p− 1/2)2 ≤ 16(p− 1/2)2

24 log n

=
2(p− 1/2)2

3 log n
≤ 1−H(p)

3 log n
= I(p)/3 log n

Putting it all together, the expected information gain is at least

H(1/2 + εpar(1− 2p))−H(p) ≥ 1− 4ε2par(1− 2p)2 −H(p)

≥ I(p)− I(p)/3 log n = I(p)
(

1− 1
3 log n

)
which completes the proof.

Note that εpar is not a function of p. This is important if p = o(1).

Lemma 2.5. The expected number of comparisons before reaching the recursion con-
dition in stage 2 is at most log n/I(p) +O(1/I(p)).

Proof. By Lemma 2.3, if H(a1, . . . , an) < log(1/εpar) then we have reached the re-
cursion condition. As the initial entropy is log n and the expected information gain per
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comparison is I(p)(1 − 1/3 log n) (by Lemma 2.4), the expected number of compar-
isons is at most

log n− log(1/εpar)
I(p)(1− 1/3 log n)

≤ log n
I(p)(1− 1/3 log n)

≤ log n
I(p)

+
2

3I(p)

using the fact that 1/(c− x) < 1/c+ 2x/c for c > 2x ≥ 0.

We now prove that with high probability, when the algorithm halts, s is in the
correct surroundings. We begin by showing that the probability for a large majority of
wrong answers in a small consecutive section is bounded. We then apply a union bound
on all small consecutive sections, to get the result. Finally, we show that if the right
element is not in the recursive surroundings then such an improbable section exists.

Lemma 2.6. Let r = 12p(1−p)loglog n
2p−1 , and assume xi−1 ≥ s ≥ xi. Let q1, . . . , qt

denote all the comparisons made until the algorithm stopped, sorted in descending
order by the element which was compared to s (repetitions are possible). Let A(k)
denote the answer given by the oracle to qk, that is A(k) = 1 with probability p if the
k’th largest comparison compared s to an element which is larger than it. Let qj , . . . qt
denote the comparisons to elements smaller than s. Then

Pr(∃x : ∃y ≥ j :
y+2x+r∑
k=y

A(k) > x+ r) < 1/ log n

To continue, we need some bound on t, the number of queries. We know the ex-
pected number of comparisons until we halt. Let Q be the random variable measuring
the query complexity of the algorithm, and let ε > 0 is fixed. By Markov’s inequality,
we have that

Pr
(
Q > (c+ ε)

log2 n

I(p)

)
<

1
c log n

We can assume that t < 2(log n)2/I(p), by paying a probability cost of 0.5/ log n.
We now use a union bound. Note that x is bounded by t. Fix x and y, and consider their
contribution to the sum. This is bounded by the probability that B(2x + r, 1 − p) ≥
x+ r, where B is the binomial distribution. Approximating by the normal distribution
(which is applicable because r = Ω(loglog n) is not a constant), we get a standard
deviation of

√
p(1− p)(2x+ r) and an expectancy of (2x + r)(1 − p), so the bound

is roughly 2 exp

(
−
(
x+r−(2x+r)(1−p)
2
√
p(1−p)(2x+r)

)2
)

. To find the worst case, we differentiate

the exponent by x and find the minimum (without the minus sign). This yields x =
r(1−p)
2p−1 , and substituting gives the exponent as r(2p−1)

4p(1−p) . If the expression is less than

0.5/ log3 n, the total contribution from the log2 n pairs is bounded by 0.5/ log n, as
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desired. Taking the logarithm of both sides, we get

r(2p− 1)
4p(1− p)

= 3loglog n+O(1)

r ≈ 12p(1− p)loglog n
2p− 1

Lemma 2.7. Suppose aj ≥ εpar in step 2. Let r = 12 log log(n)p(1−p)
2p−1 , and lsur =

( p
1−p )r 1

εpar
. Then with probability ≥ 1− 1/ log n we have xj−lsur ≥ s ≥ xj+lsur .

Proof. Assume otherwise, and let xi−1 ≥ s ≥ xi. As the lemma is symmetric we
can assume without loss of generality that j > i + lsur. By the pigeonhole principle,
there is some k ∈ [i, i + lsur] such that ak < 1/lsur. So aj/ak ≥ εparp

r

εpar(1−p)r = ( p
1−p )r.

Since every update consists of multiplying some of the elements by p and some by
1 − p (up to normalization), we can see that this implies that, for some x, there were
2x + r comparisons made which differentiated between aj and ak, of which x + r
pointed towards aj (remember that the correct direction is towards ak, which is the
direction in which ai, the correct answer, is found). We now use Lemma 2.6 to bound
the probability of this event.

