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On r-reflexive Banach spaces

Iryna Banakh, Taras Banakh, Elena Riss

Abstract. A Banach space X is called r-reflexive if for any cover U of X by weakly open
sets there is a finite subfamily V ⊂ U covering some ball of radius 1 centered at a point
x with ‖x‖ ≤ r. We prove that an infinite-dimensional separable Banach space X is ∞-
reflexive (r-reflexive for some r ∈ N) if and only if each ε-net for X has an accumulation
point (resp., contains a non-trivial convergent sequence) in the weak topology of X. We
show that the quasireflexive James space J is r-reflexive for no r ∈ N. We do not know if
each ∞-reflexive Banach space is reflexive, but we prove that each separable∞-reflexive
Banach space X has Asplund dual. As a by-product of the proof we obtain a covering
characterization of the Asplund property of Banach spaces.

Keywords: reflexive Banach space, r-reflexive Banach space, Asplund Banach space

Classification: 46A25, 46B10, 46B22

1. Introduction

In this paper we address the following problem posed by the third author in
2000 at the Winter School in Křǐstanovice (Czech Republic):

Question 1. Is a separable Banach space X reflexive if each net in X has an
accumulation point in the weak topology of X?

By a net in a Banach space (X, ‖ · ‖) we understand an ε-net N ⊂ X for some
ε > 0. A subset N ⊂ X is called an ε-net for a subset B ⊂ X if for every point
x ∈ B there is a point y ∈ N with ‖x − y‖ < ε.
It turns out that Question 1 is equivalent to an even more intriguing question

concerning ∞-reflexive Banach spaces.
Definition 1. A Banach space (X, ‖ · ‖) is called r-reflexive where r ∈ [0,+∞]
if for every cover U of X by weakly open sets there is a finite subfamily V ⊂ U
that covers the open unit ball x+BX = {y ∈ X : ‖x− y‖ < 1} centered at some
point x ∈ X with ‖x‖ ≤ r.

Observe that a Banach space X is reflexive if and only if it is 0-reflexive. We
define a Banach space X to be ω-reflexive if it is r-reflexive for some r ∈ [0,∞).
It turns out that for infinite-dimensional separable Banach spaces the property

appearing in Question 1 is equivalent to the ∞-reflexivity.
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Theorem 1. An infinite-dimensional separable Banach space X is ∞-reflexive
(resp. ω-reflexive) if and only if every net in X has an accumulation point (resp.
contains a non-trivial convergent sequence) in the weak topology of X .

This theorem is not true for non-separable Banach spaces: for any uncountable
set Γ the Banach space c0(Γ) is weakly Lindelöf [Fab, §7.1]. Consequently, each
net for c0(Γ), being uncountable, has an accumulation point in the weak topology.
On the other hand, the space c0(Γ) is not ∞-reflexive by Proposition 2 below.
This example also shows that in the realm of non-separable Banach spaces the
answer to Question 1 is negative.
Theorem 1 allows us to reformulate and extend Question 1 as follows:

Question 2. Is a (separable) Banach space X reflexive if it is ∞-reflexive? ω-
reflexive? 1-reflexive?

In light of the last part of this question, it is interesting to mention that a
Banach space X is reflexive if and only if X is r-reflexive for some r < 1. This
equivalence (observed by the referee) follows from the fact that each cover of a
1-ball x+BX centered at a point x ∈ X with ‖x‖ ≤ r < 1 covers also the closed

ball of radius 12 (1− r) centered at the origin.
Trying to answer Questions 1 and 2, it is natural to look at the quasireflexive

James space J (having codimension 1 in its second dual). We recall that a Banach
space X is quasireflexive if it has finite codimension in its second dual space X∗∗.

Theorem 2. The quasireflexive James space J is not ω-reflexive.

However we do not know if the James space is ∞-reflexive.
Question 3. Is each quasireflexive Banach space∞-reflexive? Is the James space
∞-reflexive?
Our principal result on separable ∞-reflexive Banach spaces asserts that any

such a space has Asplund dual. We recall that a Banach space X is Asplund if
each separable subspace Y of X has separable dual Y ∗.

Theorem 3. Each separable∞-reflexive Banach space X has Asplund dual X∗.

Since the Banach space l1 is not Asplund, Theorem 3 implies the result of
[Ba] (asserting that the dual space X∗ of a separable ∞-reflexive Banach space
X contains no copy of l1). Theorem 3 has also another corollary related to the
Fréchet-Urysohn property of the weak topology on bounded subsets of an ∞-
reflexive Banach space.
Following [En, §1.6], we say that a topological spaceX is Fréchet-Urysohn if for

each accumulation point x ∈ X of a subset A ⊂ X some sequence {an}∞n=1 ⊂ A
converges to x.
Since Eberlein compact spaces are Fréchet-Urysohn, the weak topology of a

reflexive spaceX is Fréchet-Urysohn on bounded subsets ofX . A similar property
holds for separable ∞-reflexive Banach spaces.
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Corollary 1. If X is a separable ∞-reflexive Banach space, then the unit ball
of X endowed with the weak topology is a Fréchet-Urysohn space.

