
Route Planning under Uncertainty: The Canadian Traveller Problem

Evdokia Nikolova and David R. Karger ∗

Abstract

The Canadian Traveller problem is a stochastic shortest paths
problem in which one learns the cost of an edge only when
arriving at one of its endpoints. The goal is to find an opti-
mal policy that minimizes the expected cost of travel. The
problem is known to be #P-hard. Since there has been no
significant progress on approximation algorithms for several
decades, we have chosen to seek out special cases for which
exact solutions exist, in the hope of demonstrating techniques
that could lead to further progress. Applying a mix of tech-
niques from algorithm analysis and the theory of Markov De-
cision Processes, we provide efficient exact algorithms for
directed acyclic graphs and (undirected) graphs of disjoint
paths from source to destination with random two-valued
edge costs. We also give worst-case performance analysis
and experimental data for two natural heuristics.

Introduction
The Canadian traveller problem was first defined (Papadim-
itriou & Yannakakis 1991) to describe a situation com-
monly encountered by travellers in Canada: once a driver
reaches an intersection, he sees whether the incident roads
are snowed out or not and consequently decides which road
to take. In a graph instance, we are given distributions for
the costs of the edges, and upon arriving at a node we see
the actual cost values of incident edges. The goal is to find
an optimalpolicy for reaching from sourceS to destination
T that minimizes expected cost.

The Canadian Traveller problem is exemplar of several
interesting and important issues in optimization. It is a
stochastic optimizationproblem, in which some details of
the input (the edge lengths) are unknown when the problem
is being solved. It isadaptive—decisions are made as the
algorithm is running, based on new information that arrives
during that time. There is acost to gather information—one
must travel to a vertex to discover its incident edge costs. It
therefore involves the classic problem ofexploration versus
exploitation, in which one must decide whether to exploit the
(possibly suboptimal) information acquired so far, or invest

∗MIT CSAIL, Cambridge MA 02139, USA,{enikolova,
karger}@csail.mit.edu
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

further cost in exploration in the hope of acquiring better
information.

The Canadian traveller problem and similar formula-
tions find application in transportation, planning, robot nav-
igation and other areas. Its importance is convincingly
demonstrated by the diversity of fields of research that
have considered it, eg. (Papadimitriou & Yannakakis 1991;
Ferguson, Stentz, & Thrun 2004; Blei & Kaelbling 1999;
Bar-Noy & Schieber 1991; Polychronopoulos & Tsitsiklis
1996). Despite its importance, very little progress has been
made in formal approaches to the problem. Canadian Trav-
eller was shown to be #P-hard (Papadimitriou & Yannakakis
1991). Because of this negative result, the focus falls natu-
rally on approximation algorithms. But to date, none have
been developed. Indeed, even simpler questions such as
whether there exists a polynomial sizedescriptionof an op-
timal or approximately optimal policy, regardless of whether
it can be constructed, remain unanswered.
Our results. In light of the lack of progress on approxima-
tion algorithms, we have chosen to exploreexactsolutions
on special classes of graphs. Our aim is to begin to under-
stand the structure of good solutions, and the barriers to find-
ing them, as a first step toward more general instances. We
explain the connection of our problem toMarkov Decision
Processes (MDPs). MDPs can be solved in time polynomial
in the size of the state space. The problem is that for Cana-
dian Traveller, the obvious state space is exponential in the
size of the graph: there is one state for each possible set of
observations of values (so far) for any reachable subset of
the edges.

We begin with the (well understood) result that if inci-
dent edge costs are resampled each time we visit a vertex,
the problem becomes a standard MDP solvable in polyno-
mial time. Similarly, in the case of a directed acyclic graph
(DAG), the problem is easily solved by dynamic program-
ming. In both cases, the state space is small because we
need not remember edge costs—in the case of resampling,
the edges will be different each time we look, and in the case
of DAGs, we will never return to an edge. But as soon as one
can return to edges of fixed value, this approach fails.