In order to calculate the query complexity of the entire algorithm, we need an esti-
mate for lsur, as we recursively examine a neighborhood of size 2lsur + 1. Note that for
1/2 < p < 1 and a > 0, we have(

p

1− p

)ap(1−p)/(2p−1)

≤ ea/2

So we get lsur < e6loglog n/εpar = O(log n6 log e/εpar).
We can now bound the expected query complexity of the algorithm for δ < 1/ log n.

Denote the expected query complexity until the test in step 1 succeeds by T . Once the
test succeeds, we pay a cost of O(log(1/δ) + log log n) queries; then, with probability
1/ log n the algorithm will restart, and with probability 1 − 1/ log n it will continue
recursively, operating on a polylogarithmic number of elements (of size 2lsur +1). This
means that the query complexity cost added by the case where the algorithm restarts is
O((T + log log n+ log(1/δ))/ log n), which is negligible (following the same idea as
in the proof of Theorem 1.1 from Theorem 2.1).

By Lemma 2.5 the expected runtime until I(a1, . . . an) > log n − log(1/εpar) is
log n/I(p) + c/I(p) for some constant c. This concludes the proof of Theorem 2.1.

2.4 Lower Bounds
Theorem 2.8. (Lower bound) LetA be a classical noisy binary search algorithm with
success probability greater than 1 − δ, then its expected number of comparisons is at
least

(1− δ) log n
I(p)

− 10/I(p)

11



To prove the lower bound, we first show a reduction from binary search to a channel
coding problem, and then present a new information theoretic lower bound for this
problem. We say that Alice and Bob communicate over a binary symmetric channel
with feedback if

1. Alice has a binary symmetric channel towards Bob, with noise probability p for
some p < 1/2

2. Bob has a perfect channel towards Alice, called the feedback channel. Commu-
nication in this channel is unlimited and free

Alice wishes to send Bob log n bits, with success probability 1 − δ. The players
are allowed to use variable length coding, and we are only interested in the expected
number of channel uses they require.

Lemma 2.9. Let A be a noisy binary search algorithm, and success probability 1− δ.
LetQ denote the expected number of comparisonsA requires. Then Alice can send Bob
log n bits of information, over a binary channel with feedback, with success probability
1− δ, such that the expected number of channel uses is Q.

Proof. The players simulate A, over the channels they have. Denote by i the log n bits
which Alice wishes to transmit to Bob. Alice considers the hypothetical case in which
she has a sorted array, such that xi > s > xi+1, and Bob tries to find the place of
s using comparisons. Alice and Bob now simulate A, where Bob tells that he wishes
to compare s and xj (by sending j in the feedback channel), and Alice responds with
the corresponding answer to the comparison in the forward noisy channel. Thus, each
comparisonAmakes is mapped to a single use of the forward channel, and the expected
number of channel uses is Q. Bob decodes i correctly if and only if A’s output was
that xi > s > xi+1, and therefore the success probability doesn’t change.

Finally, note that there is no real need for Bob to send the index j - it is enough
that he sends Alice back the output of the forward channel, and she can compute j by
herself. This is a general property for feedback channels.

We can now transform lower bounds on variable length coding with feedback
(when there is an error probability) to lower bounds on the expected runtime of A.
Theorem 2.8 now follows from Theorem B.1 in Appendix B.

Using this theorem, we can show that the probability that our algorithm halts pre-
maturely (when we run it with small δ) is very low. As we know the expected runtime
of our algorithm, a generalized Markov gives us some concentration on its query com-
plexity.

2.5 Implementation Notes
We are interested in the query complexity of the algorithm, rather than its runtime.
However, we note that a naive implementation is polylogarithmic in n (actuallyO(log n2)).
This is done by uniting cells of the array a1, . . . , an when there was no query which
discriminates between them. We begin the algorithm with a single segment which con-
sists of the entire array. Every query takes a segment, and splits it into two segments (so
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in the end of the algorithm we are left with O(log n) segments). After each query the
weight of each segment is updated (O(log n) time) and choosing where to ask the next
query consists of going over the segments (againO(log n) time). This can be improved
to O(log nloglog n) by saving the segments in a binary search tree. Every edge on the
tree has an associated probability on it, such that multiplying the numbers on a path
between the root to a certain vertex gives the weight of all the segments which are un-
der the vertex (the leaves each represent a single segment). Suppose we need to query
xj after having already queried xk and xl, where k < j < l and no other elements
were queried between xk and xl. In this case the leaf which represents the segment
ak, . . . , al will have two sons, one representing ak, . . . , aj and the other representing
aj+1, . . . , al. According to the result of the query, one son will have probability p, and
the other 1 − p. The data structure will then fix the probabilities on the path between
the root and the vertex ak, . . . , al according to the answer of the query. Both finding
the right element and updating the probabilities takes time which is proportional to
the depth of the tree. Each query increments the number of leaves, so there will be
O(log n) leaves at termination. Keeping the search tree balanced (such as by using
red-black trees) gives a tree depth of O(loglog n) as required. It is also possible to
implement an approximation of the search, in time O(log n), see [5, 4] for details.