Proof: First we show that the space X contains no copy of the Banach space l1.
In the opposite case the non-Asplund space l∞ = l∗1 would be a quotient of
the Asplund space X∗ which is not possible (because the Asplund property is
preserved by quotients). Since X contains no copy of l1, it is legal to apply the
Odell-Rosenthal Theorem [OR] (see also [Dis, p. 215]) to conclude that the second
dual unit ball B̄∗∗ endowed with the weak∗ topology is Rosenthal compact; more
precisely, B̄∗∗ is a compact subspace of the space B1(B

∗) ⊂ R
B̄∗

of functions of
the first Baire class on the dual unit ball B̄∗. Finally, we apply the Bourgain-
Fremlin-Talagrand Theorem [BFT] establishing the Fréchet-Urysohn property of
separable Rosenthal compacta to conclude that the unit ball B̄∗∗ ⊃ B̄ is Fréchet-
Urysohn. �

The proof of Theorem 3 relies on a characterization of the Asplund property
of a dual Banach space in terms of so-called weak∗ covering properties.

Definition 2. A Banach spaceX is said to satisfy the τ-covering property, where
τ is a weaker linear topology on X , if for every sequence (Ui)

∞
i=1 of τ -open sets

in X whose intersection
⋂∞

i=1 Ui is a norm-neighborhood of the origin in X there
are points x1, . . . , xn ∈ X such that the union

⋃n
i=1(xi + Ui) contains the open

unit ball BX centered at the origin of X .

If τ is the weak or weak∗ topology, then we call the weak or weak∗ covering
properties , briefly, WCP and W∗CP.

Theorem 3 can be derived from the following theorem that can have an inde-
pendent value.

Theorem 4. (1) Each separable ∞-reflexive Banach space has the weak cover-
ing property.

(2) If a Banach space X has the weak covering property, then the second dual
space X∗∗ has the weak∗ covering property.

(3) A Banach space X is Asplund if and only if the dual space X∗ has the
weak∗ covering property.

The obtained results fit into the following diagram connecting various reflexi-
vity-like properties and holding for any separable Banach space X :

X is 0-reflexive - X is ω-reflexive - X is ∞-reflexive - X has WCP

6
? ?

X is reflexive - X is quasireflexive

6

- X
∗ is Asplund -� X

∗∗ has W∗CP
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Before passing to proofs of Theorems 1–4 we discuss some stability properties
of r-reflexive spaces and ask some related questions.

Proposition 1. Let Z be a Banach subspace of a Banach space X .

(1) If X is r-reflexive for some r ∈ [0,+∞], then the quotient space X/Z is
r-reflexive too.

(2) If X is r-reflexive for some r ∈ {0, ω,∞}, then each Banach space Y
isomorphic to X is r-reflexive.

(3) If Z is reflexive and X/Z is r-reflexive for some r ∈ [0,+∞), then X is
r-reflexive too.

Question 4. Is a subspace of a (separable) r-reflexive Banach space r-reflexive
(at least for r ∈ {ω,∞})?
Question 5. Is the second dual X∗∗ of an r-reflexive Banach spaceX r-reflexive?
Is a Banach space X r-reflexive if its second dual X∗∗ if r-reflexive for some
r ∈ [0,+∞]?
Since the r-reflexivity is an isomorphic property for r ∈ {0, ω,∞}, we may also

ask:

Question 6. Is the r-reflexivity an isomorphic property for arbitrary r ∈
(0,+∞)?
As we already know, Theorem 1 is not true for non-separable Banach spaces.

What about Theorem 3?

Question 7. Has each ∞-reflexive Banach space Asplund dual?
We can give a partial answer for Banach spaces with ℵ0-monolithic dual space.

We recall that a topological space X is monolithic (resp. ℵ0-monolithic) if each
(separable) subspace Y of X has network weight nw(Y ) equal to the density
dens(Y ) of Y . It is easy to see that each Banach space is monolithic in norm and
weak topologies.
We shall say that a Banach space X has (ℵ0-)monolithic dual space, if the

dual space X∗ is (ℵ0-)monolithic with respect to the weak∗ topology. It can
be shown that a Banach space X has (ℵ0-)monolithic dual space if and only
if for any (separable) subset Y ⊂ X∗ the annulator Y ⊤ = {x ∈ X : ∀y∗ ∈
Y y∗(x) = 0} satisfies dens(X/Y ⊤) = dens(Y ) in X . The latter property was
introduced in [BPZ] as the property (1). Since Corson compacta are monolithic,
each weakly Lindelöf determined Banach space (=Banach space with Corson dual
ball) has monolithic dual. In particular, for each set Γ the Banach space c0(Γ)
has monolithic dual.

