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More NP-Complete and 
NP-hard Problems 

Traveling Salesperson Path 
Subset Sum 

Partition 
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NP-completeness Proofs 

1.  The first part of an NP-completeness 
proof is showing the problem is in NP. 

2.  The second part is giving a reduction 
from a known NP-complete problem. 

•  Sometimes, we can only show a problem 
NP-hard  = “if the problem is in P, then 
P = NP,” but the problem may not be in 
NP. 
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Optimization Problems 
•  NP-complete problems are always 

yes/no questions. 
•  In practice, we tend to want to solve 

optimization problems, where our 
task is to minimize (or maximize) a 
function, f(x), of the input, x. 

•  Optimization problems, strictly 
speaking, can’t be NP-complete (only 
NP-hard). 
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Turning an Optimization Problem 
into a Decision Problem 

•  Optimization Problem: Given an 
input, x, find the smallest (or, largest) 
optimization value, f(x), for x. 

•  Corresponding Decision Problem: 
Given an input, x, and integer k, is 
there an optimization value, f(x), for x, 
that is at most (or, at least) k? 
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Optimization Problems – (2) 

•  Optimization problems are never, 
strictly speaking, in NP. 
•  They are not yes/no. 

•  But there is always a simple polynomial-
time reduction from the yes/no version 
to the optimization version. (How?) 



Example: TSP 

•  Traveling Salesperson Problem: 
Given an undirected complete graph, G, 
with integer weights on its edges, find 
the smallest-weight path from s to t in 
G that visits each other vertex in G. 

•  Decision version: Given G and an 
integer, K, is there a path from s to t of 
total weight at most K that visits each 
vertex in G? 
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TSP is in NP 

•  Guess a path, P, from s to t. 
•  Check whether it visits each vertex in G. 
•  Sum up the weights of the edges in P 

and accept if the total weight is at most 
K. 
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Roadmap to show TSP is NP-hard 

1.  Provide a polytime reduction from 
Directed Hamiltonian Path (which we 
already know is NP-complete) to 
Undirected Hamiltonian Path  

2.  Provide a polytime reduction from 
Undirected Hamiltonian Path to TSP 
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From Directed Hamiltonian Path 

•  DHP: Given a directed graph, G, and 
nodes s and t, is there a path from s to 
t in G that visits each other node 
exactly once? 

•  UHP: same question, but G is 
undirected. 
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DHP to UHP 
•  Replace each vertex, v, in the original 

graph, with three vertices, vin, vmid, vout. 

•  Replace each edge (u,v) with (uout,vin) 
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UHP to TSP 
•  Given an undirected graph, G, and nodes 

s and t. 
•  Create an undirected complete graph, H: 
•  If edge (u,v) is in G, then give (u,v) weight 

1 in H. 
•  If edge (u,v) is not in G, then give (u,v) 

weight 2 in H. 

•  Set K = n-1, where n is the number of 
nodes. H has a TSP of weight K iff G has 
an undirected Hamiltonian Path. 
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A Number Problem:  
The Subset Sum Problem 

•  We shall prove NP-complete a problem 
just involving integers: 
•  Given a set S of integers and a budget K, is 

there a subset of S whose sum is exactly K? 

•  E.g., S = {5, 8, 9, 13, 17}, K = 27. 
•  In this instance the answer is “Yes”:  
•  S’ = {5, 9, 13} 
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Subset Sum is in NP 

•  Guess a subset of the set S. 
•  Add ‘em up. 
•  Accept if the sum is K. 



14 

Polytime Reduction of 3SAT to 
Subset Sum 

•  Given 3SAT instance, F, we must 
construct a set S of integers and a 
budget K. 

•  Suppose F has c clauses and v 
variables. 

•  S will have base-32 integers of length 
c+v, and there will be 3c+2v of them. 
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Picture of Integers for Literals 

c v 
i 

1 

1 in i-th position 
if this integer is 
for xi or -xi. 

1    1  1        1    11 

1’s in all positions 
such that this literal 
makes the clause true. 

All other positions are 0. 