3 Generalized Noisy Binary Search
In a binary search, the algorithm partitions a sorted array of items into two parts, and
the oracle returns which part contains the desired element. Our generalization is to let
the algorithm partition the sorted array according to k elements, and the oracle returns
which interval between them contains the correct element.

Generalizing the noise model can be done in a few ways. One way is to assume that
the algorithm actually makes k different comparisons in parallel, where each of them
is noisy with probability p, and the probabilities for noise in different comparisons are
independent. This model may be useful for biological applications. We use a different
model, which is more suited to the quantum case. Instead of assuming that we get k
bits (which is redundant in the noise-free case), we assume that we get one answer,
which tells us which are the two elements (out of the k chosen elements) such that s
is between these elements. There is now one correct answer, and k wrong ones, so we
need to specify the probability for each kind of error. This is done by taking k + 1
probabilities (which add to 1), where the hth probability is the probability that the
oracle returns j + h mod (k + 1) instead of j, the correct reply.

Formally, let g : {1, . . . , n − 1}k → {0, . . . , k}. If g is given k indices, i1 >
i2 > . . . > ik, it outputs the answer j if xij ≥ s ≥ xij+1 , where we take i0 = 1
and ik+1 = n. The error probability is taken into account by associating k + 1 known
numbers p0, . . . , pk to g, such that if xij ≥ s ≥ xij+1 then the result j+h mod (k+1)
would appear with probability ph.

The optimal algorithm for this case is very similar to the case k = 1 (which is f ).
In each step, partition the array into k+1 parts with (almost) equal probability, and ask
which part contains the desired element. The only difference will be in the recursion
condition. Instead of taking the surroundings of the most likely element, we pass to
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the next stage all the elements with weight greater than εpass, which will be determined
later. Let a1, . . . , an, εpar be as before (albeit with different values this time).

1. If there is a value i such that ai > εpar, halt. If the algorithm halts, take a set
of all the elements with weight greater than εpass and run on it recursively. Note
that it is possible to run recursively on a set of cells which are not a continues
segment by ignoring all the cells which are not in the set. If s is not in this set,
restart the algorithm.

2. Else, let i1, . . . ik be indices such that the sum of the elements between two
indices does not deviate from 1/k by more than εpar:

1/k − εpar ≤
ij∑

h=ij−1

ah ≤ 1/k + εpar

3. Apply g(i1, . . . , ik) and update the probabilities according to Bayes’s rule, us-
ing the pj’s.

We use εpar = 1/(6k + 6) log n, and εpass = I(p)2

k(6k+6) log6 n
.

Remember I(p0, . . . , pk) = log(k + 1)−H(p0, . . . , pk).

Theorem 3.1. The algorithm presented finds the right element with probability 1 − δ
in an expected query complexity of

log n
I(p0, . . . , pk)

+O(
polyloglog n log(1/δ)

I(p0, . . . , pk)
)

The proof of this theorem greatly resembles the one of Theorem 1.1. In particular,
it is based on analyzing the expected entropy of the distribution a1, . . . an, and a sim-
ilar technique for δ > loglog n/ log n gives the factor of 1 − δ. There are two main
differences:

1. We show an analog of Lemma 2.4, to show that the entropy of a1, . . . an de-
creases fast enough

2. We show an analog of Lemmas 2.6,2.7, proving that with high probability, when
we apply the recursion condition we pass the element to the next stage.

3.1 The Entropy Decrease for k Segments
Before we prove the main lemma, we formally present the update procedure. Let
a1, . . . , an be the probabilities before the comparison. Let ai0 , . . . aik be the k + 1
elements involved in the comparison. Denote Br = {i : ir ≤ i < ir+1} denote the
r’th segment, and Wr =

∑
i∈Br

ai.
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Remember that pj+h is the probability to get the answer h if the correct answer
is j, i.e. s is in the j’th segment. Equivalently, pj−r is the probability for getting the
result j if air ≤ s < air+1 . In this case

Pr(output j) =
∑
r

Pr(output j|air ≤ s < air+1) Pr(air ≤ sair+1) =
∑
r

pj−rWj

Let bi be the updated value of ai. Then the Bayesian update for ai ∈ Br if the
result was j is

bi = aipj−r/Nj

and

Nj =
∑
r

Wrpj−r

is the normalization factor for this result. Note that Nj = 1/Pr(output j).