Proposition 2. Each ∞-reflexive Banach space with ℵ0-monolithic dual has
Asplund dual.
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Proof: Assume that X is an∞-reflexive Banach space with ℵ0-monolithic dual.
To show that X∗ is Asplund, take any separable subspace Y ⊂ X∗ and consider
its annulator Y ⊤ = {x ∈ X : ∀y∗ ∈ Y y∗(x) = 0} in X . The Hahn-Banach

Theorem implies that Y is weak∗ dense in (X/Y ⊤)∗ identified with the subspace
(Y ⊤)⊥ ⊂ X∗ of functionals that annulate Y ⊤. Since X has ℵ0-monolithic dual,
the space (X/Y ⊤)∗, being separable, has countable network weight in the weak∗

topology. Consequently, the unit ball of (X/Y ⊤)∗ in the weak∗ topology has
countable network weight and is metrizable. This is equivalent to the separability
of X/Y ⊤. Being a quotient of the ∞-reflexive space X , the space X/Y ⊤ is ∞-
reflexive. Applying Theorem 3, to the separable ∞-reflexive space X/Y ⊤, we
conclude that the dual space (X/Y ⊤)∗ is Asplund and consequently, its separable
subspace Y has separable dual Y ∗. �

Also we do not know if the separability assumption is essential in Corollary 1.

Question 8. Let X be an ∞-reflexive Banach space (with ℵ0-monolithic dual).
Is the unit ball of X endowed with the weak topology a Fréchet-Urysohn space?

Finally, we ask:

Question 9. Let X be a separable ∞-reflexive Banach space. Is the dual space
X∗ separable? Equivalently, is the second dual X∗∗ separable?

Now we present the proofs of the results announced in the introduction.

2. Proof of Theorem 4

The first item of Theorem 4 is established in

Lemma 1. A separable∞-reflexive Banach space X has the weak covering pro-
perty.

Proof: To show that X has the weak covering property, take any sequence
(Un)n∈ω of weakly open sets inX such that

⋂

n∈ω Un has non-empty interior inX .
Let {xn : n ∈ ω} be a countable dense set in X . It follows that {xn+Un : n ∈ ω}
is a cover of X by weakly open sets. The ∞-reflexivity of X yields a point
x ∈ X such that the open unit ball x+ BX centered at x lies in the finite union
⋃m

n=0 xn + Un for some m ∈ ω. Then BX ⊂ ⋃m
n=0(xn − x + Un) witnessing the

weak covering property of X . �

The second item of Theorem 4 is established in

Lemma 2. If a Banach space has the weak covering property, then the second

dual space X∗∗ has the weak∗ covering property.

Proof: Suppose that (Vi)
∞
i=1 is a sequence of weak

∗ open sets in X∗∗ whose
intersection

⋂∞
i=1 Vi contains a closed ε-ball εB̄∗∗. To show that X∗∗ has the
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weak∗ covering property, it suffices to find points x1, . . . , xn ∈ X∗∗ such that
⋃n

i=1(xi + Vi) ⊃ B̄∗∗.
By the compactness of εB̄∗∗ and the regularity of the weak∗ topology, for every

i ∈ N, there is a weak∗ open subset Wi ⊂ X∗∗ such that εB̄∗∗ ⊂ Wi ⊂ Wi ⊂ Vi

where the closure is taken in the weak∗ topology of X∗∗.
Consider the sequence (Ui)

∞
i=1, Ui = Wi

⋂

X , of weakly open sets in X . Note

that
⋂∞

i=1 Ui = (
⋂∞

i=1Wi)
⋂

X ⊃ εB̄∗∗ ⋂

X = εB̄. By definition of the weak
covering property of X , there exist points x1, . . . , xn ∈ X such that the union
⋃n

i=1(xi + Ui) contains the open unit ball B centered at the origin. According

to Goldstine Theorem [HHZ, p. 46], B = B̄∗∗. Thus we obtain B̄∗∗ = B ⊂
⋃n

i=1(xi + Ui) ⊂
⋃n

i=1(xi +Wi) ⊂
⋃n

i=1(xi + Vi), and hence X∗∗ has the weak∗

covering property. �

For the proof of the third item of Theorem 4 we need an auxiliary

Lemma 3. Let K be a weak∗ compact subset of a weak∗ open set U of a dual
Banach space X∗. Then there is a weak∗ open set V in X∗ such that K ⊂ V ⊂ U
and V = V + L for some weak∗ closed linear subspace L of finite codimension
in X∗.

Proof: By definition, the weak∗ topology on X∗ has a base consisting of sets
W such that W = W + F⊥ for some finite subset F ⊂ X . Here, as expected,
F⊥ = {x∗ ∈ X∗ : ∀x ∈ F x∗(x) = 0}. Consequently, for every x ∈ K we may find

a weak∗ open subset O(x) ⊂ X∗ such that x ∈ O(x) ⊂ U and O(x) = O(x) +F⊥
x

for some finite subset Fx ⊂ X . Using the weak∗ compactness of K, choose a finite
subcover {O(x1), . . . , O(xn)} of the cover {O(x) : x ∈ K} of K. Then the weak∗
open set V =

⋃n
i=1O(xi) has the properties K ⊂ V ⊂ U and V = V +F⊥, where

F =
⋃n

i=1 Fxi . �

The following characterization establishes the third item of Theorem 4.