16 

Pictures of Integers for Clauses 

5 

6 

7 

i 

For the i-th clause 
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Example: Base-32 Integers 

  (x + y + z)(x + -y + -z) 
•  c = 2; v = 3. 
•  Assume x, y, z are variables 1, 2, 3, 

respectively. 
•  Clauses are 1, 2 in order given. 
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Example: (x + y + z)(x + -y + -z) 

•  For x:  00111 
•  For -x: 00100 
•  For y:  01001 
•  For -y: 01010 
•  For z:  10001 
•  For -z: 10010 

•  For first clause: 
00005, 00006, 
00007 

•  For second clause: 
00050, 00060, 
00070 
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The Budget 
•  K = 8(1+32+322+…+32c-1) + 

32c(1+32+322+…+32v-1) 

•  That is, 8 for the position of each clause 
and 1 for the position of each variable. 

•  Key Point: there can be no carries 
between positions. 

c 

1 1 1 1 1 1 1 1 1 1    8 8 8 8 8 8 8 8 8 8 8 8 

v 
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Key Point: Details 

•  Among all the integers, the sum of 
digits in the position for a variable is 2. 

•  And for a clause, it is 1+1+1+5+6+7 = 
21. 
•  1’s for the three literals in the clause; 5, 6, 

and 7 for the integers for that clause. 

•  Thus, the budget must be satisfied on a 
digit-by-digit basis. 
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Key Point: Concluded 

•  Thus, if a set of integers matches the 
budget, it must include exactly one of 
the integers for x and -x. 

•  For each clause, at least one of the 
integers for literals must have a 1 there, 
so we can choose either 5, 6, or 7 to 
make 8 in that position. 
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Proof the Reduction Works 

•  Each integer can be constructed from 
the 3SAT instance F in time proportional 
to its length. 
•  Thus, reduction is O(n2). 

•  If F is satisfiable, take a satisfying 
assignment A. 

•  Pick integers for those literals that A 
makes true. 
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Proof the Reduction Works – (2) 

•  The selected integers sum to between 1 
and 3 in the digit for each clause. 

•  For each clause, choose the integer 
with 5, 6, or 7 in that digit to make a 
sum of 8. 

•  These selected integers sum to exactly 
the budget. 
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Proof: Converse 

•  We must also show that a sum of 
integers equal to the budget k implies F 
is satisfiable. 

•  In each digit for a variable x, either the 
integer for x or the digit for -x, but not 
both is selected. 
•  let truth assignment A make this literal true. 
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Proof: Converse – (2) 

•  In the digits for the clauses, a sum of 8 
can only be achieved if among the 
integers for the variables, there is at 
least one 1 in that digit. 

•  Thus, truth assignment A makes each 
clause true, so it satisfies F. 
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The Partition Problem 

•  Given a list of integers L, can we 
partition it into two disjoint sets whose 
sums are equal? 
•  E.g., L = (3, 4, 5, 6).  
•  Yes: 3 + 6 = 4 + 5. 

•  Partition is NP-complete; reduction from 
Subset Sum. 



Reduction of Subset Sum to 
Partition 

•  Given instance (S, K) of Subset Sum, 
compute the sum total, T, of all the integers 
in S. 
•  Linear in input size. 

•  Output is S followed by two integers: 2K 
and T. 

•  Example: S = {3, 4, 5, 6}; K = 7. 
•  Partition instance = (3, 4, 5, 6, 14, 18). 
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Proof That Reduction Works 

•  The sum of all integers in the output 
instance is 2(T+K). 
•  Thus, the two partitions must each sum to 

exactly T + K. 

•  If the input instance has a subset, S’, of S 
that sums to K, then pick it plus the integer 
T to solve the output Partition instance: 
•  T + S’ = T + K = (T - K) + 2K = (T - S’) + 2K 
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Proof: Converse 

•  Suppose the output instance of Partition 
has a solution. 

•  The integers T and 2K cannot be in the 
same partition. 
•  Because their sum is more than half 2(T+K). 

•  Thus, the subset, S’, of S that is in the 
partition with T sums to K: 
•  T + S’ = (T - S’) + 2K; Hence, 2S’ = 2K. 
•  Thus, S’ = K, i.e., it solves Subset Sum. 