It became clear that a core question in Canadian traveller
is when to turn back and seek a different route. To sepa-
rate this question from the more general problem of which
way to go forward, we considered the special case of a graph

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

969

made of parallel paths (which are node disjoint except at the
source and destination). We give an exact polynomial-time
algorithm for the case where the edges take on two distinct
values at random. When one of the values is 0 the optimum
policy has a simple closed form description; when both val-
ues are nonzero we show how to capture the problem in a
small MDP. Finally, we analyze and provide experimental
results for two natural heuristics. A number of the proofs
appear in the full version of this paper (Karger & Nikolova
2008).
Additional related work. Since each field has used a
different term for the same problem such as thebridge
problem(Blei & Kaelbling 1999) and others, related work
is sometimes difficult to recognize. Among the work
most closely related to ours after Papadimitriou & Yan-
nakakis (Papadimitriou & Yannakakis 1991), is that of Bar-
Noy and Schieber (Bar-Noy & Schieber 1991) who analyze
an adversarial version of the problem from a worst-case per-
spective. The authors also consider a stochastic version,
though overall their assumptions alter the nature of the prob-
lem significantly and allow for an efficient solution. We as-
sume that once an edge cost is observed, it remains fixed for
all time and remark in the next section on the much easier
version in which a new value for the edge is resampled from
its distribution at each new visit. Blei and Kaelbing (Blei &
Kaelbling 1999) consider the same version of the Canadian
traveller problem discussed here and offer solutions based
on Markov Decision Processes, though they note that their
solutions are exponential in the worst case.

A different perspective of adaptive routing problems is
offered by the framework of competitive analysis (Kalai
& Vempala 2005). Other work on adaptive routing in-
cludes (Fan, Kalaba, & J. E. Moore ; Gao & Chabini 2002;
Boyan & Mitzenmacher 2001; Hajiaghayiet al. 2006;
McDonald ; Peshkin & Savova 2002).

Problem formulation and preliminaries
Consider a graphG(V, E) with a specified sourceS and des-
tination T . The edges in the graph have uncertain costs,
coming from known probability distributions. For edgee,
we shall denote its random variable cost byXe and its real-
ized value byxe or simplycost(e).1 Upon reaching a node,
an agent observes the realized values of all edges adjacent
to that node. The objective is to find the optimal policy for
routing from the source to the destination, which minimizes
the expected cost of the route.

A Markov Decision Process formulation
It is known that the optimal policy of Markov Decision Pro-
cesses (MDPs) can be found in polynomial time in the size
of the MDP (the number of states and actions), for example
via linear programming (Puterman 1994). However, most
often, the size of the MDP blows up and such exact solu-
tions are typically exponential, unless there is a clever way
of defining the MDP which reduces its size.

1We distinguish between the cost of a path, which is the sum of
the costs of its edges, and its length, which is the number of edges
on the path.

The Canadian traveller problem can be reduced to a finite
belief-state MDP in which a state is a node together with
values of observed edges so far. Note however that due to
the unfolding history this would lead to exponentially many
states even on a simple graph with only two possible val-
ues for the edge costs and thus it would give an inefficient
solution for the optimal policy.

Comparison with an easier version: Canadian
Traveller with resampling

Consider the Canadian Traveller problem as defined above
with the additional assumption that every time we come
back to a node, we observe newly resampled values for the
incident edges. In this case, there a natural choice for an
MDP that solves the problem in polynomial time.

Define an MDP in which is a state is simply the node of
current position. An action is the choice of which next node
to visit. Then the number of states is equal to the number of
vertices|V | and the MDP can be solved in polynomial time:
in particular, we can find in polynomial time the expected
costw(v) of the optimal policy for getting from each node
v to the destination (prior to having seen the costs of edges
incident tov). The optimal action once we arrive at a nodev
is then to choose its next neighborv′ minimizing the cost of
edge(v, v′) plus the optimal costw(v′) to the destination.

Optimal policy for DAGs
For the rest of the paper, we consider the standard version
of the Canadian Traveller problem, in which once observed,
an edge cost remains fixed. In this section we show that
the special case ofdirected acyclic graphs(DAGs) can be
solved in polynomial time.

In general the Canadian Traveller problem with fixed ob-
servations is much harder than the version with resampling:
perhaps surprisingly, since in essence we are now better in-
formed of the costs of all previously observed edges. From
the point of view of MDPs, a corresponding MDP model-
ing this version requires a much bigger state space since a
state needs to reflect all past observations. An exact solution
would therefore require exponential time.

In a DAG on the other hand, we can never return to an
edge that has been previously visited, so the versions with
and without resampling are essentially identical problems.
Thus we can solve DAGs in polynomial time with the same
MDP as in the case of resampling. We now give a direct
faster polynomial-time solution for general DAGs based on
dynamic programming.