Proposition 3. For a Banach space X , the following conditions are equivalent:

(1) X is Asplund;
(2) X∗ has W∗CP;
(3) for each sequence (Ui)

∞
i=1 of weak

∗ open subsets of X∗ whose intersection
⋂∞

i=1 Ui is a norm-neighborhood of the origin there is a sequence of points

{a∗i }∞i=1 ⊂ X∗ such that X∗ =
⋃∞

i=1(a
∗
i + Ui).

Proof: (1) ⇒ (3) Fix a sequence (Ui)
∞
i=1 of weak

∗ open sets in X∗ whose
intersection

⋂∞
i=1 Ui contains the closed ε-ball εB̄∗ centered at the origin.

By Lemma 3, for every i ≥ 1 there exists a weak∗ open set Vi ⊂ X∗ such
that εB̄∗ ⊂ Vi ⊂ Ui and Vi = Vi + F⊥

i for some finite subset Fi ⊂ X . Let Y
be the closed linear hull of the set F =

⋃∞
i=1 Fi in X . As X is Asplund, Y ∗ is

separable. Since Y ∗ is isomorphic to X∗/Y ⊥ = X∗/F⊥, the latter quotient space
is separable. Since the quotient map π : X∗ → X∗/F⊥ is open, the set π(εB∗)
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has non-empty interior in X∗/F⊥. The separability of X∗/F⊥ yields a countable
subset C = {ci : i ≥ 1} of X∗/F⊥ such that C + π(εB∗) = X∗/F⊥. For every
i ≥ 1 find a point a∗i ∈ X∗ with π(a∗i ) = ci. Then

X∗ =
∞
⋃

i=1

(

a∗i + π−1(π(εB∗))
)

=

∞
⋃

i=1

(a∗i + εB∗ + F⊥) ⊂
∞
⋃

i=1

(a∗i + (Vi + F⊥
i )) ⊂

∞
⋃

i=1

(a∗i + Ui).

The implication (3)⇒ (2) trivially follows from the weak∗ compactness of the
unit ball B̄∗ ⊂ X∗.
(2)⇒ (1) Assume that X is not Asplund. Then by Theorem 5.2.3 of [Fab], the

dual Banach space X∗ contains a bounded subset D such that every non-empty
relatively weak∗ open subset U of D has norm diameter > 8ε for some ε > 0.
Without loss of generality, 0 ∈ D and ‖x∗‖ < 1 for every x∗ ∈ D.
Let 2 = {0, 1} and 2<ω =

⋃

n∈ω 2
n be the set of all finite binary sequences.

For each sequence s = (s0, . . . , sn−1) ∈ 2<ω, by |s| = n we denote its length and
by s|k = (s0, . . . , sk−1) the initial segment of s of length k ≤ |s|. For i ∈ {0, 1}
let ŝ i = (s0, . . . , sn−1, i) be the concatenation of s and i.

The set 2<ω is a (binary) tree with respect to the partial order: s ≤ t if s = t|n
for some n ≤ |t|. The empty sequence is the smallest element of 2<ω.
Let x∗∅ = 0 and x∅ = 0. By induction on the tree 2

<ω, we shall construct

sequences (x∗t )t∈2<ω ⊂ D and (xt)t∈2<ω ⊂ X such that for every t ∈ 2<ω the
following conditions are satisfied:

(1) x∗t̂ 0 = x∗t and xt̂ 0 = xt;

(2) |x∗t̂ 1(xs)− x∗t (xs)| < 2−|t|ε for all s ∈ 2<ω with |s| ≤ |t|;
(3) ‖xt̂ 1‖ = 1;
(4) x∗t̂ 1(xt̂ 1)− x∗t (xt̂ 1) ≥ 4ε.
Suppose for some t ∈ 2<ω the functionals x∗s and points xs have been con-

structed for all s ∈ 2<ω with |s| < |t|. If t = τ 0̂ for some τ ∈ 2<ω, then we put
x∗t = x∗τ and xt = xτ .

Now consider the other case: t = τ 1̂ for some τ ∈ 2<ω. Consider the weak∗

open set

W = {x∗ ∈ D : ∀s ∈ 2<ω |s| < |t| ⇒ |x∗(xs)− x∗τ (xs)| < ε}

in D. SinceW 6= ∅, we have diamW > 8ε. Consequently there exists a functional
x∗t ∈ W such that ‖x∗t − x∗τ‖ > 4ε. Choose a point xt ∈ X with ‖xt‖ = 1 and
(x∗t − x∗τ )(xt) ≥ 4ε. This completes the inductive construction.
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For every i ∈ N let

Ui = {x∗ ∈ X∗ : |x∗(xs)| < ε for every s ∈ 2<ω with |s| ≤ i}.