Lemma 3.2. Assume ∀i : ai < εpar. Then:

E[I(b1, . . . , bn)]− I(a1, . . . , an) ≥ I(p)(1− (2k + 2)εpar)

Proof. Assume that we partitioned the cells into blocksB0, . . . , Bk, with total weights
W0, . . . ,Wk respectively. We can assume that ∀i : |Wi − 1/k| < εpar. Therefore

Ni =
∑
j

Wjpj−i ≥
∑
j

(
1

k + 1
− ε
)
pj−i =

(
1

k + 1
− ε
)∑

j

pj−i =
1

k + 1
− ε

and similarly we get Ni ≤ 1
k+1 + ε.

We now bound E(H(b1, . . . , bn)), where the expectancy is over the result j.

E(H(b1, . . . , bn)) =
∑
j

H(b1, . . . , bn|output j) Pr(output j)

Considering the event that the result was j

H(b1, . . . , bn|output j) =
∑
i

∑
t∈Bi

pj−iat/Nj log(pj−iat/Nj)

=
1
Nj

∑
i

∑
t∈Bi

pj−iat log(pj−iat/Nj)

Fortunately, 1/Nj = Pr(output j), so we have

E(H(b1, . . . , bn)) =
∑
j

∑
i

∑
t∈Bi

pj−iat log(pj−iat/Nj)

=
∑
j

∑
i

∑
t∈Bi

pj−iat [log pj−i + log at − logNj ]
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We now look at each of the three terms separately.

∑
j

∑
i

∑
t∈Bi

pj−iat log pj−i =
∑
j

∑
i

pj−i log pj−i
∑
t∈Bi

at =
∑
j

∑
i

pj−i log pj−iWi

=
∑
i

Wi

∑
j

pj−i log pj−i = H(p)

As for the second term

∑
j

∑
i

∑
t∈Bi

pj−iat log at =
∑
i

∑
t∈Bi

at log at
∑

jpj−i =
∑
i

∑
t∈Bi

at log at = H(a1, . . . , an)

And the third

−
∑
j

∑
i

∑
t∈Bi

pj−iat logNj = −
∑
j

logNj
∑
i

pj−iWi = −
∑
j

Nj logNj

Thus the expected decrease in entropy is

−
∑
j

Nj logNj −H(p)

Using the fact that
∑
j Nj = 1, Taylor’s approximation gives that if |Nj−1/k| < ε

2k+2
then ∑

j

Nj logNj > log(k + 1)− ε

Specifically, choosing εpar = 1/((6k+6) log n) then the expected information gain
at each step is at least I(p)(1− 1/(3 log n)) and applying Lemma 2.5 (mutatis mutan-
dis) shows that we will reach the recursion condition within log n/I(p) + O(1/I(p))
steps.

3.2 Correctness Proof for the Halt Condition
Lemma 3.3. When we reach the recursion condition, with probability greater than
1− 1/ log n the correct cell has high weight, specifically more than

εparI(p)2/k log5 n ≥ I(p)2

k(6k + 6) log6 n

As we pass all the cells with higher weight to the next stage, and as the failure
probability is too small to effect the main term in the runtime, this lemma finishes the
correctness proof.

16



Proof. Note first that with probability at least 1 − 1/2 log n we reach the recursion
condition within t = E log n = log2 n/I(p) steps, from a trivial Markov bound (as the
number of steps is always nonnegative).

We now want to prove that with high probability, no cell is a lot larger than the
right one. The probability that after s queries, a specific (wrong) element has weight
larger than c times the weight of the right one is at most 1/c. Note that for this to hold
we only need that the distribution p0, . . . , pk is not uniform2. However, there are n− 1
wrong cells, so applying a union bound is not possible. Fortunately, if two cells were
never separated by a question, they have the same probability (as they passed the same
update process - see Subsection 2.5).