Theorem 1. The Canadian traveller problem on a directed
acyclic graph with|E| edges can be solved exactly in time
O(|E|).

Proof. Denote byw(v) the expected cost of following the
optimal policy from nodev to the destination. Upon arrival
at nodev, one sees the actual costs of all outgoing edges,
hence the optimal policy would choose the edge(v, v′) min-
imizing {cost(v, v′) + E[cost(v′, destination)]}. The sec-
ond term isw(v′) by definition. Thus, the expected cost atv

970

is the expectation of this minimum:

w(v) = E[min
v′

{Xvv′ + w(v′)}], (1)

whereXvv′ is the random cost of edge(v, v′).
From Eq. (1), the optimal policy costsw(v) can be com-

puted efficiently by traversing the nodes of the graphv in
reverse topological order. The calculation of a minimum
of several random variables is standard in statistics. In the
graph, we can compute the expected minimum asp1c1 +
(1−p1)[p2c2 +(1−p2)[p3c3 + ...]], wherec1 < c2 < ... are
the possible values of the random variables[Xvv′ + w(v′)]
(for all v′) andp1, p2, ... their corresponding probabilities.
Thus computingw(v) for a single node from Eq. (1) is done
in time linear in the number of outgoing edges ofv. Conse-
quently, the total running time of the algorithm is linear in
the total number of edgesO(|E|).

The optimality of this algorithm critically follows from
the fact that the graph is directed and acyclic, thus the op-
timal policy costw(v) at every nodev only depends on the
children ofv and hence it is computed correctly (proof by
induction, starting from the last node).

Properties of disjoint-path graphs
In this section, we derive a key monotonicity property of
the optimal policy on undirected disjoint-path graphs (con-
sisting of disjointST -paths), with independent identically
distributed (iid) edges.

Consider an undirected graph consisting ofk node-
disjoint paths between the sourceS and destinationT . Any
algorithm would follow one path up to a point, then possibly
return to the source to explore a part of a second path, etc.
until it reaches the destination. In the worst case, it may turn
at every node, reaching the next unexplored node on another
path, then turning back to reach the next unexplored node
on a different path, etc. At every step of the algorithm we
arrive at a configuration where we know the explored dis-
tanceai and the number of unexplored edgesni on thei-th
path fori = 1, ..., k, as shown in Figure 1. In this configu-
ration, we denote the expected cost to the destination under
the optimal policy byw({ai, ni}

k
i=1). With a slight abuse

of notation, we will use the same notation for a configura-
tion with current position inside a path. Then for a different
pathi, ai will stand for the sum of distances from the current
location back to the source and from the source to the first
unexplored edge on pathi.

Lemma 2. [Monotonicity] The following properties
hold for the optimal algorithm and its expected cost
w({ai, ni}

k
i=1):

1. The optimal expected cost is symmetric with respect to the
paths,w(ai, ni, aj , nj , ...) = w(aj , nj, ai, ni, ...).

2. The optimal expected cost is monotone nondecreasing in
ai andni, for all i = 1, ..., k.

Proof. Part(1) follows from the isomorphism of the graphs
with the ith andjth paths exchanged. For part(2), we first
show that the optimal expected cost is monotone nonde-
creasing inni. By symmetry, it suffices to show this for

A

a1

TS’ ai

k

n1

ni

A1j

A ij

a
nk

kj

Figure 1:w({ai, ni}
k
i=1) is the optimal expected cost to get

from S′ to T .

n1. We need to showw(a1, n1, {aj, nj}j 6=1) ≤ w(a1, n1 +
n, {aj, nj}j 6=1) for n > 0. Denote the configurationsCn1

=
(a1, n1, {aj, nj}j 6=1), Cn1+n = (a1, n1 + n, {aj, nj}j 6=1)

and C̃n1+n = (a1, n1 + n, {aj, nj}j 6=1) where the lastn
edges on the first path have cost0.

Suppose the optimal algorithm onCn1+n is A. Consider
algorithmA∗ on configuratioñCn1+n defined as follows:
(i) RunA until it reaches the destinationT or the nodeT ′ on
the first path, which immediately precedes then zero edges;
(ii) If reachT beforeT ′, terminate;
(iii) Else, proceed fromT ′ to T along the bottom edges at
cost0.