Evidently, Ui are weak
∗ open sets in X∗ and their intersection

⋂∞
i=1 Ui contains

the open ε-ball εB∗. To see that W∗CP fails for the space X∗ it suffices to check
that B∗ 6⊂ ⋃n

i=1 a∗i + Ui for every n ∈ N and points a∗1, . . . , a
∗
n ∈ X∗. This will

follow as soon as we find t ∈ 2n with x∗t /∈ ⋃n
j=1(a

∗
j + Uj).

Since |(x∗1 − x∗0)(x1)| ≥ 4ε, there is t0 ∈ {0, 1} with |x∗t0(x1) − a∗1(x1)| ≥ 2ε.
By the same reason, the inequality (x(t0,1)−x(t0,0))(x(t0,1)) ≥ 4ε yields a number
t1 ∈ {0, 1} such that |(x∗(t0,t1) − a∗2)(x(t0 ,1))| ≥ 2ε. Proceeding by finite induction
and using (4), we may construct a sequence t = (t0, t1, . . . , tn−1) ∈ 2n such that
for every k ≤ n

(5) |(x∗t|k − a∗k)(xsk
)| ≥ 2ε for some sequence sk ∈ 2k.

Let us show that x∗t /∈ ⋃n
j=1(a

∗
j + Uj). Assuming the converse, we would find

a number p ≤ n with x∗t − a∗p ∈ Up which implies

(6) |(x∗t − a∗p)(xsp)| < ε.

It follows from (2) that

|(x∗t − x∗t|p)(xsp)| ≤
n−1
∑

k=p

|(x∗t|k+1 − x∗t|k)(xsp)| ≤
n−1
∑

k=p

2−kε < 2−p+1ε ≤ ε

which together with (6) yields the inequality |(x∗t|p − a∗p)(xsp)| < 2ε that contra-

dicts (5). �

3. Proof of Theorem 1

The following two lemmas yield the “∞-reflexive” part of Theorem 1.
Lemma 4. Each net in an infinite-dimensional ∞-reflexive Banach space has an
accumulation point in the weak topology.

Proof: Assume that some ε-net N in X has no accumulating points in the weak
topology. Replacing N by a suitable homothetic copy, we can assume that ε = 18 .
Since N has no accumulation points in the weak topology, there is a cover U of
X by weakly open subsets such that each set U ∈ U has at most one common
point with the net N . Since X is ∞-reflexive, there is a finite subfamily V ⊂ U
whose union

⋃V contains some ball B of radius 1. Then B∩N ⊂ ⋃

V ∈V V ∩N is

finite. One can easily check that B ∩N is a 14 -net for B, which implies that X is
finite-dimensional according to the classical Riesz Lemma on an almost orthogonal
element, see [HHZ, Lemma 15]. �
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Lemma 5. A separable Banach space X is ∞-reflexive if each net in X has an
accumulation point in the weak topology.

Proof: Assuming that X is not ∞-reflexive, find a cover U of X by weakly
open sets such that for every finite subfamily V ⊂ U the union ⋃V contains no
ball of radius 1. Using the separability of X , we can assume that the cover U is
countable and hence can be enumerated as U = {Un : n ∈ ω}. Let {an : n ∈ ω} be
a countable dense set in X . For every n ∈ ω we can find a point xn ∈ X \⋃

i<n Ui

with ‖xn − an‖ ≤ 1. Such a point xn exists by the choice of the cover U . Then
{xn : n ∈ ω} is a 2-net in X having no accumulation point in the weak topology.

�

The “ω-reflexive” part of Theorem 1 is established in the following more gen-
eral characterization of the ω-reflexivity. However we shall need a more general
meaning for an ε-net: a subset N of a Banach space (X, ‖ · ‖) is called an ε-net
for a subset B ⊂ X if for every x ∈ B there is y ∈ N with ‖x − y‖ < ε.

Lemma 6. For a separable infinite-dimensional Banach space X the following
conditions are equivalent:

(1) X is ω-reflexive;
(2) each net for X contains a non-trivial sequence convergent in the weak

topology of X ;
(3) there are a bounded set D ⊂ X and ε > 0 such that each ε-net N ⊂ X
for D has an accumulation point in the weak topology of X .