After s queries, there are only ks + 1 unique weights, as each query divides k
segments, each into two subsegments. Using the Markovian bound, we only need to
apply a union bound on (log n)2/I(p) stages of the algorithm. In each stage, there
are at most k(log n)2/I(p) different cells. Setting the ratio c = 2k log5 n/I(p)2, the
probability that a specific cell (or segment) to be c times more heavy than the right one
at any stage of the algorithm is at most 1/c. Taking a union bound on the different
segments in each stage of the runtime gives a failure probability of at most

(log n)2

I(p)
· k(log n)2

I(p)
· 1
c

= 1/2 log n

Adding the probability of 1/2 log n to fail the Markovian argument on the number
of stages gives the result.

Note that this proof also lets us deduce the result for k = 2, which appeared sepa-
rately as Lemmas 2.6 and 2.7. However, 1/lsur is larger than εpass, since we can use a
more exact approximation of the update process and also have a better bound for εpar.

4 Quantum Search With a Non-Faulty Oracle
Farhi et al. presented in [12] a “greedy” algorithm which, given t queries and an array
of size K, attempts to find the correct element but has some error probability. In fact,
their algorithm actually does more. Assume that the elements given to their algorithm
are y0, .., yK−1 and the special element s. Again we are trying to find i which satisfies
yi ≥ s ≥ yi+1. Their algorithms outputs a quantum register with the superposition
ΣK−1
j=0 βj |(j + i)〉 (with all indices taken mod K) for fixed β0, . . . , βK−1 which are

not a function of s. Let pj = |βj |2. When measuring the register we obtain the
correct value with probability p0. The exact numbers p0, . . . pK−1 are determined by
the number of oracle queries t. We now use their algorithm (with proper values for K
and t) as a subroutine in our generalized search algorithm with k = K.

2One could get a better approximation by looking at the exact values. At first glance, it may seem
surprising that it is possible to say something which is independent of the distribution. Note however that
if the distribution is very close to uniform, then because of the update procedure it would have to favor the
wrong element over the right one many times to get the factor of c. On the other hand, if it is far from
uniform, the probability each time to get a “wrong” answer is small. These two effects cancel out, and we
get the trivial bound.
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Figure 1: The probability for measuring each element out of 1024 elements after 3
queries. The probability to find the right element is 0.598. The entropy of this dis-
tribution is 2.817 bits, the information gain is 7.182, and it yields a quantum search
algorithm with complexity 0.417 log n

We present a table which describes the algorithm for K = 226. The second column
gives the probability of finding the right element after t queries, while third column
gives the information of the distribution. The last column gives the resulting query
complexity of searching a sorted list of n elements using t queries on 226 elements as
a subroutine, and is calculated by dividing the information gain by t.

Number of Success Information Query
Queries t Probability Gain I(t) Complexity

1 2.3 · 10−6 1.45 0.687 log n
2 0.000088 3.77 0.53 log n
3 0.0014 7.5 0.400 log n
4 0.0134 11.2 0.357 log n
5 0.0727 15.01 0.333 log n
6 0.2513 18.802 0.319 log n
7 0.57 22.3138 0.3137 log n
8 0.877 24.921 0.321 log n

For each fixed size K, increasing t above some threshold does not help the algo-
rithm. Figure 2 describes the expected runtime, as a function of the logarithm of the
size of the search space, for 5 to 8 queries. The figure gives evidence towards the state-
ment that increasing K always improves the query complexity (for the optimal choice
of t). This raises the question of whether an exact analysis of the greedy algorithm
gives the optimal quantum algorithm.

Using K = 226 and t = 7 gives a distribution Q with I(p0, . . . , pk) = 22.3138.
This gives us an algorithm which requires less than 0.314 log n oracle questions with
o(1) failure probability, proving Theorem 1.2

For every size of K we checked, the success probability for the optimal t was quite
low (about 0.6). This means that the measurement distribution is important, and not
just the probability of finding the right element. Figure 1 shows this distribution for
1024 elements and 3 queries. Figure 3 shows this distribution (on a log plot) for 1 to 6
queries. The number of side lobes is proportional to the number of questions.
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Figure 2: The expected runtime of binary search, in a log-linear plot, when the quantum
subroutine uses 5,6,7 or 8 queries

Figure 3: The probability of getting each element out of 4096, assuming that the correct
element is 2048, for 1 to 6 queries. The probability is depicted in a logarithmic plot
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5 Quantum Lower Bounds

5.1 Noisy Quantum Search
Let O be a quantum search oracle, O(|x, c〉) = |x, (0 ⊕ c)〉 if x ≥ s and |x, (1 ⊕ c)〉
if x < s. We want to define a noisy version of the oracle, which will generalize the
classical noisy oracle, that is, we want to it to have a probability for the correct answer,
as well as a probability for the wrong one3. We thus define O(|x, c〉) =

√
p|x, (c ⊕

f(x))〉+
√

1− p|x, (c⊕f(x)⊕1)〉where f(x) = 0 if and only if x > s (see [16, 6, 15]).
Clearly the complexity of the optimal algorithm, as a function of p, cannot be worse
than in the classical case. We show that, up to a constant factor, the dependence is
identical in the quantum and classical cases.