On every realization of the edge random variables in con-
figurationCn1+n, AlgorithmA∗ incurs the same or smaller
costC̃n1+n than AlgorithmA onCn1+n. On the other hand,
the cost of runningA∗ on configurationC̃n1+n is precisely
the same as the cost of runningA on configurationCn1

.
Therefore,

w(a1, n1, {aj, nj}j 6=1) ≤ wA(a1, n1, {aj, nj}j 6=1)

= wA∗(C̃n1+n)

≤ w(a1, n1 + n, {aj, nj}j 6=1).

A similar argument shows that the optimal expected cost
is monotone non-decreasing inai for all i = 1, ..., k, QED.

We can now prove the following theorem (Karger &
Nikolova 2008).

Theorem 3. Supposea1 = min ai andn1 = min ni. Sup-
pose also that the cost of every edge is a non-negative ran-
dom variable. Then it is optimal to proceed along the first
path up to the first unseen edge on the path.

Optimal policy for disjoint-path graphs
In this section, we give a polynomial-time algorithm for
computing the optimal policy on a disjoint-paths graph with
iid random two-valued edge costs. To build intuition, it is
instructive to consider first the case in which one of the val-
ues is zero (without loss of generality the other value is1).
In this case, Theorem 3 and Lemma 2 immediately establish
that the optimal strategy explores all paths until it reaches
edges of cost1 on each path, at which point it comes back
to the path with fewest unexplored edges and follows it until
the end.

971

Theorem 4. The optimal policy on a disjoint-path graph
with random(0, 1)-edge costs can be found in polynomial
time.
Furthermore we can compute closed-form expressions for
the expected cost of the optimal route (Karger & Nikolova
2008).

Next we compute an optimal policy based on MDPs for
the case of positive edge costs. Without loss of generality
let the edge cost be1 with probabilityp andK otherwise.
Defining MDPs in the natural way yields exponentially large
state space as explained above; combining it with the special
structure of the optimal policy here lets us define a more
parsimonious MDP that is efficiently solvable.

A property of the optimal policy here is that once we have
crossed aK-edge, we will never cross it again. This follows
from a distribution-dominance argument as in our Mono-
tonicity Lemma 2. Similarly, once we have chosen to follow
a path, the optimal policy would keep following it until the
first K-edge.

These properties allow for a simple description of the op-
timal policy: explore one or more of the paths up to the first
cost-K edge along them, then pick one and follow it until
the end. The policy just has to decide in what order to ex-
plore the paths, and how many, before committing to a path.
This allows us to capture it as the solution of an MDP with
concise representation.

Two paths In order to solve the general case, the optimal
policy needs a subroutine for comparing two paths.
Lemma 5. The optimal policy on a graph with two node-
disjoint paths and positive two-valued edge costs can be
found in polynomial time.

Proof. At each instant prior to committing to a path, our
knowledge on the graph can be described concisely as the
tuple (a1, x1, n1; a2, x2, n2; i), whereai is the number of
cost-1 edges we have observed along pathi; xi = 1 or K is
the last observation on that path;ni is the number of unob-
served edges remaining on the path andi = 1, 2 is the index
of the current path. Clearly these are polynomially many
O(|E|4) states and in each state there are only two actions:
to continue along the current path or turn back to the other
path. (|E| is the number of edges in the graph, as usual.)
Thus, the optimal policy can be obtained as the solution to
that MDP in polynomial time.

As a corollary from the two paths case, we have an ef-
ficient subroutine for comparing two paths with configura-
tions(ai, xi, ni) using the notation above, in terms of which
one would yield a lower expected policy cost.

Arbitrary many paths We can now derive the optimal
policy for the general case of more than two paths.
Theorem 6. The optimal policy on a disjoint-path graph
with positive two-valued edge costs can be found in polyno-
mial time.

Series-parallel graphs
In this section we show that we may sometimes turn back
along a high-cost edge in a series-parallel graph, so the opti-

mal policy for disjoint-path graphs no longer applies here.2

S T1

...

1

11

1 A

B

Figure 2: The optimal policy may return along a traversed
edge of cost1.

Consider the series-parallel graph in Figure 2, in which
an agent starting atS has a choice of two directions, toA
or B. The graph fromA to T consists ofn paths withlog n
edges each, and there is a single edge fromB to T . Further
suppose that each edge is0 or 1 with probability 1

2
each.