Proof: We shall prove the equivalences (1)⇔ (3)⇔ (2).
(1) ⇒ (3). Assume that X is ω-reflexive and find r ∈ N such that X is r-

reflexive. We claim that each 14 -net for the ball (r+1)B = {x ∈ X : ‖x‖ < r+1}
has an accumulating point in the weak topology of X . Assuming that it is not
so, find a 14 -net N ⊂ X for (r + 1)B having no accumulation point in the weak
topology. This allows us to construct a cover U of X by weakly open sets having
at most one-point intersection with the net N . The r-reflexivity of X yields a
finite subfamily V ⊂ U covering the 1-ball x+B = {y ∈ X : ‖x−y‖ < 1} centered
at a point x ∈ X with ‖x‖ ≤ r. Then the intersection (x+B)∩N ⊂ ⋃

V ∈V V ∩N
is finite and thus lies in a finite-dimensional subspace F ⊂ X . The Riesz almost
orthogonality Lemma 15 in [HHZ] allows us to find a point y ∈ Bx such that

‖y − x‖ = 12 but dist(y, F ) > 1
4 . Using the fact that N is a 14 -net for (r + 1)B ⊃

x+B, find a point z ∈ N with ‖z − y‖ < 1
4 . Then z ∈ (x +B) ∩ N \ F which is

not possible because (x+B) ∩ N ⊂ F .

(3) ⇒ (1) Assume that for some bounded set D ⊂ X and some ε > 0 each
ε-net N ⊂ X for D has an accumulation point in the weak topology. Replacing D
by its homothetic copy, we can assume that ε = 1. Let r = sup{‖x‖ : x ∈ D}. We
claim that the space X is r-reflexive. Otherwise we can find an open cover U of
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X by weakly open subsets such that no finite subfamily of U covers the open unit
ball centered at a point x ∈ X with ‖x‖ ≤ r. Use the separability of X to find a
countable subcover {Un : n ∈ ω} ⊂ U of X and let {xn : n ∈ ω} be a countable
dense set in the r-ball rB = {x ∈ X : ‖x‖ < r}. For every n ∈ ω select a point
yn ∈ X \⋃

k<n Uk with ‖xn − yn‖ < 1 (such a point yn exists by the choice of the
cover U). Then N = {yn : n ∈ ω} is a 2-net for D without accumulation points
in the weak topology of X . This is a contradiction.

(3)⇒ (2) Assume that for some bounded set D ⊂ X and some ε > 0 each ε-net
N ⊂ X for D has an accumulation point in the weak topology. Then given any
ε-net N in X we can find a bounded subset A ⊂ N having an accumulation point
a ∈ X in the weak topology of X . The implication (3) ⇒ (1) ensures that X is
ω-reflexive and hence ∞-reflexive. By Corollary 1, the bounded subset A ∪ {a},
being Fréchet-Urysohn, contains a sequence {an}∞n=1 ⊂ A \ {a} that converges
to a.

(2) ⇒ (3). Assume conversely that for each bounded set D and every ε > 0
there is an ε-net N ⊂ X for D having no accumulation point in the weak topology
of X . In particular, for every r ∈ ω, there is an 1-net Nr for the r-ball Br =
{x ∈ X : ‖x‖ ≤ r} having no accumulating point in the weak topology of X .
Now consider the union N =

⋃

r∈ω Nr \ Br−2 and note that it is an 1-net for
X . Indeed, given any x ∈ X find r ∈ ω with r − 1 < ‖x‖ ≤ r and y ∈ Nr

with ‖x − y‖ < 1. Then ‖y‖ > ‖x‖ − 1 > r − 2 and hence y ∈ Nr \ Br−2 ⊂ N .
Assuming that N contains a non-trivial weakly convergent sequence S ⊂ N , find
R ∈ ω with S ⊂ BR−2 and observe that S ⊂ N ∩ BR−2 ⊂

⋃

r≤R Nr. Then for
some r ≤ R the intersection S ∩ Nr is infinite and hence Nr ⊃ S ∩ Nr has an
accumulation point in the weak topology, which contradicts the choice of Nr. �

4. Proof of Proposition 1

Let Z be a subspace of a Banach space X and let π : X → X/Z denote the
quotient operator.

1. Assuming that X is r-reflexive for some r ∈ [0,+∞], we shall prove that the
quotient space X/Z is r-reflexive too. Given a cover U of X/Z by weakly open
sets, consider the cover π−1(U) = {π−1(U) : U ∈ U} of X . By the r-reflexivity
of X there is a finite subfamily V ⊂ U whose preimage π−1(V) covers some ball
x + BX = {y ∈ X : ‖x − y‖ < 1} centered at a point x ∈ X with ‖x‖ ≤ r.
Then the family V covers the image π(x + BX ) which coincides with the ball
π(x) + BX/Z = {z ∈ X/Z : ‖z − π(x)‖ < 1} according to the definition of the
quotient norm on X/Z. Taking into account that ‖π(x)‖ ≤ ‖x‖ ≤ r, we conclude
that the space X/Z is r-reflexive.

2. Assume that X is ω-reflexive and a Banach space Y is isomorphic to X . Let
T : X → Y be an isomorphism between X and Y and M = max{‖T ‖, ‖T−1‖}.
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Let BX , BY denote the open unit balls centered at the origins of the spaces X, Y ,
respectively. It follows that 1M BY ⊂ T (BX) ⊂ M · BY .