In [16], Lemma 5, it is stated that

|〈ψjx|ψjy〉 − 〈ψj+1
x |ψj+1

y 〉| ≤ 2
∑

i,xi 6=yi

||Pi|ψjx〉|| · ||Pi|ψjx〉||

using the Cauchy-Schwarz inequality for the proof. In the case of a noisy oracle, an
identical proof shows that

|〈ψjx|ψjy〉 − 〈ψj+1
x |ψj+1

y 〉|

≤ 2
√
p(1− p)

∑
i,xi 6=yi

||Pi|ψjx〉|| · ||Pi|ψjx〉||

Using this tighter bound in the rest of [16] we get:

Theorem 5.1. Any noisy quantum algorithm requires at least ln(n)

π
√
p(1−p)

≈ 0.202 logn√
p(1−p)

queries.

5.2 Lower Bounds for Quantum Search with a (high) Probability
of Error

Our techniques enable us to give a better lower bound for the number of queries that
a quantum noiseless algorithm needs to the find the right element in a sorted list with
probability at least 1− δ.

Theorem 5.2. Any quantum algorithm which finds the right element in an array of
length k with success probability greater than 1 − δ requires at least t ≥ ln(2)

π ((1 −
δ) log(k))−O(1) queries.

Proof. Given a quantum algorithm on an array of size k with success probability 1−δ,
we can use it as a basis for the recursive step for the algorithm in Section 3, by taking
probabilities

pi =
{

1− δ i = 0
δ

k−1 i 6= 0

3It is possible to define noisy quantum oracles in several other ways. For example, one can define oracles
which sometimes do not act on the state at all [24], or oracles which present us with a state which is close
(in some norm) to the desired state.
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Here
I(p0, . . . , pk) = log(k) + (1− δ) log(1− δ) + δ log(δ/(k − 1))

and we gain I(p0, . . . , pk)/t bits of information per query. However, we know from
[16] that any perfect quantum search algorithm for an ordered list needs at least lnn

π
queries. This means that the average information gain per query is at most π/ ln(2)
bits per query, so

1
t
(log(k) + (1− δ) log(1− δ) + δ log(δ/(k − 1))) ≤ π

ln(2)

Manipulating this gives the result.

This bound is nontrivial as long as δ < 1 − 1
k , which is much better than the

previously best lower bound of

t ≥ (1− 2
√
δ(1− δ)) 1

π
(Hk − 1)

by [16] which is trivial for δ > 1/2.

6 Open Problems
An interesting classical open problem is to study the classical generalization of noisy
binary search with independent answers. Giving upper and lower bounds is important,
especially as a function of k.

We believe that tight asymptotic analysis of the greedy algorithm can lead to algo-
rithms that are better than the one presented here. Also, trying to decrease the entropy
at each stage (and not just maximize the probability to get the correct answer if we
measure immediately), could help decrease the complexity.
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A A Review of the Greedy Algorithm
In this appendix we give a short presentation of the quantum algorithm of Farhi et al.
(in [12]), which is being thoroughly used in our paper. As a part of this description we
present the reduction to translationally invariant algorithms.

Farhi et al. solve a different problem which is equivalent to search. They define n
functions fj(x) by

fj(x) =
{
−1, x < j
1, x ≥ j
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for j ∈ {1, . . . , n}. A query in this problem is giving the oracle a value x, and getting
fj(x) for some fixed but unknown j. The goal of the algorithm is to find j. They then
double the domain of the functions and define Fj(x) by

Fj(x) =
{
fj(x), 0 ≤ x ≤ n− 1
−fj(x− n), n ≤ x ≤ 2n− 1

and use the fact that Fj+1(x) = Fj(x − 1) to analyze their algorithm only for j =
0. They also define Gj |x〉 = Fj(x)|x〉 and T |x〉 = |x + 1〉. This means that their
algorithm can be described as

VkGjVk−1 . . . V1GjV0|0〉

followed by a projective measurement which decides the result. Noticing that T jGjT−j =
G0, Farhi et al. found a base which they denote |0+〉, . . . , |n−1+〉, |0−〉, . . . |n−1−〉
such that T j |0±〉 = |j±〉, and when the measurement results in j±, the algorithm
outputs that it got the jth oracle as an input4.