Lemma 7. The optimal routing strategy on the given graph
first goes toA, and upon observing all cost 1 edges atA,
goes back toS, then towardsB andT .

Heuristic algorithms
In the absence of an efficient algorithm for the Canadian
Traveller problem on general graphs, we examine two natu-
ral heuristics for the optimal routing policy. In the following,
we use cost and distance interchangeably. Theminimum ex-
pected distanceheuristic replaces unknown edge costs by
their expectation and chooses to go to the next node along
the shortest path to the destination with respect to these ex-
pected edge costs. Theexpected minimum distanceheuris-
tic goes to the next node, which minimizes the sum of the
corresponding (observed) edge cost and theexpected mini-
mumdistance from the next node to the destination. In other
words, for every given realization of edge costs we pick the
minimum-cost route; then we calculate the expectation of
the minimum-cost route with respect to the distributions of
all unknown edge costs in the graph. Note that for differ-
ent edge cost realizations the minimum route may be dif-
ferent, thus it is meaningful to speak of the expected value
of the minimum route, but not of an “expected minimum
route” per se. The difference between these two heuristics
can be illustrated on the graph in Figure 3. At the source,
the first heuristic would replace allXi by their expectations
and take the top single-edge route since its expected cost
mini E[Xi] − ǫ is smaller than that of any of the bottom
routes. On the other hand, the second heuristic would cal-
culateE[mini Xi] as the expected minimum cost of then
parallel edges on the bottom, compare this to the expected
minimum costmini E[Xi] − ǫ on the top and choose to tra-
verse the0 edge on the bottom. Then, upon reaching then
parallel edges, it will see their actual costs and pick the edge
of minimum cost.

2A series-parallel graph is defined by the following procedure:
starting from a single edge, replace an edge by two edges in parallel
or two edges in series and repeat as desired.

972

mini E[Xi] − ǫ

0

X1

X2

Xn

Figure 3: Counterexample showing suboptimality of the
minimum expected distance heuristic.

Minimum expected distance heuristic. We will show that
this heuristic has an exponential gap from the optimal rout-
ing algorithm, that is it may result in a route with an ex-
ponentially higher cost than that of the optimal route, and
should therefore be avoided.

Lemma 8. The minimum expected distance heuristic has
exponential gap from the optimal policy.

Proof. Consider the graph in Figure 3. Any route from the
source to the destination consists of the direct link on the top
or of the0-cost link on the bottom and one of the subsequent
n parallel links, whose costs are given by the random vari-
ablesX1, ..., Xn. Suppose the direct link on the top has cost
mini E[Xi] − ǫ.

SupposeXi are random variables, which are1 with prob-
ability p > 0 and0 otherwise. If at least one of then links
on the bottom is0, the bottom route would have cost0, oth-
erwise it would have cost1. Thus,E[min Xi] = pn. On the
other hand, if we follow a partially adaptive algorithm which
replaces the unseen edges with their expectation, we would
take the top route and the expected cost of the trip would be
minE[Xi] − ǫ = p − ǫ. With ǫ → 0, we see that this gap is
exponential:

minE[Xi] − ǫ

E[min Xi]
=

p

pn
=

1

pn−1
.

Expected minimum distance heuristic. We show that this
heuristic may yield(log n)-suboptimal routes, although it
is significantly better and coincides with the optimal policy
on disjoint-path graphs. Note that the expected minimum
distance can be approximated arbitrarily well in polynomial
time via sampling, and our experimental results demonstrate
that even poorer approximations from very few samples can
yield an unexpectedly good practical performance. The
proofs for the following two lemmas are in the appendix.

Lemma 9. The expected minimum distance rule is optimal
on disjoint-path graphs with{0, 1} edge costs.

Lemma 10. The expected minimum distance heuristic has
Ω(log |V |) gap from the optimal policy.

