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1. Introduction 

A knight’s tour is a series of moves made by a knight visiting every square of 

an n x n chessboard exactly once. The knight’s tour problem is the problem of con- 

structing such a tour, given n. A knight’s tour is called closed if the last square 

visited is also reachable from the first square by a knight’s move, and open otherwise. 

Define the knight’s graph for an n x n chessboard to be the graph G = (V,E), where 

V={(i,j) ( 1 d i,j Gn}, and E={((i,j),(k,Q) ( {Ii-kl,Ij- t[} = {1,2}}. That is, 

there is a vertex for every square of the board and an edge between two vertices ex- 

actly when there is a knight’s move from one to the other. Then, more formally, an 

open knight’s tour is defined to be a Hamiltonian path, and a closed knight’s tour is 

defined to be a Hamiltonian cycle on a knight’s graph. A knight’s graph has n2 vertices 

and 4n2 - 12n + 8 edges. 

The formal study of the knight’s tour problem is said to have begun with Euler [lo] 

in 1759, who considered the standard 8 x 8 chessboard. Rouse Ball and Coxeter [l] give 

an interesting bibliography of the history of the problem from this point. Dudeney [8, 91 

contains a description of exactly which rectangular chessboards have knight’s tours; in 

particular, an n x n chessboard has a closed knight’s tour iff n Z 6 is even, ’ and an 

open knight’s tour iff n 3 5. It is not clear who first proved this fact, but it appears 

to be part of the folklore of the subject (see, for example, [2]). There exist several 

independently conceived linear time (i.e. O(n2)) algorithms for constructing knight’s 

tours (see, for example, [5, 191). Takemji and Lee [22, 231 recently proposed a neural 

network solution to the knight’s tour problem, although it appears to be of little use 

in practice (see [ 17, 181). We will describe in this paper a new, simple, and fast 

algorithm for constructing knight’s tours on square boards. 
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’ It is easy to see that there is no closed knight’s tour when n is odd since such a board has one more 

white square than black, or vice versa, and since the colours of the squares visited on a knight’s tour must 

alternate. 
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Rouse Ball and Coxeter [I] describe a variant of the knight’s tour problem in which 

the board is divided horizontally into two rectangular compartments. The tour must 

visit all of the squares in one compartment before proceeding to the second one. We 

will call this the bisected knight’s tour problem. They give a solution to the 8 x 8 case 

due to Euler, and another due to Roget. Dudeney [8, 91 describes a further refinement 

of this problem in which the board is divided into four rectangular compartments. We 

will call this the quadrisected knight’s tour problem. Dudeney sets the problem of 

constructing a quadrisected knight’s tour on an 8 x 8 board as an exercise that “is not 

difficult, but will be found very entertaining and not uninstructive”. We will describe 

a linear-time algorithm for generating quadrisected knight’s tours on n x n boards for 

all even n > 10. 

Domoryad [7] describes a quadrisected open tour on an 8 x 8 board, and also a 

closed tour on a 7 x 7 board that is missing the centre square. Hurd and Trautman [ 121 

note that there exists an open knight’s tour on a 4 x 4 board that is missing one of its 

corners. We will also present an algorithm for constructing closed knight’s tours on 

n x IZ boards that are missing a comer square, for all odd y1 > 5. 

Gardner [ 11, Chapter 141 gives a bisected tour on an 8 x 8 board due to Euler. He 

also notes that this tour is invariant under a rotation of 180” (that is, the transformation 

(x, JJ) ---f (n -x + 1, n - y + 1)). We will see a linear time algorithm for generating such 

rotation-invariant knight’s tours on an y1 x n board for all even y1 3 10. In contrast, 

Dejter [6] has shown that an IZ x n has a closed knight’s tour that is invariant under a 

90” rotation (that is, the transformation (x, v) ---f (y,n - x + 1)) iff II 3 6 is divisible 

by 2 but not by 4. We will give a linear-time algorithm for all such n 3 10. 