Demanding that Vl = TVl−1T
−1, it is possible to calculate the success probability

of any given algorithm, by looking at the inner product 〈VkG0Vk−1 . . . V1G0V0|0〉|0±〉.
For any given state |ψ〉, it is possible to calculate which V will maximize 〈V G0ψ|0±〉.
Farhi et al. define the greedy algorithm recursively starting from V0, such that each
Vl is chosen to maximize the overlap of |Vl−1G0, . . . V1G0V0〉 with |0±〉. Analyzing
analytically the behavior of the greedy algorithm is an interesting open problem. Its
behavior for finite (albeit large) size is the basis for our algorithm. It is interesting
to note that the full distribution is important and not just the probability for a correct
answer (which is what the algorithm maximizes).

B Information Theoretical Lower Bound
In this section we prove a lower bound for sending information over a noisy channel,
when the algorithm is allowed large failure probability, which can approach one as the
amount of information we require to send grows. This type of results is not common,
as we are usually interested in sending information such that the failure probability
tends to zero as the amount of information grows. We present the lower bounds in a
very strong model, where the sender and the receiver have a noiseless feedback chan-
nel, and are only interested in the expected number of channel uses (they are allowed
variable length coding). This model serves as a lower bound for the noisy binary search
problem.

We introduce some notation. Alice wishes to send Bob log n bits of information,
over a binary symmetric channel with noise probability p. Bob has a perfect communi-
cation channel towards Alice, and communication in this channel is free. Equivalently,
we can assume that Alice knows what was the bit received by Bob every time she
sends something. Let C be a communication protocol for sending log n bits, with suc-
cess probability at least 1−δ. The rest of the section is devoted to proving the following
theorem:

4Actually the result should be |j+〉 if k is even and |j−〉 if k is odd. We ignore this point as it is not
necessary for the understanding of the algorithm.
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Theorem B.1. Let k be the expected number of times C uses the noisy communication
channel, and α = 10. Then

k > (1− δ) log n
1−H(p)

− α

For n large enough.

This bound is meaningful even when δ = 1−O (1/ log n), and the success probability
tends to zero as n grows.

Let C be a protocol with success probability 1− δ, which uses the channel k times.
We can build another protocol C′ out of it by halting every run of C after k log2 n
steps. If we halt the run, C′ just outputs 1. Let Ex denote the expected number of
channel uses C′ requires, and 1 − τ its failure probability. The following properties
hold

1. C′ expected runtime lower bounds that of C, or k ≥ Ex

2. The failure probability of C′ is not much greater than that of C, 1− τ > 1− δ−
1/ log2 n > 1− δ − α/2 log n

Properties 1,2 imply that to prove B.1 it is enough to show that

Ex > (1− τ)
log n

1−H(p)
− α/2 (2)

It is easy to see that the variance of the number of channel uses C′ requires is
bounded by kEx log2 n < 2E2

x log2 n.
We now show how by iterating C′ one can create a new code, which would pass

n log n bits with very high success probability, using the channel at most n
1−τ +

n0.52)(Ex + 4) times. The result will then follow from standard bounds on fixed-
length codes with high success probability. We consider the n log n input bits as n
symbols, each of size log n bits, and let T denote the series of the symbols, |T | = n.

1. Initialize T0 = T

2. While |Ti| is greater than zero,

(a) Data Phase: Alice sends Bob each of the symbols in Ti, using C′. Note
that in any attempt Alice knows exactly what symbol Bob decoded.

(b) Control Phase: Let Si be a vector of length |Ti|, such that S[j] = 1 if the
j’th attempt failed. Alice encodes Si using a good error correcting code
using (4|Ti|/(1 − H(p)) + 4

√
n/(1 − H(p))) bits. This means that the

probability that Bob decodes Si incorrectly is at most 1/n.

(c) Internal update: Let Ti+1 be a vector of all the symbols (of size log n)
which Bob didn’t receive correctly (corresponds to the places where
Si[j] = 1).

Protocol P passes n log n bits
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If at any time Bob fails to understand Alice’s message in step (2b), we say that P
failed, and Alice and Bob halt. In order to bound the probability for this event, we first
prove a few properties of P.

Lemma B.2. With probability greater than 1− 1/n, the number of iterations of P is at
most (logn)2

1−τ .

Proof. In the first iteration, Alice tries to send n symbols, such that the success proba-
bility of each transmission is 1 − τ . The probability that a certain symbol isn’t trans-
mitted successfully after (logn)2

1−τ rounds is at most 1/n2, as this is just a geometric
variable. a union bound gives the result.