The space X , being ω-reflexive, is r-reflexive for some r. We claim that Y is
M2r-reflexive. Indeed, given a cover U of Y by weakly open sets, consider the
covers W = T−1(U) = {T−1(U) : U ∈ U} and 1

M W = { 1M · W : W ∈ W} of
X . The r-reflexivity of X implies the existence of a finite subfamily V ⊂ U such
that

⋃

V ∈V
1
M T−1(V ) covers the unit ball x+BX centered at some point x ∈ X

with ‖x‖ ≤ r. Letting y = M · T (x), observe that ‖y‖ = M · T (x) ≤ M2r and

y + BY ⊂ T (Mx+MBX) =M · T (x+BX) ⊂ M · T
(
⋃

V ∈V
1
M T−1(V )) =

⋃V ,
witnessing the M2r-reflexivity of the space Y .

By analogy we can prove that the ∞-reflexivity of X implies the ∞-reflexivity
of Y . Finally the 0-reflexivity coincides with the usual reflexivity and also is
preserved by isomorphisms.

3. Assume that the space Z is reflexive and X/Z is r-reflexive for some r ∈
[0,∞). Since the short sequence 0 → Z → X → X/Z → 0 is exact, so is the
sequence 0 → Z∗∗ → X∗∗ → (X/Z)∗∗ → 0, see [CG, 2.2.d]. Consequently, the
second dual π∗∗ : X∗∗ → (X/Z)∗∗ of the quotient operator π : X → X/Z has
Z∗∗ = Z as the kernel.

We claim that for each bounded weakly closed subset F ⊂ X the image π(F )
is weakly closed in X/Z. It follows that the closure F̄ of F in the weak∗-topology
of X∗∗ is compact and so is its image π∗∗(F̄ ) ⊂ (X/Z)∗∗. We claim that π(F ) =
π∗∗(F̄ )∩π(X) which will ensure that π(F ) is closed in X/Z. Indeed, the inclusion
π(F ) = π∗∗(F̄ ∩ X) ⊂ π∗∗(F̄ ) ∩ π(X) is trivial. To prove the reverse inclusion,
take any point y∗∗ ∈ π∗∗(F̄ ) ∩ π(X) and find two points x∗∗ ∈ F̄ and x ∈ X
with π∗∗(x∗∗) = π(x) = y∗∗. It follows that x∗∗ − x ∈ Ker(π∗∗) = Z∗∗ = Z
and hence x∗∗ ∈ x + Z ⊂ X . Now we see that x∗∗ ∈ F̄ ∩ X = F and hence
y∗∗ = π∗∗(x∗∗) ∈ π∗∗(F ) = π(F ).

Since the quotient homomorphism π maps bounded weakly closed subsets of
X to bounded weakly closed sets of X/Z, the image π(B̄X ) of the closed unit ball
centered at the origin of X coincides with the closed unit ball B̄X/Z centered at

the origin of X/Z.

Now we are ready to show that the spaceX is r-reflexive. Take any weakly open
cover U ofX . For every point y ∈ (r+1)B̄X/Z the set (r+1)B̄X∩π−1(y) is weakly
compact and hence can be covered by a finite subfamily Uy ⊂ U . The set Fy =
(r+1)B̄X \⋃Uy is bounded and weakly closed in X . Consequently, its projection
π(Fy) is weakly closed in X/Z while the complement Vy = (r + 1)B̄X/Z \ π(Fy)

is a weakly open neighborhood of y in (r + 1)B̄X/Z . Since the space X/Z is r-

reflexive the cover {Vy : y ∈ (r+1)BX/Z} of the closed ball (r+1)BX/Z contains a

finite subcollection {Vy1 , . . . , Vyn} whose union contains the open 1-ball y+BX/Z

centered at some point y ∈ X/Z with ‖y‖ ≤ r. Take any point x ∈ X with
‖x‖ = ‖y‖ and π(x) = y and observe that W =

⋃n
i=1 Uyi is a finite cover of the
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open 1-ball x+BX centered at x. This witnesses that the space X is r-reflexive.

5. Proof of Theorem 2

In this section we prove that the James space J fails to be ω-reflexive. We
recall that the James space J is the Banach space consisting of all real sequences
(xn)n∈ω that tend to zero and have norm

‖(xi)‖ = sup
n0<···<nk

√

√

√

√

k
∑

i=1

(xni − xni−1)
2 < ∞.

Let J0 denote the set of all eventually zero sequences.

First we prove

Lemma 7. For every M > 0 there is ε > 0 such that for every x ∈ J0 with
‖x‖ ≤ M there is y = (yn) ∈ J such that ‖x − y‖ < 1 and |yn − 1| ≥ ε for all
n ∈ ω.

Proof: GivenM > 0 find an integerm ≥ 2 with 20M√
2m+1

< 1
2 and 4M

2(2m+1) >

1, and let ε = 1
4m+2 .