Conrad et al. [3, 41 give a linear-time sequential algorithm for the more difficult 

problem of constructing open knight’s tours (with arbitrary endpoints) that can also be 

adapted to give a parallel algorithm that runs in 0( 1) time on 0(n2) processors. We will 

give a new algorithm for closed knight’s tours with the same resource bounds. The new 

algorithm has the following advantages: the sequential algorithm is easy to describe, 

and easy to implement, and the parallel version is easy to describe and analyze. In 

addition, both the sequential and parallel versions extend to the special cases described 

above: quadrisected tours, tours symmetric under 180” rotations, tours symmetric under 

90” rotations, and tours on odd-sided boards that are missing a single square. 

The remainder of this paper is divided into two sections. Section 2 describes a 

new divide-and-conquer algorithm for constructing regular knight’s tours, quadrisected 

knight’s tours, and tours that are invariant under rotations. Section 3 presents variants 

of the new divide-and-conquer algorithm for several popular parallel machine architec- 

tures. Throughout this paper, N denotes the set of natural numbers (including zero). 

Unless otherwise qualified, a “knight’s tour” will mean a closed knight’s tour. 

2. A divide-and-conquer algorithm 

This section is devoted to describing a new, particularly simple, linear-time 

divide-and-conquer algorithm for knight’s tours of various types. A knight’s 
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tour is said to be structured if it includes the knight’s moves shown in 

Fig. 1. 

Theorem 2.1. For all even n > 6 there exists u structured knight’s tour on an n x n 

and an n x (n + 2) board. Such a tour can be constructed in time 0(n2). 

Proof. The proof is by induction on n. The claim is easily seen to be true for 

6 < n < 10 by inspecting Fig. 2 (the knight’s tours in this figure were obtained using 

the random walk algorithm described in Section 1). 

Now suppose that n 2 12 is even and that structured knight’s tours exist on m x m 

and m x (m + 2) boards for all 6 < m < n. Divide the n x n board into four quadrants 

as evenly as possible. More precisely, each side of length M = 4k for some k E N is 

divided into two parts of length 2k, and each side of length 4k + 2 for some k E N 
is divided into a part of length 2k and a part of length 2(k + 1). In the construction 

of an n x n board in which n = 4k for some k E N, the four quadrants are each 

2k x 2k. Alternatively, if n = 4k + 2 for some k E N, then the four quadrants are 

either 2k x 2k, 2k x 2(k + l), 2(k + 1) x 2k, or 2(k + 1) x 2(k + I). In the construction 

Fig. 1. Required moves for a structured knight’s tour 

Fig. 2. Structured knight’s tours for (in row-major order) 6 x 6, 6 x 8, 8 x 8, 8 x 10, 10 x 10. and 10 x 12 

boards. 
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Fig. 3. How to combine four structured knight’s tours into one: (a) the moves at the inside corners, (b) the 

edges A, B, C, D to be deleted, and (c) the replacement edges E, F, G, H. 

of an n x (n + 2) board in which n = 4k for some k E N, the four quadrants are 

either 2k x 2k, 2k x 2(k + 1 ), or 2(k + 1) x 2k. Alternatively, if n = 4k + 2 for some 

k E N, then the four quadrants are either 2k x 2k, 2k x 2(k + l), 2(k + 1) x 2k, or 

2(k + 1) x 2(k + 1). Since n 3 12 implies that 2k 3 6, knight’s tours in each quadrant 

exist (by the induction hypothesis) in all of the above cases. 

The moves at the inside corners of the quadrants are illustrated in Fig. 3(a). (Al- 

though the moves from the comer square were not specified in Fig. 1, note that there 

are no other choices for knight’s moves out of a comer square.) The four tours are 

combined by deleting the edges A,& C, D shown in Fig. 3(b) and replacing them with 

the four edges E, F, G, H shown in Fig. 3(c). Clearly, the result is a structured knight’s 

tour. Fig. 4 illustrates the technique on a 16 x 16 board, constructed from four copies 

of the knight’s tour on an 8 x 8 board in Fig. 2. 