Experimental evaluation. We implemented the two heuris-
tics and the optimal policy forn × n directed grid graphs in
which all edges are directed either up or to the right, and the

10 20 30 40 50
0

5

10

15

20

25

30

35

num. nodes on grid side

pa
th

 c
os

t

Opt. policy
Exp. Min. Dist
Approx. Min. Dist
Min. Exp. Dist

Figure 4: The cost of paths found via the optimal policy and
our heuristic algorithms on grid graphs.

goal is to reach from the bottom left to the top right corner
of the grid. We chose these graphs since we could compute
the optimal policy efficiently with our algorithm from The-
orem 1. This enabled us to compare the heuristics to the
optimal solution. These graphs are also fairly realistic, re-
sembling the Manhattan grid of streets. The results for grids
of sides5, 6, ..., 50 are presented in Figure 4. For the pur-
pose of the simulation, we considerediid random(0, 1) edge
costs with different probabilities. The plots represent the av-
erage cost of 1000 actual routes following the optimal policy
and the two heuristics. (The plots in the figure have proba-
bility 1/2 of 0 edge cost, different probabilities yielded simi-
lar relative performance of the algorithms). As expected, the
minimum expected distance heuristic performed poorly. De-
spite the negative theoretical worst-case results above, how-
ever, the expected minimum distance heuristic had perfor-
mance comparable to the optimal policy. Even a crude ap-
proximation of the expected minimum distances based on
only 10 samples of the graph edge costs (represented by the
“Approx. Min. Dist.” line) yielded surprisingly good routes
that were only slightly longer than those of the optimal pol-
icy.

Conclusion
The current status of the general Canadian traveller problem
is still widely open with respect to approximability. In light
of our experimental results, it would be intriguing to provide
a theoretic justification for the excellent performance of the
expected minimum distance heuristic. This heuristic may
also be a fruitful source of approximation algorithms.

It also remains open to see if the graphs we consider
can be extended to a more general class that admits exact
polynomial-time solutions, or otherwise to provide hardness
results for generalizations of these classes, for example for
series-parallel graphs. Given the importance of the problem
in practice, it is also key to further understand the effective-
ness and limitations of ours and other heuristics, in theory
and practice.

973

Acknowledgement
We thank Shuchi Chawla, Nick Harvey, David Kempe, Va-
hab Mirrokni, Christos Papadimitriou, John Tsitsiklis and
Mihalis Yannakakis for valuable discussions.

References
Bar-Noy, A., and Schieber, B. 1991. The canadian traveller
problem. InProceedings of the second annual ACM-SIAM
symposium on Discrete algorithms, 261–270.
Blei, D., and Kaelbling, L. 1999. Shortest paths in a dy-
namic uncertain domain. InIJCAI Workshop on Adaptive
Spatial Representations of Dynamic Environments.
Boyan, J., and Mitzenmacher, M. 2001. Improved results
for route planning in stochastic transportation networks.
Symposium of Discrete Algorithms.
Fan, Y.; Kalaba, R.; and J. E. Moore, I. Arriving on time.
Journal of Optimization Theory and Applicationsforth-
com.
Ferguson, D.; Stentz, A.; and Thrun, S. 2004. PAO* for
planning with hidden state. InProceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA).
Gao, S., and Chabini, I. 2002. Optimal routing policy
problems in stochastic time-dependent networks. InPro-
ceedings of the IEEE 5th International Conference on In-
telligent, Transportation Systems, 549–559.
Hajiaghayi, M. T.; Kleinberg, R. D.; Leighton, F. T.; and
Raecke, H. 2006. New lower bounds for oblivious rout-
ing in undirected graphs. InProceedings of Symposium on
Discrete Algorithms.
Kalai, A., and Vempala, S. 2005. Efficient algorithms for
on-line optimization.Journal of Computer and System Sci-
ences71:291–307.
Karger, D. R., and Nikolova, E. 2008. Exact algorithms for
the canadian traveller problem on paths and trees. Techni-
cal Report MIT-CSAIL-TR-2008-004, MIT.
McDonald, A. B. Survey of adaptive shortest-path
routing in dynamic packet-switched networks. cite-
seer.ist.psu.edu/mcdonald97survey.html.
Papadimitriou, C., and Yannakakis, M. 1991. Short-
est paths without a map.Theoretical Computer Science
84:127–150.
Peshkin, L., and Savova, V. 2002. Reinforcement learning
for adaptive routing. InProceedings of Intnl. Joint Conf.
on Neural Networks, IJCNN.
Polychronopoulos, G., and Tsitsiklis, J. 1996. Stochastic
shortest path problems with recourse.Networks27(2):133–
143.
Puterman, M. L. 1994.Markov Decision Processes. John
Wiley and Sons.

974