Take any point x = (xn) ∈ J0 with ‖x‖ ≤ M . By induction, construct an
increasing finite number sequence (ki)

r
i=0 such that for kr+1 =∞ we get

• k0 = 0;
• |xp − xq| ≤ ε for all numbers p, q ∈ [ki, ki+1) and all 0 ≤ i ≤ r;
• for every 0 < i ≤ r there is a number pi ∈ [ki−1, ki) with |xki

− xpi | > ε.

It follows that

M ≥ ‖x‖ ≥
√

∑

0<i≤r

|xki
− xpi |2 >

√
rε2

and hence r < M2

ε2
. Let A = 2ε · Z be the arithmetic progression with step 2ε

and let f : R → A be a function assigning to each real number t ∈ R a number
f(t) ∈ A with |t − f(t)| ≤ ε. Given a number a ∈ A, let

ra =
∣

∣

{

i ≤ r : f(xki
) ∈ {a − 2ε, a, a+ 2ε}

}∣

∣.

Since |A∩ [12 , 32 ]| = 1
2ε = 2m+1, there is a point a ∈ A∩ [12 , 32 ] with ra ≤ 3r

2m+1 ≤
3M2

(2m+1)ε2
= 12M2(2m+ 1). Taking into account that 1 < 4M2(2m+ 1), we get

ra + 1 ≤ 16M2(2m+ 1).
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Consider the sequence z = (zn)n∈ω such that zn = 0 for n ∈ [kr,∞) and for
every i < r and n ∈ [ki, ki+1) we have

zn =











0 if f(xki
) /∈ {a − 2ε, a, a+ 2ε};

−5ε if f(xki
) = a − 2ε;

5ε if f(xki
) ∈ {a, a+ 2ε}.

The definition of the norm on the James space J implies that

‖z‖ ≤
√

(ra + 1)(10ε)2 ≤
√

16M2(2m+ 1)100ε2

=

√

1600M2

4(2m+ 1)
=

20M√
2m+ 1

<
1

2
.

Let e = (en)n∈ω be the element of J such that en = 1 for all i < kr and en = 0
for all n ≥ kr. It is clear that ‖e‖ = 1.
Finally, consider the point y = x+ z + (1− a) · e. Observe that

‖y − x‖ = ‖z + (1− a) · e‖ ≤ ‖z‖+ |1− a| · ‖e‖ <
1

2
+
1

2
= 1.

Now, we show that |yn − 1| ≥ ε for all n ∈ ω. Indeed, if n ≥ kr, then yn = xn

and |yn − 1| ≥ 1− |xn| ≥ 1− ε ≥ ε.
Next, assume that n ∈ [ki, ki+1) for some i < r. If f(xki

) /∈ {a− 2ε, a, a+2ε},
then

|yn − 1| = |xn + zn + (1− a)− 1| = |xn − a| = |xn − f(xki
) + f(xki

)− a|
≥ |f(xki

)− a| − |xki
− f(xki

)| − |xn − xki
| ≥ 4ε − ε − ε ≥ ε.

If f(xki
) = a − 2ε, then

|yn − 1| = |xn + zn + (1 − a)− 1| = |xn − xki
+ xki

+ f(xki
)− f(xki

) + zn − a|
≥ |zn + f(xki

)− a| − |xn − xki
| − |f(xki

)− xki
| ≥ 3ε − ε − ε = ε.

The case f(xki
) ∈ {a, a+ 2ε} can be considered by analogy. �

The following lemma combined with Lemma 6 implies that the James space is
not ω-reflexive.

Lemma 8. For every R ∈ N the ball BR = {x ∈ J : ‖x‖ ≤ R} possesses a 2-net
in J which is closed and discrete in the weak topology of J .

Proof: Using Lemma 7, find ε > 0 such that the set

Aε = {(yn) ∈ J : |yn − 1| ≥ ε for all n ∈ ω}
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intersects each open ball of unit radius centered at a point x ∈ J0 with ‖x‖ ≤ R.
Fix a countable dense set D = {xn : n ∈ ω} in Aε ∩ BR+1. It follows that D is a
1-net for the ball BR. For every n ∈ ω consider the sequence ~en = (1, . . . , 1, 0, . . . )
with first n units. Since ‖en‖ = 1 for all n ∈ ω, the set D′ = {xn − en : n ∈ ω}
is a 2-net for the ball BR in J . We claim that D′ is closed and discrete in the
weak topology of J . Assuming the converse and using the metrizability of the
weak topology of J on bounded subsets, find an increasing number sequence (nk)
such that the sequence (xnk

− enk
)k∈ω weakly converges to some point z ∈ J .

The weak convergence implies the coordinate convergence. Now it is convenient
to think of the elements of J as functions defined on ω. It follows that for every
i ∈ ω, |z(i)| = limk→∞ |xnk

(i)− enk
(i)| = limk→∞ |xnk

(i)− 1| ≥ ε, which is not
possible because limi→∞ z(i) = 0. �
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