The technique described above can easily be implemented as a recursive algorithm 

with the tour represented in graph form using an adjacency matrix representation. The 

running time r(n) required for the construction of a knight’s tour on an n x n board 

is given by the following recurrence: T(8) = 0( I), and for n > 16 a power of 2, 

T(n) = 4T(n/2) + O(1). This recurrence has solution T(n) = 0(n2). Therefore (using 

the standard argument), the running time for all even n 26 is O(n2). Cl 
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Fig. 4. A 16 x 16 knight’s tour constructed from the 8 x 8 knight’s tour in Fig. 2 using the technique of 

Theorem 2. I. 

The algorithm of Theorem 2.1 is particularly easy to implement, and can be used to 

construct knight’s tours of size up to 1000 x 1000 in under 11 s on a SUN SPARC 2. 

The construction described in the proof of Theorem 2.1 can also be used to obtain 

some knight’s tours with interesting properties. It should be clear that we have already 

solved the quadrisected knight’s tour problem. The only even values of n for which we 

have not constructed quadrisected knight’s tours are n = 8,lO. A quadrisected knight’s 

tour is known for an 8 x 8 board (see Dudeney [7-91) leaving n = 10 open. 

Another minor modification to our algorithm also delivers symmetric knight’s tours. 

Theorem 2.2. For all n x n boards where n2 12 is divisible by 4, there exists a 

quadrisected knight’s tour that is symmetric under a 180” rotation. Such a tour can 

be constructed in time 0(n2). 

Proof. If n 3 12 is divisible by 4, the construction of Theorem 2.1 breaks the board 

into quadrants of equal size and uses the same initial tour within each quadrant. Instead, 

after constructing a tour in the first quadrant, rotate it three times through successive 

increments of 90”, once for each of the remaining quadrants in cyclic order. Complete 

the tour as before. The constructed tour will be symmetric under a 180” rotation. For 

example, Fig. 5 shows such a tour for a 16 x 16 and a 20 x 20 board. c7 

Dejter [6] has shown that there exists a knight’s tour that is symmetric under a 

90” rotation iff n > 6 is even but not divisible by 4. We will now give an algorithm 

for constructing such a tour for all such n 2 10. First, we need some straightforward 

variations on Theorem 2.1. 

Lemma 2.3. For all n>6 there exists a structured knight’s tour on an n x (n + 1) 

board. Such a tour can be constructed in time 0(n2). 
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Fig. 5. 16 x 16, and 20 x 20 knight’s tours that are symmetric under a 180’ rotation, constructed using the 

technique of Theorem 2.2. 

Fig. 6. Structured knight’s tours for (in row-major order) 6 x 7, 7 x 8, 8 x 9, 9 x 10, 10 x 11, and 11 x 12 

boards. 

Proof. The construction is very similar to that of Theorem 2.1 and is left to the 

interested reader. The base of the recursive construction must be augmented with the 

structured knight’s tours shown in Fig. 6. 0 

Lemma 2.4. For all odd n > 5 there exists a structured knight’s tour on an n x n 

board that is missing one of its corner squares. Such a tour can be constructed in 

time O(2). 

Proof. The recursive construction is very similar to that of Theorem 2.1 and is left to 

the interested reader. The constructions of both Theorem 2.1 and Lemma 2.3 must be 

used as subroutines. The base of the recursive construction consists of the base cases 
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Fig. 7. Structured knight’s tours for (from left to right) 5 x 5, 7 x 7, 9 x 9, and I I x 11 boards that are 

missing the upper left comer square 

Fig. 8. A knight’s tour on a 27 x 27 board that is missing one square 

from both of those results, plus the structured knight’s tours shown in Fig. 7. Fig. 8 

illustrates the construction when n = 27. q 

Theorem 2.5. For all n x n boards where n > 10 is dizlisible by 2 but not by 4, there 

exists a knight’s tour that is symmetric under u 90” rotation. Such a tour can be 

constructed in time O(n*). 