Lemma B.2 bounds the number of cycles Alice and Bob need. We now bound the
number of times C′ was used

Lemma B.3. With probability greater than 1 − 1/ log2 n, P uses C′ at most n
1−τ +

τ
√
n logn

(1−τ)2 times.

Proof. The proof is derived by computing the sum of n independent geometric random
variables, each with parameter 1− τ . The variance of such a variable is

τ

(1− τ)2

According to Tchebychev’s Inequality, the probability that this sum exceeds n
1−τ +

τ
√
n log2 n

(1−τ)2 is at most 1/ log2 n, as required.

We now have the with probability at least 1 − 2/ log2 n, the number of rounds as
well as the number of uses of C′ is bounded. We bound from above the number of
channel uses, assuming this event.

Lemma B.4. With probability at least 1 − 4/ log2 n, Alice and Bob used the channel
at most ( n

1−τ + n0.52)(Ex + 4) times.

Proof. We bound the number of channel uses by bounding two independent terms:

1. The number of times C′ is used, times the number of bits it requires each time

2. The number of channel uses required to pass the control data (the vectors Si)

According to Lemma B.3, with probability at least 1 − 1/ log2 n, C′ was used at
most β = n

1−τ + 2 τ
√
n log2 n

(1−τ)2 times. The number of channel uses each time is a random

variable, with expectancy Ex and variance at most 2E2
x log2 n. Conditioned on this

event, Tchebychev’s Inequality gives that with probability ≥ 1 − 1/ log2 n the total
number of channel uses was

βEx +
√
β2E2

x log4 n ≤ (
n

1− τ
+ n0.51)Ex
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Where the log4 n comes from the variance of C′ times the slack required for Tcheby-
chev’s inequality, and the constant 0.51 is somewhat arbitrary.

We now bound the number of channel uses required for the control phase of P,
which consists of (4|Ti|/(1−H(p)) + 4

√
|T0|/(1−H(p))) bits in the i’th iteration.

To bound the
∑
i |Ti|, note that any application of C′ appears in one such Ti (whether

it was successful or not). With probability 1 − 1/ log2 n the number of times C′ is
applied is bounded by β, and thus this requires 4β bits to bound the first term. As for
the second term, according to Lemma B.2, with probability at least 1−1/n the number
of rounds is at most (logn)2

1−τ . Multiplying this by 4
√
|n|/(1−H(p)) and adding the first

term gives that with probability at least 1−4/ log2 n the second phase of the algorithm
incurs at most

4β +
4
√
|n| log2 n

(1−H(p))(1− τ)
channel uses. The lemma stems from from

(
n

1− τ
+n0.51)Ex+4

n

1− τ
+8

τ
√
n log n

(1− τ)2
+

4
√
n log2 n

(1−H(p))(1− τ)
≤ (

n

1− τ
+n0.52)(Ex+4)

To apply known coding inequalities, we require a protocol which has a constant
block size. We therefore define a protocol P′ which passes n log n bits, by applying
protocol P, and halting if the number of channel uses exceeds ( n

1−τ + n0.52)(Ex + 4)
The error probability of P′ can be bounded as follows

Lemma B.5. The failure probability of P′ is at most 5/ log2 n

Proof. According to Lemma B.2With probability at least 1 − 1/n, there are at most
(logn)2

1−τ communication cycles. In each cycle the failure probability is at most 1/n.
Taking a union bound gives that the probability that Bob will not know if a bit was
passes correctly in any round is

(log n)2

n(1− τ)
≤ 1/ log2 n

With probability at least 1 − 4/ log2 n the number of channel uses is not too large.
Applying a union bound on theses sources of failure finishes the proof.

Finally, we present bounds for codes with feedback channel, but with small failure
probability Pe. The following bound is taken from [10] (see chapter 8 Equation 139),
and is derived from Fano’s inequality:

mR ≤ PemR+ 1 +m(1−H(p))

where the channel is used m times, to pass mR bits. Note that this inequality is exact,
and not just asymptotic. Manipulating this equation gives

m ≥ n log n− Pen log n− 1
1−H(p)

>
n log n

1−H(p)
− n

(5−H(p)) log n
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Where the last inequality comes from substituting Pe. Finally, we substitute the value
m = ( n

1−τ + n0.52)(Ex + 4), pass sides and divide by n to get

Ex+4 > (1−τ)
(

log n
1−H(p)

− 5
(1−H(p)) log n

− n−0.48

)
> (1−τ)

log n
1−H(p)

−1

or equivalently, Ex > (1−τ) logn
1−H(p) −5. This gives Equation 2, and finishes the proof

of Theorem B.1

28