Proof. The algorithm is similar to that of Theorem 2.5, but instead of breaking the 

board into four quadrants using the construction of Theorem 2.1 (which, since n is 

even but not divisible by 4, would not result in quadrants of equal size), it is to be 

broken evenly into four square quadrants of dimension n/2 x n/2. Noting that n/2 is 

odd, we take a knight’s tour on this board with a hole in one corner (constructed 

using Lemma 2.4), and place a copy in each quadrant, rotating by 90” each time so 
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(b) 

Fig. 9. How to combine four knight’s tours into one: (a) the moves at the inside comers (the holes are 

shaded), (b) the edges A,B, C, D to be deleted, and (c) the replacement edges. 

Fig. 10. 10 x 10, 14 x 14, and 18 x 18 knight’s tours that are symmetric under a 90 degree rotation, 

constructed using the technique of Theorem 2.5. 

that the holes are at the center of the board (see Fig. 9(a)). Finally, we remove the 

edges A, B, C, D shown in Fig. 9(b) and replace them with the eight edges shown in 

Fig. 9(c). Fig. 10 illustrates the technique for n = 10,14,18. 0 
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Corollary 2.6. For ull n x n boards where n 28 is even, there exists a knight’s tour 

that is symmetric under a 180” rotation. Such a tour can be constructed in time 

0(n2). 

Proof. The result follows for n 3 10 by Theorems 2.2 and 2.5. Gardner [ 1 1, Ch. 141 

gives an 8 x 8 tour (attributed to Euler) invariant under a rotation of 180”. 

3. Knight’s tours in parallel 

Our algorithms for constructing structured knight’s tours can readily be implemented 

in parallel. We will consider four different architectures: bounded degree networks, 

CREW PRAMS, mesh-connected computers, and meshes with CREW row and column 

buses. We will content ourselves with simply stating the results here, since the proofs 

use mostly standard techniques. More details are available in [ 171. 

A bounded degree network is a parallel machine in which the processors can commu- 

nicate with at most a small constant number of neighbours (see, for example, [ 151 or 

[16]). Our algorithms can be implemented in time 0(n2/p) on a p-processor bounded 

degree network, for all p = O(n2/logn). A CREW PRAM is a parallel machine in 

which the processors can read and write into a shared memory. Concurrent reads of 

a single cell of shared memory are permitted but concurrent writes are not (see, for 

example, [13] or [ 161). Our algorithms can be implemented in time 0( 1) on an 

n2-processor CREW PRAM. 

A mesh-connected computer, or mesh for short, is a bounded degree network with 

a particularly simple interconnection pattern. An n x n mesh has n2 processors, and 

for 0 < i, j < n, processor in + j is connected to processors (i - 1)n + j, (i + 1)n + j, 

in +,j - 1, in + j + 1, provided these values are in the range 0 to n2 - 1. Our algorithms 

can be implemented in time O(n2/p2) on a p-processor mesh, for all p < n2!3. A mesh 

with CREW buses is a mesh-connected computer with a bus for each row and each 

column. In addition to the standard mesh instructions, each processor may also write 

to or read from either its row bus or its column bus. Only one processor may write 

to each bus in any given step but concurrent reads from a bus are allowed (similar 

models were studied by Stout [20, 211). Our algorithms can be implemented in time 

0( 1) on a n2-processor mesh with CREW buses. 

4. Conclusion 

We have seen a new algorithm for constructing closed knight’s tours on square 

boards. In addition to being simple to describe, implement, and analyze, the new al- 

gorithm can be used to find highly structured knight’s tours (specifically, quadrisected 

tours and tours that are symmetric under rotations), and is amenable to implementation 
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as efficient parallel algorithms under various architectures. A similar construction can 

be used to prove exponential lower bounds on the number of closed knight’s tours 

1141. 
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